#include #include #include #include #include #include #include #include "communication/bolt/ha_client.hpp" #include "io/network/endpoint.hpp" #include "io/network/utils.hpp" #include "utils/exceptions.hpp" #include "utils/string.hpp" #include "utils/timer.hpp" using EndpointT = io::network::Endpoint; using ClientContextT = communication::ClientContext; using ClientT = communication::bolt::HAClient; using ValueT = communication::bolt::Value; using QueryDataT = communication::bolt::QueryData; using ExceptionT = communication::bolt::ClientQueryException; DEFINE_string(endpoints, "127.0.0.1:7687,127.0.0.1:7688,127.0.0.1:7689", "Cluster server endpoints (host:port, separated by comma)."); DEFINE_int32(cluster_size, 3, "Size of the raft cluster."); DEFINE_string(username, "", "Username for the database"); DEFINE_string(password, "", "Password for the database"); DEFINE_bool(use_ssl, false, "Set to true to connect with SSL to the server."); DEFINE_int32(vertex_count, 0, "The average number of vertices in the graph per worker"); DEFINE_int32(edge_count, 0, "The average number of edges in the graph per worker"); DEFINE_int32(prop_count, 5, "The max number of properties on a node"); DEFINE_uint64(max_queries, 1U << 30U, "Maximum number of queries to execute"); DEFINE_int32(max_time, 1, "Maximum execution time in minutes"); DEFINE_int32(verify, 0, "Interval (seconds) between checking local info"); DEFINE_int32(worker_count, 1, "The number of workers that operate on the graph independently"); DEFINE_bool(global_queries, true, "If queries that modifiy globally should be executed sometimes"); DEFINE_string(stats_file, "", "File into which to write statistics."); std::vector GetEndpoints() { std::vector ret; for (const auto &endpoint : utils::Split(FLAGS_endpoints, ",")) { auto split = utils::Split(utils::Trim(endpoint), ":"); CHECK(split.size() == 2) << "Invalid endpoint!"; ret.emplace_back( io::network::ResolveHostname(std::string(utils::Trim(split[0]))), static_cast(std::stoi(std::string(utils::Trim(split[1]))))); } return ret; } /** * Encapsulates a Graph and a Bolt session and provides CRUD op functions. * Also defines a run-loop for a generic exectutor, and a graph state * verification function. */ class GraphSession { public: explicit GraphSession(int id) : id_(id), indexed_label_(fmt::format("indexed_label{}", id)), generator_{std::random_device{}()} { for (int i = 0; i < FLAGS_prop_count; ++i) { auto label = fmt::format("label{}", i); labels_.insert(label); labels_vertices_.insert({label, {}}); } std::vector endpoints = GetEndpoints(); uint64_t retries = 15; std::chrono::milliseconds retry_delay(1000); ClientContextT context(FLAGS_use_ssl); client_ = std::make_unique(endpoints, &context_, FLAGS_username, FLAGS_password, retries, retry_delay); } private: uint64_t id_; ClientContextT context_{FLAGS_use_ssl}; std::unique_ptr client_; uint64_t vertex_id_{0}; uint64_t edge_id_{0}; std::set vertices_; std::set edges_; std::string indexed_label_; std::set labels_; std::map> labels_vertices_; uint64_t executed_queries_{0}; std::map query_failures_; std::mt19937 generator_; utils::Timer timer_; private: double GetRandom() { return std::generate_canonical(generator_); } bool Bernoulli(double p) { return GetRandom() < p; } template T RandomElement(const std::set &data) { uint32_t pos = std::floor(GetRandom() * data.size()); auto it = data.begin(); std::advance(it, pos); return *it; } void AddQueryFailure(std::string what) { auto it = query_failures_.find(what); if (it != query_failures_.end()) { ++it->second; } else { query_failures_.insert(std::make_pair(what, 1)); } } QueryDataT Execute(std::string query) { try { DLOG(INFO) << "Runner " << id_ << " executing query: " << query; executed_queries_ += 1; return client_->Execute(query, {}); } catch (const ExceptionT &e) { AddQueryFailure(std::string{e.what()}); return QueryDataT(); } } void CreateVertices(uint64_t vertices_count) { if (vertices_count == 0) return; auto ret = Execute(fmt::format( "UNWIND RANGE({}, {}) AS r CREATE (n:{} {{id: r}}) RETURN count(n)", vertex_id_, vertex_id_ + vertices_count - 1, indexed_label_)); CHECK(ret.records.size() == 1) << "Vertices creation failed!"; CHECK(ret.records[0][0].ValueInt() == vertices_count) << "Created " << ret.records[0][0].ValueInt() << " vertices instead of " << vertices_count << "!"; for (uint64_t i = 0; i < vertices_count; ++i) { vertices_.insert(vertex_id_ + i); } vertex_id_ += vertices_count; } void RemoveVertex() { auto vertex_id = RandomElement(vertices_); auto ret = Execute(fmt::format("MATCH (n:{} {{id: {}}}) OPTIONAL MATCH (n)-[r]-() " "DETACH DELETE n RETURN n.id, labels(n), r.id", indexed_label_, vertex_id)); if (!ret.records.empty()) { std::set processed_vertices; for (auto &record : ret.records) { // remove vertex but note there could be duplicates auto n_id = record[0].ValueInt(); if (processed_vertices.insert(n_id).second) { vertices_.erase(n_id); for (auto &label : record[1].ValueList()) { if (label.ValueString() == indexed_label_) { continue; } labels_vertices_[label.ValueString()].erase(n_id); } } // remove edge auto &edge = record[2]; if (edge.type() == ValueT::Type::Int) { edges_.erase(edge.ValueInt()); } } } } void CreateEdges(uint64_t edges_count) { if (edges_count == 0) return; auto edges_per_node = (double)edges_count / vertices_.size(); CHECK(std::abs(edges_per_node - (int64_t)edges_per_node) < 0.0001) << "Edges per node not a whole number"; auto ret = Execute(fmt::format( "MATCH (a:{0}) WITH a " "UNWIND range(0, {1}) AS i WITH a, tointeger(rand() * {2}) AS id " "MATCH (b:{0} {{id: id}}) WITH a, b " "CREATE (a)-[e:EdgeType {{id: counter(\"edge\", {3})}}]->(b) " "RETURN count(e)", indexed_label_, (int64_t)edges_per_node - 1, vertices_.size(), edge_id_)); CHECK(ret.records.size() == 1) << "Failed to create edges"; uint64_t count = ret.records[0][0].ValueInt(); for (uint64_t i = 0; i < count; ++i) { edges_.insert(edge_id_ + i); } edge_id_ += count; } void CreateEdge() { auto ret = Execute( fmt::format("MATCH (from:{} {{id: {}}}), (to:{} {{id: {}}}) " "CREATE (from)-[e:EdgeType {{id: " "counter(\"edge\", {})}}]->(to) RETURN e.id", indexed_label_, RandomElement(vertices_), indexed_label_, RandomElement(vertices_), edge_id_)); if (!ret.records.empty()) { edges_.insert(ret.records[0][0].ValueInt()); edge_id_ += 1; } } void AddLabel() { auto vertex_id = RandomElement(vertices_); auto label = RandomElement(labels_); // add a label on a vertex that didn't have that label // yet (we need that for book-keeping) auto ret = Execute(fmt::format( "MATCH (v:{} {{id: {}}}) WHERE not v:{} SET v:{} RETURN v.id", indexed_label_, vertex_id, label, label)); if (!ret.records.empty()) { labels_vertices_[label].insert(vertex_id); } } void UpdateGlobalVertices() { uint64_t vertex_id = *vertices_.rbegin(); uint64_t lo = std::floor(GetRandom() * vertex_id); uint64_t hi = std::floor(lo + vertex_id * 0.01); uint64_t num = std::floor(GetRandom() * (1U << 30U)); Execute( fmt::format("MATCH (n) WHERE n.id > {} AND n.id < {} SET n.value = {}", lo, hi, num)); } void UpdateGlobalEdges() { uint64_t vertex_id = *vertices_.rbegin(); uint64_t lo = std::floor(GetRandom() * vertex_id); uint64_t hi = std::floor(lo + vertex_id * 0.01); uint64_t num = std::floor(GetRandom() * (1U << 30U)); Execute(fmt::format( "MATCH ()-[e]->() WHERE e.id > {} AND e.id < {} SET e.value = {}", lo, hi, num)); } /** Checks if the local info corresponds to DB state */ void VerifyGraph() { // helper lambda for count verification auto test_count = [this](std::string query, int64_t count, std::string message) { auto ret = Execute(query); if (ret.records.empty()) { throw utils::BasicException("Couldn't execute count!"); } if (ret.records[0][0].ValueInt() != count) { throw utils::BasicException( fmt::format(message, id_, count, ret.records[0][0].ValueInt())); } }; test_count(fmt::format("MATCH (n:{}) RETURN count(n)", indexed_label_), vertices_.size(), "Runner {} expected {} vertices, found {}!"); test_count( fmt::format("MATCH (:{0})-[r]->(:{0}) RETURN count(r)", indexed_label_), edges_.size(), "Runner {} expected {} edges, found {}!"); for (auto &item : labels_vertices_) { test_count( fmt::format("MATCH (n:{}:{}) RETURN count(n)", indexed_label_, item.first), item.second.size(), fmt::format( "Runner {{}} expected {{}} vertices with label '{}', found {{}}!", item.first)); } // generate report std::ostringstream report; report << fmt::format("Runner {} graph verification success:", id_) << std::endl << fmt::format("\tExecuted {} queries in {:.2f} seconds", executed_queries_, timer_.Elapsed().count()) << std::endl << fmt::format("\tGraph has {} vertices and {} edges", vertices_.size(), edges_.size()) << std::endl; for (auto &label : labels_) { report << fmt::format("\tVertices with label '{}': {}", label, labels_vertices_[label].size()) << std::endl; } if (!query_failures_.empty()) { report << "\tQuery failed (reason: count)" << std::endl; for (auto &item : query_failures_) { report << fmt::format("\t\t'{}': {}", item.first, item.second) << std::endl; } } LOG(INFO) << report.str(); } public: void Run() { // initial vertex creation CreateVertices(FLAGS_vertex_count); // initial edge creation CreateEdges(FLAGS_edge_count); if (FLAGS_verify > 0) VerifyGraph(); double last_verify = timer_.Elapsed().count(); // run rest while (executed_queries_ < FLAGS_max_queries && timer_.Elapsed().count() / 60.0 < FLAGS_max_time) { if (FLAGS_verify > 0 && timer_.Elapsed().count() - last_verify > FLAGS_verify) { VerifyGraph(); last_verify = timer_.Elapsed().count(); } double ratio_e = (double)edges_.size() / (double)FLAGS_edge_count; double ratio_v = (double)vertices_.size() / (double)FLAGS_vertex_count; // try to edit vertices globally if (FLAGS_global_queries) { if (Bernoulli(0.01)) { UpdateGlobalVertices(); } // try to edit edges globally if (Bernoulli(0.01)) { UpdateGlobalEdges(); } } // if we're missing edges (due to vertex detach delete), add some! if (Bernoulli(ratio_e < 0.9)) { CreateEdge(); continue; } // if we are near vertex balance, we can also do updates // instad of update / deletes if (std::fabs(1.0 - ratio_v) < 0.5 && Bernoulli(0.5)) { AddLabel(); continue; } if (Bernoulli(ratio_v / 2.0)) { RemoveVertex(); } else { CreateVertices(1); } } } uint64_t GetExecutedQueries() { return executed_queries_; } uint64_t GetFailedQueries() { uint64_t failed = 0; for (const auto &item : query_failures_) { failed += item.second; } return failed; } }; int main(int argc, char **argv) { gflags::ParseCommandLineFlags(&argc, &argv, true); google::InitGoogleLogging(argv[0]); CHECK(FLAGS_vertex_count > 0) << "Vertex count must be greater than 0!"; CHECK(FLAGS_edge_count > 0) << "Edge count must be greater than 0!"; communication::Init(); LOG(INFO) << "Starting Memgraph HA normal operation long running test"; try { std::vector endpoints = GetEndpoints(); // create client uint64_t retries = 15; std::chrono::milliseconds retry_delay(1000); ClientContextT context(FLAGS_use_ssl); ClientT client(endpoints, &context, FLAGS_username, FLAGS_password, retries, retry_delay); // cleanup and create indexes client.Execute("MATCH (n) DETACH DELETE n", {}); for (int i = 0; i < FLAGS_worker_count; ++i) { client.Execute(fmt::format("CREATE INDEX ON :indexed_label{}(id)", i), {}); } } catch (const communication::bolt::ClientFatalException &e) { LOG(WARNING) << "Unable to find cluster leader"; return 1; } catch (const communication::bolt::ClientQueryException &e) { LOG(WARNING) << "Transient error while executing query. (eg. mistyped query, etc.)\n" << e.what(); return 1; } catch (const utils::BasicException &e) { LOG(WARNING) << "Error while executing query\n" << e.what(); return 1; } // sessions std::vector sessions; sessions.reserve(FLAGS_worker_count); for (int i = 0; i < FLAGS_worker_count; ++i) sessions.emplace_back(i); // workers std::vector threads; threads.reserve(FLAGS_worker_count); for (int i = 0; i < FLAGS_worker_count; ++i) threads.emplace_back([&, i]() { sessions[i].Run(); }); for (int i = 0; i < FLAGS_worker_count; ++i) threads[i].join(); if (!FLAGS_stats_file.empty()) { uint64_t executed = 0; uint64_t failed = 0; for (int i = 0; i < FLAGS_worker_count; ++i) { executed += sessions[i].GetExecutedQueries(); failed += sessions[i].GetFailedQueries(); } std::ofstream stream(FLAGS_stats_file); stream << executed << std::endl << failed << std::endl; LOG(INFO) << fmt::format("Written statistics to file: {}", FLAGS_stats_file); } LOG(INFO) << "All query runners done"; return 0; }