# Copyright 2023 Memgraph Ltd. # # Use of this software is governed by the Business Source License # included in the file licenses/BSL.txt; by using this file, you agree to be bound by the terms of the Business Source # License, and you may not use this file except in compliance with the Business Source License. # # As of the Change Date specified in that file, in accordance with # the Business Source License, use of this software will be governed # by the Apache License, Version 2.0, included in the file # licenses/APL.txt. import random from workloads.base import Workload class Demo(Workload): NAME = "demo" def indexes_generator(self): indexes = [] if "neo4j" in self.benchmark_context.vendor_name: indexes.extend( [ ("CREATE INDEX FOR (n:NodeA) ON (n.id);", {}), ("CREATE INDEX FOR (n:NodeB) ON (n.id);", {}), ] ) else: indexes.extend( [ ("CREATE INDEX ON :NodeA(id);", {}), ("CREATE INDEX ON :NodeB(id);", {}), ] ) return indexes def dataset_generator(self): queries = [] for i in range(0, 10000): queries.append(("CREATE (:NodeA {id: $id});", {"id": i})) queries.append(("CREATE (:NodeB {id: $id});", {"id": i})) for i in range(0, 50000): a = random.randint(0, 9999) b = random.randint(0, 9999) queries.append( (("MATCH(a:NodeA {id: $A_id}),(b:NodeB{id: $B_id}) CREATE (a)-[:EDGE]->(b)"), {"A_id": a, "B_id": b}) ) return queries def benchmark__test__get_nodes(self): return ("MATCH (n) RETURN n;", {}) def benchmark__test__get_node_by_id(self): return ("MATCH (n:NodeA{id: $id}) RETURN n;", {"id": random.randint(0, 9999)})