# Copyright 2023 Memgraph Ltd. # # Use of this software is governed by the Business Source License # included in the file licenses/BSL.txt; by using this file, you agree to be bound by the terms of the Business Source # License, and you may not use this file except in compliance with the Business Source License. # # As of the Change Date specified in that file, in accordance with # the Business Source License, use of this software will be governed # by the Apache License, Version 2.0, included in the file # licenses/APL.txt. from abc import ABC, abstractclassmethod from pathlib import Path import helpers from benchmark_context import BenchmarkContext # Base dataset class used as a template to create each individual dataset. All # common logic is handled here. class Workload(ABC): # Name of the workload/dataset. NAME = "" # List of all variants of the workload/dataset that exist. VARIANTS = ["default"] # One of the available variants that should be used as the default variant. DEFAULT_VARIANT = "default" # List of local files that should be used to import the dataset. LOCAL_FILE = None # URLs of remote dataset files that should be used to import the dataset, compressed in gz format. URL_FILE = None # Index files LOCAL_INDEX_FILE = None URL_INDEX_FILE = None # Number of vertices/edges for each variant. SIZES = { "default": {"vertices": 0, "edges": 0}, } # Indicates whether the dataset has properties on edges. PROPERTIES_ON_EDGES = False def __init_subclass__(cls) -> None: name_prerequisite = "NAME" in cls.__dict__ generator_prerequisite = "dataset_generator" in cls.__dict__ generator_indexes_prerequisite = "indexes_generator" in cls.__dict__ custom_import_prerequisite = "custom_import" in cls.__dict__ basic_import_prerequisite = ("LOCAL_FILE" in cls.__dict__ or "URL_FILE" in cls.__dict__) and ( "LOCAL_INDEX_FILE" in cls.__dict__ or "URL_INDEX_FILE" in cls.__dict__ ) if not name_prerequisite: raise ValueError( """ Can't define a workload class {} without NAME property: NAME = "dataset name" Name property defines the workload you want to execute, for example: "demo/*/*/*" """.format( cls.__name__ ) ) if generator_prerequisite and (custom_import_prerequisite or basic_import_prerequisite): raise ValueError( """ The workload class {} cannot have defined dataset import and generate dataset at the same time. """.format( cls.__name__ ) ) if not generator_prerequisite and (not custom_import_prerequisite and not basic_import_prerequisite): raise ValueError( """ The workload class {} need to have defined dataset import or dataset generator """.format( cls.__name__ ) ) if generator_prerequisite and not generator_indexes_prerequisite: raise ValueError("The workload class {} need to define indexes_generator for generating a dataset. ") return super().__init_subclass__() def __init__(self, variant: str = None, benchmark_context: BenchmarkContext = None): """ Accepts a `variant` variable that indicates which variant of the dataset should be executed """ self.benchmark_context = benchmark_context self._variant = variant self._vendor = benchmark_context.vendor_name self._file = None self._file_index = None if self.NAME == "": raise ValueError("Give your workload a name, by setting self.NAME") if variant is None: variant = self.DEFAULT_VARIANT if variant not in self.VARIANTS: raise ValueError("Invalid test variant!") if (self.LOCAL_FILE and variant not in self.LOCAL_FILE) and (self.URL_FILE and variant not in self.URL_FILE): raise ValueError("The variant doesn't have a defined URL or LOCAL file path!") if variant not in self.SIZES: raise ValueError("The variant doesn't have a defined dataset " "size!") if (self.LOCAL_INDEX_FILE and self._vendor not in self.LOCAL_INDEX_FILE) and ( self.URL_INDEX_FILE and self._vendor not in self.URL_INDEX_FILE ): raise ValueError("Vendor does not have INDEX for dataset!") if self.LOCAL_FILE is not None: self._local_file = self.LOCAL_FILE.get(variant, None) else: self._local_file = None if self.URL_FILE is not None: self._url_file = self.URL_FILE.get(variant, None) else: self._url_file = None if self.LOCAL_INDEX_FILE is not None: self._local_index = self.LOCAL_INDEX_FILE.get(self._vendor, None) else: self._local_index = None if self.URL_INDEX_FILE is not None: self._url_index = self.URL_INDEX_FILE.get(self._vendor, None) else: self._url_index = None self._size = self.SIZES[variant] if "vertices" in self._size or "edges" in self._size: self._num_vertices = self._size["vertices"] self._num_edges = self._size["edges"] def prepare(self, directory): if self._local_file is not None: print("Using local dataset file:", self._local_file) self._file = self._local_file elif self._url_file is not None: cached_input, exists = directory.get_file("dataset.cypher") if not exists: print("Downloading dataset file:", self._url_file) downloaded_file = helpers.download_file(self._url_file, directory.get_path()) print("Unpacking and caching file:", downloaded_file) helpers.unpack_gz_and_move_file(downloaded_file, cached_input) print("Using cached dataset file:", cached_input) self._file = cached_input if self._local_index is not None: print("Using local index file:", self._local_index) self._file_index = self._local_index elif self._url_index is not None: cached_index, exists = directory.get_file(self._vendor + ".cypher") if not exists: print("Downloading index file:", self._url_index) downloaded_file = helpers.download_file(self._url_index, directory.get_path()) print("Unpacking and caching file:", downloaded_file) helpers.unpack_gz_and_move_file(downloaded_file, cached_index) print("Using cached index file:", cached_index) self._file_index = cached_index def get_variant(self): """Returns the current variant of the dataset.""" return self._variant def get_index(self): """Get index file, defined by vendor""" return self._file_index def get_file(self): """ Returns path to the file that contains dataset creation queries. """ return self._file def get_size(self): """Returns number of vertices/edges for the current variant.""" return self._size def custom_import(self) -> bool: print("Workload does not have a custom import") return False def dataset_generator(self) -> list: print("Workload is not auto generated") return [] # All tests should be query generator functions that output all of the # queries that should be executed by the runner. The functions should be # named `benchmark__GROUPNAME__TESTNAME` and should not accept any # arguments.