#include #include #include "storage/v2/storage.hpp" using testing::UnorderedElementsAre; // TODO: The point of these is not to test GC fully, these are just simple // sanity checks. These will be superseded by a more sophisticated stress test // which will verify that GC is working properly in a multithreaded environment. // A simple test trying to get GC to run while a transaction is still alive and // then verify that GC didn't delete anything it shouldn't have. // NOLINTNEXTLINE(hicpp-special-member-functions) TEST(StorageV2Gc, Sanity) { storage::Storage storage( storage::StorageGcConfig{.type = storage::StorageGcConfig::Type::PERIODIC, .interval = std::chrono::milliseconds(100)}); std::vector vertices; { auto acc = storage.Access(); // Create some vertices, but delete some of them immediately. for (uint64_t i = 0; i < 1000; ++i) { auto vertex = acc.CreateVertex(); vertices.push_back(vertex.Gid()); } acc.AdvanceCommand(); for (uint64_t i = 0; i < 1000; ++i) { auto vertex = acc.FindVertex(vertices[i], storage::View::OLD); ASSERT_TRUE(vertex.has_value()); if (i % 5 == 0) { EXPECT_FALSE(acc.DeleteVertex(&vertex.value()).HasError()); } } // Wait for GC. std::this_thread::sleep_for(std::chrono::milliseconds(300)); for (uint64_t i = 0; i < 1000; ++i) { auto vertex_old = acc.FindVertex(vertices[i], storage::View::OLD); auto vertex_new = acc.FindVertex(vertices[i], storage::View::NEW); EXPECT_TRUE(vertex_old.has_value()); EXPECT_EQ(vertex_new.has_value(), i % 5 != 0); } ASSERT_FALSE(acc.Commit().HasError()); } // Verify existing vertices and add labels to some of them. { auto acc = storage.Access(); for (uint64_t i = 0; i < 1000; ++i) { auto vertex = acc.FindVertex(vertices[i], storage::View::OLD); EXPECT_EQ(vertex.has_value(), i % 5 != 0); if (vertex.has_value()) { EXPECT_FALSE( vertex->AddLabel(storage::LabelId::FromUint(3 * i)).HasError()); EXPECT_FALSE( vertex->AddLabel(storage::LabelId::FromUint(3 * i + 1)).HasError()); EXPECT_FALSE( vertex->AddLabel(storage::LabelId::FromUint(3 * i + 2)).HasError()); } } // Wait for GC. std::this_thread::sleep_for(std::chrono::milliseconds(300)); // Verify labels. for (uint64_t i = 0; i < 1000; ++i) { auto vertex = acc.FindVertex(vertices[i], storage::View::NEW); EXPECT_EQ(vertex.has_value(), i % 5 != 0); if (vertex.has_value()) { auto labels_old = vertex->Labels(storage::View::OLD); EXPECT_TRUE(labels_old.HasValue()); EXPECT_TRUE(labels_old->empty()); auto labels_new = vertex->Labels(storage::View::NEW); EXPECT_TRUE(labels_new.HasValue()); EXPECT_THAT( labels_new.GetValue(), UnorderedElementsAre(storage::LabelId::FromUint(3 * i), storage::LabelId::FromUint(3 * i + 1), storage::LabelId::FromUint(3 * i + 2))); } } ASSERT_FALSE(acc.Commit().HasError()); } // Add and remove some edges. { auto acc = storage.Access(); for (uint64_t i = 0; i < 1000; ++i) { auto from_vertex = acc.FindVertex(vertices[i], storage::View::OLD); auto to_vertex = acc.FindVertex(vertices[(i + 1) % 1000], storage::View::OLD); EXPECT_EQ(from_vertex.has_value(), i % 5 != 0); EXPECT_EQ(to_vertex.has_value(), (i + 1) % 5 != 0); if (from_vertex.has_value() && to_vertex.has_value()) { EXPECT_FALSE(acc.CreateEdge(&from_vertex.value(), &to_vertex.value(), storage::EdgeTypeId::FromUint(i)) .HasError()); } } // Detach delete some vertices. for (uint64_t i = 0; i < 1000; ++i) { auto vertex = acc.FindVertex(vertices[i], storage::View::NEW); EXPECT_EQ(vertex.has_value(), i % 5 != 0); if (vertex.has_value()) { if (i % 3 == 0) { EXPECT_FALSE(acc.DetachDeleteVertex(&vertex.value()).HasError()); } } } // Wait for GC. std::this_thread::sleep_for(std::chrono::milliseconds(300)); // Vertify edges. for (uint64_t i = 0; i < 1000; ++i) { auto vertex = acc.FindVertex(vertices[i], storage::View::NEW); EXPECT_EQ(vertex.has_value(), i % 5 != 0 && i % 3 != 0); if (vertex.has_value()) { auto out_edges = vertex->OutEdges({}, storage::View::NEW); if (i % 5 != 4 && i % 3 != 2) { EXPECT_EQ(out_edges.GetValue().size(), 1); EXPECT_EQ(*vertex->OutDegree(storage::View::NEW), 1); EXPECT_EQ(out_edges.GetValue().at(0).EdgeType().AsUint(), i); } else { EXPECT_TRUE(out_edges->empty()); } auto in_edges = vertex->InEdges({}, storage::View::NEW); if (i % 5 != 1 && i % 3 != 1) { EXPECT_EQ(in_edges.GetValue().size(), 1); EXPECT_EQ(*vertex->InDegree(storage::View::NEW), 1); EXPECT_EQ(in_edges.GetValue().at(0).EdgeType().AsUint(), (i + 999) % 1000); } else { EXPECT_TRUE(in_edges->empty()); } } } ASSERT_FALSE(acc.Commit().HasError()); } } // A simple sanity check for index GC: // 1. Start transaction 0, create some vertices, add a label to them and // commit. // 2. Start transaction 1. // 3. Start transaction 2, remove the labels and commit; // 4. Wait for GC. GC shouldn't remove the vertices from index because // transaction 1 can still see them with that label. // NOLINTNEXTLINE(hicpp-special-member-functions) TEST(StorageV2Gc, Indices) { storage::Storage storage( storage::StorageGcConfig{.type = storage::StorageGcConfig::Type::PERIODIC, .interval = std::chrono::milliseconds(100)}); { auto acc0 = storage.Access(); for (uint64_t i = 0; i < 1000; ++i) { auto vertex = acc0.CreateVertex(); ASSERT_TRUE(*vertex.AddLabel(acc0.NameToLabel("label"))); } ASSERT_FALSE(acc0.Commit().HasError()); } { auto acc1 = storage.Access(); auto acc2 = storage.Access(); for (auto vertex : acc2.Vertices(storage::View::OLD)) { ASSERT_TRUE(*vertex.RemoveLabel(acc2.NameToLabel("label"))); } ASSERT_FALSE(acc2.Commit().HasError()); // Wait for GC. std::this_thread::sleep_for(std::chrono::milliseconds(300)); std::set gids; for (auto vertex : acc1.Vertices(acc1.NameToLabel("label"), storage::View::OLD)) { gids.insert(vertex.Gid()); } EXPECT_EQ(gids.size(), 1000); } }