// Copyright 2023 Memgraph Ltd. // // Use of this software is governed by the Business Source License // included in the file licenses/BSL.txt; by using this file, you agree to be bound by the terms of the Business Source // License, and you may not use this file except in compliance with the Business Source License. // // As of the Change Date specified in that file, in accordance with // the Business Source License, use of this software will be governed // by the Apache License, Version 2.0, included in the file // licenses/APL.txt. #include "query_plan_checker.hpp" #include #include #include #include #include #include #include #include #include #include #include "query/frontend/ast/ast.hpp" #include "query/frontend/semantic/symbol_generator.hpp" #include "query/frontend/semantic/symbol_table.hpp" #include "query/plan/operator.hpp" #include "query/plan/planner.hpp" #include "query_common.hpp" namespace memgraph::query { ::std::ostream &operator<<(::std::ostream &os, const Symbol &sym) { return os << "Symbol{\"" << sym.name() << "\" [" << sym.position() << "] " << Symbol::TypeToString(sym.type()) << "}"; } } // namespace memgraph::query using namespace memgraph::query::plan; using memgraph::query::AstStorage; using memgraph::query::CypherUnion; using memgraph::query::SingleQuery; using memgraph::query::Symbol; using memgraph::query::SymbolGenerator; using memgraph::query::SymbolTable; using Type = memgraph::query::EdgeAtom::Type; using Direction = memgraph::query::EdgeAtom::Direction; using Bound = ScanAllByLabelPropertyRange::Bound; namespace { class Planner { public: template Planner(QueryParts query_parts, PlanningContext context) { memgraph::query::Parameters parameters; PostProcessor post_processor(parameters); plan_ = MakeLogicalPlanForSingleQuery(query_parts, &context); plan_ = post_processor.Rewrite(std::move(plan_), &context); } auto &plan() { return *plan_; } private: std::unique_ptr plan_; }; template auto CheckPlan(LogicalOperator &plan, const SymbolTable &symbol_table, TChecker... checker) { std::list checkers{&checker...}; PlanChecker plan_checker(checkers, symbol_table); plan.Accept(plan_checker); EXPECT_TRUE(plan_checker.checkers_.empty()); } template auto CheckPlan(memgraph::query::CypherQuery *query, AstStorage &storage, TChecker... checker) { auto symbol_table = memgraph::query::MakeSymbolTable(query); FakeDbAccessor dba; auto planner = MakePlanner(&dba, storage, symbol_table, query); CheckPlan(planner.plan(), symbol_table, checker...); } template class TestPlanner : public ::testing::Test { public: AstStorage storage; }; using PlannerTypes = ::testing::Types; void DeleteListContent(std::list *list) { for (BaseOpChecker *ptr : *list) { delete ptr; } } TYPED_TEST_CASE(TestPlanner, PlannerTypes); TYPED_TEST(TestPlanner, MatchNodeReturn) { // Test MATCH (n) RETURN n FakeDbAccessor dba; auto *as_n = NEXPR("n", IDENT("n")); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), RETURN(as_n))); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectProduce()); } TYPED_TEST(TestPlanner, CreateNodeReturn) { // Test CREATE (n) RETURN n AS n FakeDbAccessor dba; auto ident_n = IDENT("n"); auto query = QUERY(SINGLE_QUERY(CREATE(PATTERN(NODE("n"))), RETURN(ident_n, AS("n")))); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto acc = ExpectAccumulate({symbol_table.at(*ident_n)}); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); CheckPlan(planner.plan(), symbol_table, ExpectCreateNode(), acc, ExpectProduce()); } TYPED_TEST(TestPlanner, CreateExpand) { // Test CREATE (n) -[r :rel1]-> (m) auto relationship = "relationship"; auto *query = QUERY(SINGLE_QUERY(CREATE(PATTERN(NODE("n"), EDGE("r", Direction::OUT, {relationship}), NODE("m"))))); CheckPlan(query, this->storage, ExpectCreateNode(), ExpectCreateExpand(), ExpectEmptyResult()); } TYPED_TEST(TestPlanner, CreateMultipleNode) { // Test CREATE (n), (m) auto *query = QUERY(SINGLE_QUERY(CREATE(PATTERN(NODE("n")), PATTERN(NODE("m"))))); CheckPlan(query, this->storage, ExpectCreateNode(), ExpectCreateNode(), ExpectEmptyResult()); } TYPED_TEST(TestPlanner, CreateNodeExpandNode) { // Test CREATE (n) -[r :rel]-> (m), (l) auto relationship = "rel"; auto *query = QUERY(SINGLE_QUERY( CREATE(PATTERN(NODE("n"), EDGE("r", Direction::OUT, {relationship}), NODE("m")), PATTERN(NODE("l"))))); CheckPlan(query, this->storage, ExpectCreateNode(), ExpectCreateExpand(), ExpectCreateNode(), ExpectEmptyResult()); } TYPED_TEST(TestPlanner, CreateNamedPattern) { // Test CREATE p = (n) -[r :rel]-> (m) auto relationship = "rel"; auto *query = QUERY(SINGLE_QUERY(CREATE(NAMED_PATTERN("p", NODE("n"), EDGE("r", Direction::OUT, {relationship}), NODE("m"))))); CheckPlan(query, this->storage, ExpectCreateNode(), ExpectCreateExpand(), ExpectConstructNamedPath(), ExpectEmptyResult()); } TYPED_TEST(TestPlanner, MatchCreateExpand) { // Test MATCH (n) CREATE (n) -[r :rel1]-> (m) auto relationship = "relationship"; auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), CREATE(PATTERN(NODE("n"), EDGE("r", Direction::OUT, {relationship}), NODE("m"))))); CheckPlan(query, this->storage, ExpectScanAll(), ExpectCreateExpand(), ExpectEmptyResult()); } TYPED_TEST(TestPlanner, MatchLabeledNodes) { // Test MATCH (n :label) RETURN n FakeDbAccessor dba; auto label = "label"; auto *as_n = NEXPR("n", IDENT("n")); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n", label))), RETURN(as_n))); { // Without created label index auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectFilter(), ExpectProduce()); } { // With created label index dba.SetIndexCount(dba.Label(label), 0); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); CheckPlan(planner.plan(), symbol_table, ExpectScanAllByLabel(), ExpectProduce()); } } TYPED_TEST(TestPlanner, MatchPathReturn) { // Test MATCH (n) -[r :relationship]- (m) RETURN n FakeDbAccessor dba; auto relationship = "relationship"; auto *as_n = NEXPR("n", IDENT("n")); auto *query = QUERY( SINGLE_QUERY(MATCH(PATTERN(NODE("n"), EDGE("r", Direction::BOTH, {relationship}), NODE("m"))), RETURN(as_n))); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectExpand(), ExpectProduce()); } TYPED_TEST(TestPlanner, MatchNamedPatternReturn) { // Test MATCH p = (n) -[r :relationship]- (m) RETURN p FakeDbAccessor dba; auto relationship = "relationship"; auto *as_p = NEXPR("p", IDENT("p")); auto *query = QUERY(SINGLE_QUERY( MATCH(NAMED_PATTERN("p", NODE("n"), EDGE("r", Direction::BOTH, {relationship}), NODE("m"))), RETURN(as_p))); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectExpand(), ExpectConstructNamedPath(), ExpectProduce()); } TYPED_TEST(TestPlanner, MatchNamedPatternWithPredicateReturn) { // Test MATCH p = (n) -[r :relationship]- (m) WHERE 2 = p RETURN p FakeDbAccessor dba; auto relationship = "relationship"; auto *as_p = NEXPR("p", IDENT("p")); auto *query = QUERY(SINGLE_QUERY(MATCH(NAMED_PATTERN("p", NODE("n"), EDGE("r", Direction::BOTH, {relationship}), NODE("m"))), WHERE(EQ(LITERAL(2), IDENT("p"))), RETURN(as_p))); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectExpand(), ExpectConstructNamedPath(), ExpectFilter(), ExpectProduce()); } TYPED_TEST(TestPlanner, OptionalMatchNamedPatternReturn) { // Test OPTIONAL MATCH p = (n) -[r]- (m) RETURN p FakeDbAccessor dba; auto node_n = NODE("n"); auto edge = EDGE("r"); auto node_m = NODE("m"); auto pattern = NAMED_PATTERN("p", node_n, edge, node_m); auto as_p = AS("p"); auto *query = QUERY(SINGLE_QUERY(OPTIONAL_MATCH(pattern), RETURN("p", as_p))); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto get_symbol = [&symbol_table](const auto *ast_node) { return symbol_table.at(*ast_node->identifier_); }; std::vector optional_symbols{get_symbol(pattern), get_symbol(node_n), get_symbol(edge), get_symbol(node_m)}; auto planner = MakePlanner(&dba, this->storage, symbol_table, query); std::list optional{new ExpectScanAll(), new ExpectExpand(), new ExpectConstructNamedPath()}; CheckPlan(planner.plan(), symbol_table, ExpectOptional(optional_symbols, optional), ExpectProduce()); DeleteListContent(&optional); } TYPED_TEST(TestPlanner, MatchWhereReturn) { // Test MATCH (n) WHERE n.property < 42 RETURN n FakeDbAccessor dba; auto property = dba.Property("property"); auto *as_n = NEXPR("n", IDENT("n")); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), WHERE(LESS(PROPERTY_LOOKUP(dba, "n", property), LITERAL(42))), RETURN(as_n))); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectFilter(), ExpectProduce()); } TYPED_TEST(TestPlanner, MatchDelete) { // Test MATCH (n) DELETE n auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), DELETE(IDENT("n")))); CheckPlan(query, this->storage, ExpectScanAll(), ExpectDelete(), ExpectEmptyResult()); } TYPED_TEST(TestPlanner, MatchNodeSet) { // Test MATCH (n) SET n.prop = 42, n = n, n :label FakeDbAccessor dba; auto prop = dba.Property("prop"); auto label = "label"; auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), SET(PROPERTY_LOOKUP(dba, "n", prop), LITERAL(42)), SET("n", IDENT("n")), SET("n", {label}))); CheckPlan(query, this->storage, ExpectScanAll(), ExpectSetProperty(), ExpectSetProperties(), ExpectSetLabels(), ExpectEmptyResult()); } TYPED_TEST(TestPlanner, MatchRemove) { // Test MATCH (n) REMOVE n.prop REMOVE n :label FakeDbAccessor dba; auto prop = dba.Property("prop"); auto label = "label"; auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), REMOVE(PROPERTY_LOOKUP(dba, "n", prop)), REMOVE("n", {label}))); CheckPlan(query, this->storage, ExpectScanAll(), ExpectRemoveProperty(), ExpectRemoveLabels(), ExpectEmptyResult()); } TYPED_TEST(TestPlanner, MatchMultiPattern) { // Test MATCH (n) -[r]- (m), (j) -[e]- (i) RETURN n auto *query = QUERY(SINGLE_QUERY( MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m")), PATTERN(NODE("j"), EDGE("e"), NODE("i"))), RETURN("n"))); // We expect the expansions after the first to have a uniqueness filter in a // single MATCH clause. CheckPlan(query, this->storage, ExpectScanAll(), ExpectExpand(), ExpectScanAll(), ExpectExpand(), ExpectEdgeUniquenessFilter(), ExpectProduce()); } TYPED_TEST(TestPlanner, MatchMultiPatternSameStart) { // Test MATCH (n), (n) -[e]- (m) RETURN n auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n")), PATTERN(NODE("n"), EDGE("e"), NODE("m"))), RETURN("n"))); // We expect the second pattern to generate only an Expand, since another // ScanAll would be redundant. CheckPlan(query, this->storage, ExpectScanAll(), ExpectExpand(), ExpectProduce()); } TYPED_TEST(TestPlanner, MatchMultiPatternSameExpandStart) { // Test MATCH (n) -[r]- (m), (m) -[e]- (l) RETURN n auto *query = QUERY(SINGLE_QUERY( MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m")), PATTERN(NODE("m"), EDGE("e"), NODE("l"))), RETURN("n"))); // We expect the second pattern to generate only an Expand. Another // ScanAll would be redundant, as it would generate the nodes obtained from // expansion. Additionally, a uniqueness filter is expected. CheckPlan(query, this->storage, ExpectScanAll(), ExpectExpand(), ExpectExpand(), ExpectEdgeUniquenessFilter(), ExpectProduce()); } TYPED_TEST(TestPlanner, MultiMatch) { // Test MATCH (n) -[r]- (m) MATCH (j) -[e]- (i) -[f]- (h) RETURN n FakeDbAccessor dba; auto *node_n = NODE("n"); auto *edge_r = EDGE("r"); auto *node_m = NODE("m"); auto *node_j = NODE("j"); auto *edge_e = EDGE("e"); auto *node_i = NODE("i"); auto *edge_f = EDGE("f"); auto *node_h = NODE("h"); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(node_n, edge_r, node_m)), MATCH(PATTERN(node_j, edge_e, node_i, edge_f, node_h)), RETURN("n"))); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); // Multiple MATCH clauses form a Cartesian product, so the uniqueness should // not cross MATCH boundaries. CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectExpand(), ExpectScanAll(), ExpectExpand(), ExpectExpand(), ExpectEdgeUniquenessFilter(), ExpectProduce()); } TYPED_TEST(TestPlanner, MultiMatchSameStart) { // Test MATCH (n) MATCH (n) -[r]- (m) RETURN n FakeDbAccessor dba; auto *as_n = NEXPR("n", IDENT("n")); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m"))), RETURN(as_n))); // Similar to MatchMultiPatternSameStart, we expect only Expand from second // MATCH clause. auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectExpand(), ExpectProduce()); } TYPED_TEST(TestPlanner, MatchWithReturn) { // Test MATCH (old) WITH old AS new RETURN new FakeDbAccessor dba; auto *as_new = NEXPR("new", IDENT("new")); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("old"))), WITH("old", AS("new")), RETURN(as_new))); // No accumulation since we only do reads. auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectProduce(), ExpectProduce()); } TYPED_TEST(TestPlanner, MatchWithWhereReturn) { // Test MATCH (old) WITH old AS new WHERE new.prop < 42 RETURN new FakeDbAccessor dba; auto prop = dba.Property("prop"); auto *as_new = NEXPR("new", IDENT("new")); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("old"))), WITH("old", AS("new")), WHERE(LESS(PROPERTY_LOOKUP(dba, "new", prop), LITERAL(42))), RETURN(as_new))); // No accumulation since we only do reads. auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectProduce(), ExpectFilter(), ExpectProduce()); } TYPED_TEST(TestPlanner, CreateMultiExpand) { // Test CREATE (n) -[r :r]-> (m), (n) - [p :p]-> (l) auto r = "r"; auto p = "p"; auto *query = QUERY(SINGLE_QUERY(CREATE(PATTERN(NODE("n"), EDGE("r", Direction::OUT, {r}), NODE("m")), PATTERN(NODE("n"), EDGE("p", Direction::OUT, {p}), NODE("l"))))); CheckPlan(query, this->storage, ExpectCreateNode(), ExpectCreateExpand(), ExpectCreateExpand(), ExpectEmptyResult()); } TYPED_TEST(TestPlanner, MatchWithSumWhereReturn) { // Test MATCH (n) WITH SUM(n.prop) + 42 AS sum WHERE sum < 42 // RETURN sum AS result FakeDbAccessor dba; auto prop = dba.Property("prop"); auto sum = SUM(PROPERTY_LOOKUP(dba, "n", prop), false); auto literal = LITERAL(42); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), WITH(ADD(sum, literal), AS("sum")), WHERE(LESS(IDENT("sum"), LITERAL(42))), RETURN("sum", AS("result")))); auto aggr = ExpectAggregate({sum}, {literal}); CheckPlan(query, this->storage, ExpectScanAll(), aggr, ExpectProduce(), ExpectFilter(), ExpectProduce()); } TYPED_TEST(TestPlanner, MatchReturnSum) { // Test MATCH (n) RETURN SUM(n.prop1) AS sum, n.prop2 AS group FakeDbAccessor dba; auto prop1 = dba.Property("prop1"); auto prop2 = dba.Property("prop2"); auto sum = SUM(PROPERTY_LOOKUP(dba, "n", prop1), false); auto n_prop2 = PROPERTY_LOOKUP(dba, "n", prop2); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), RETURN(sum, AS("sum"), n_prop2, AS("group")))); auto aggr = ExpectAggregate({sum}, {n_prop2}); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), aggr, ExpectProduce()); } TYPED_TEST(TestPlanner, CreateWithSum) { // Test CREATE (n) WITH SUM(n.prop) AS sum FakeDbAccessor dba; auto prop = dba.Property("prop"); auto ident_n = IDENT("n"); auto n_prop = PROPERTY_LOOKUP(dba, ident_n, prop); auto sum = SUM(n_prop, false); auto query = QUERY(SINGLE_QUERY(CREATE(PATTERN(NODE("n"))), WITH(sum, AS("sum")))); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto acc = ExpectAccumulate({symbol_table.at(*ident_n)}); auto aggr = ExpectAggregate({sum}, {}); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); // We expect both the accumulation and aggregation because the part before // WITH updates the database. CheckPlan(planner.plan(), symbol_table, ExpectCreateNode(), acc, aggr, ExpectProduce()); } TYPED_TEST(TestPlanner, MatchWithSumWithDistinctWhereReturn) { // Test MATCH (n) WITH SUM(DISTINCT n.prop) + 42 AS sum WHERE sum < 42 // RETURN sum AS result FakeDbAccessor dba; auto prop = dba.Property("prop"); auto sum = SUM(PROPERTY_LOOKUP(dba, "n", prop), true); auto literal = LITERAL(42); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), WITH(ADD(sum, literal), AS("sum")), WHERE(LESS(IDENT("sum"), LITERAL(42))), RETURN("sum", AS("result")))); auto aggr = ExpectAggregate({sum}, {literal}); CheckPlan(query, this->storage, ExpectScanAll(), aggr, ExpectProduce(), ExpectFilter(), ExpectProduce()); } TYPED_TEST(TestPlanner, MatchReturnSumWithDistinct) { // Test MATCH (n) RETURN SUM(DISTINCT n.prop1) AS sum, n.prop2 AS group FakeDbAccessor dba; auto prop1 = dba.Property("prop1"); auto prop2 = dba.Property("prop2"); auto sum = SUM(PROPERTY_LOOKUP(dba, "n", prop1), true); auto n_prop2 = PROPERTY_LOOKUP(dba, "n", prop2); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), RETURN(sum, AS("sum"), n_prop2, AS("group")))); auto aggr = ExpectAggregate({sum}, {n_prop2}); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), aggr, ExpectProduce()); } TYPED_TEST(TestPlanner, CreateWithSumWithDistinct) { // Test CREATE (n) WITH SUM(DISTINCT n.prop) AS sum FakeDbAccessor dba; auto prop = dba.Property("prop"); auto ident_n = IDENT("n"); auto n_prop = PROPERTY_LOOKUP(dba, ident_n, prop); auto sum = SUM(n_prop, true); auto query = QUERY(SINGLE_QUERY(CREATE(PATTERN(NODE("n"))), WITH(sum, AS("sum")))); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto acc = ExpectAccumulate({symbol_table.at(*ident_n)}); auto aggr = ExpectAggregate({sum}, {}); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); // We expect both the accumulation and aggregation because the part before // WITH updates the database. CheckPlan(planner.plan(), symbol_table, ExpectCreateNode(), acc, aggr, ExpectProduce()); } TYPED_TEST(TestPlanner, MatchWithCreate) { // Test MATCH (n) WITH n AS a CREATE (a) -[r :r]-> (b) auto r_type = "r"; auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), WITH("n", AS("a")), CREATE(PATTERN(NODE("a"), EDGE("r", Direction::OUT, {r_type}), NODE("b"))))); CheckPlan(query, this->storage, ExpectScanAll(), ExpectProduce(), ExpectCreateExpand(), ExpectEmptyResult()); } TYPED_TEST(TestPlanner, MatchReturnSkipLimit) { // Test MATCH (n) RETURN n SKIP 2 LIMIT 1 FakeDbAccessor dba; auto *as_n = NEXPR("n", IDENT("n")); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), RETURN(as_n, SKIP(LITERAL(2)), LIMIT(LITERAL(1))))); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectProduce(), ExpectSkip(), ExpectLimit()); } TYPED_TEST(TestPlanner, CreateWithSkipReturnLimit) { // Test CREATE (n) WITH n AS m SKIP 2 RETURN m LIMIT 1 FakeDbAccessor dba; auto ident_n = IDENT("n"); auto query = QUERY(SINGLE_QUERY(CREATE(PATTERN(NODE("n"))), WITH(ident_n, AS("m"), SKIP(LITERAL(2))), RETURN("m", LIMIT(LITERAL(1))))); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto acc = ExpectAccumulate({symbol_table.at(*ident_n)}); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); // Since we have a write query, we need to have Accumulate. This is a bit // different than Neo4j 3.0, which optimizes WITH followed by RETURN as a // single RETURN clause and then moves Skip and Limit before Accumulate. // This causes different behaviour. A newer version of Neo4j does the same // thing as us here (but who knows if they change it again). CheckPlan(planner.plan(), symbol_table, ExpectCreateNode(), acc, ExpectProduce(), ExpectSkip(), ExpectProduce(), ExpectLimit()); } TYPED_TEST(TestPlanner, CreateReturnSumSkipLimit) { // Test CREATE (n) RETURN SUM(n.prop) AS s SKIP 2 LIMIT 1 FakeDbAccessor dba; auto prop = dba.Property("prop"); auto ident_n = IDENT("n"); auto n_prop = PROPERTY_LOOKUP(dba, ident_n, prop); auto sum = SUM(n_prop, false); auto query = QUERY(SINGLE_QUERY(CREATE(PATTERN(NODE("n"))), RETURN(sum, AS("s"), SKIP(LITERAL(2)), LIMIT(LITERAL(1))))); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto acc = ExpectAccumulate({symbol_table.at(*ident_n)}); auto aggr = ExpectAggregate({sum}, {}); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); CheckPlan(planner.plan(), symbol_table, ExpectCreateNode(), acc, aggr, ExpectProduce(), ExpectSkip(), ExpectLimit()); } TYPED_TEST(TestPlanner, CreateReturnSumWithDistinctSkipLimit) { // Test CREATE (n) RETURN SUM(n.prop) AS s SKIP 2 LIMIT 1 FakeDbAccessor dba; auto prop = dba.Property("prop"); auto ident_n = IDENT("n"); auto n_prop = PROPERTY_LOOKUP(dba, ident_n, prop); auto sum = SUM(n_prop, true); auto query = QUERY(SINGLE_QUERY(CREATE(PATTERN(NODE("n"))), RETURN(sum, AS("s"), SKIP(LITERAL(2)), LIMIT(LITERAL(1))))); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto acc = ExpectAccumulate({symbol_table.at(*ident_n)}); auto aggr = ExpectAggregate({sum}, {}); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); CheckPlan(planner.plan(), symbol_table, ExpectCreateNode(), acc, aggr, ExpectProduce(), ExpectSkip(), ExpectLimit()); } TYPED_TEST(TestPlanner, MatchReturnOrderBy) { // Test MATCH (n) RETURN n AS m ORDER BY n.prop FakeDbAccessor dba; auto prop = dba.Property("prop"); auto *as_m = NEXPR("m", IDENT("n")); auto *node_n = NODE("n"); auto ret = RETURN(as_m, ORDER_BY(PROPERTY_LOOKUP(dba, "n", prop))); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(node_n)), ret)); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectProduce(), ExpectOrderBy()); } TYPED_TEST(TestPlanner, CreateWithOrderByWhere) { // Test CREATE (n) -[r :r]-> (m) // WITH n AS new ORDER BY new.prop, r.prop WHERE m.prop < 42 FakeDbAccessor dba; auto prop = dba.Property("prop"); auto r_type = "r"; auto ident_n = IDENT("n"); auto ident_r = IDENT("r"); auto ident_m = IDENT("m"); auto new_prop = PROPERTY_LOOKUP(dba, "new", prop); auto r_prop = PROPERTY_LOOKUP(dba, ident_r, prop); auto m_prop = PROPERTY_LOOKUP(dba, ident_m, prop); auto query = QUERY(SINGLE_QUERY(CREATE(PATTERN(NODE("n"), EDGE("r", Direction::OUT, {r_type}), NODE("m"))), WITH(ident_n, AS("new"), ORDER_BY(new_prop, r_prop)), WHERE(LESS(m_prop, LITERAL(42))))); auto symbol_table = memgraph::query::MakeSymbolTable(query); // Since this is a write query, we expect to accumulate to old used symbols. auto acc = ExpectAccumulate({ symbol_table.at(*ident_n), // `n` in WITH symbol_table.at(*ident_r), // `r` in ORDER BY symbol_table.at(*ident_m), // `m` in WHERE }); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); CheckPlan(planner.plan(), symbol_table, ExpectCreateNode(), ExpectCreateExpand(), acc, ExpectProduce(), ExpectOrderBy(), ExpectFilter(), ExpectEmptyResult()); } TYPED_TEST(TestPlanner, ReturnAddSumCountOrderBy) { // Test RETURN SUM(1) + COUNT(2) AS result ORDER BY result auto sum = SUM(LITERAL(1), false); auto count = COUNT(LITERAL(2), false); auto *query = QUERY(SINGLE_QUERY(RETURN(ADD(sum, count), AS("result"), ORDER_BY(IDENT("result"))))); auto aggr = ExpectAggregate({sum, count}, {}); CheckPlan(query, this->storage, aggr, ExpectProduce(), ExpectOrderBy()); } TYPED_TEST(TestPlanner, ReturnAddSumCountWithDistinctOrderBy) { // Test RETURN SUM(1) + COUNT(2) AS result ORDER BY result auto sum = SUM(LITERAL(1), true); auto count = COUNT(LITERAL(2), true); auto *query = QUERY(SINGLE_QUERY(RETURN(ADD(sum, count), AS("result"), ORDER_BY(IDENT("result"))))); auto aggr = ExpectAggregate({sum, count}, {}); CheckPlan(query, this->storage, aggr, ExpectProduce(), ExpectOrderBy()); } TYPED_TEST(TestPlanner, MatchMerge) { // Test MATCH (n) MERGE (n) -[r :r]- (m) // ON MATCH SET n.prop = 42 ON CREATE SET m = n // RETURN n AS n FakeDbAccessor dba; auto r_type = "r"; auto prop = dba.Property("prop"); auto ident_n = IDENT("n"); auto query = QUERY( SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), MERGE(PATTERN(NODE("n"), EDGE("r", Direction::BOTH, {r_type}), NODE("m")), ON_MATCH(SET(PROPERTY_LOOKUP(dba, "n", prop), LITERAL(42))), ON_CREATE(SET("m", IDENT("n")))), RETURN(ident_n, AS("n")))); std::list on_match{new ExpectExpand(), new ExpectSetProperty()}; std::list on_create{new ExpectCreateExpand(), new ExpectSetProperties()}; auto symbol_table = memgraph::query::MakeSymbolTable(query); // We expect Accumulate after Merge, because it is considered as a write. auto acc = ExpectAccumulate({symbol_table.at(*ident_n)}); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectMerge(on_match, on_create), acc, ExpectProduce()); DeleteListContent(&on_match); DeleteListContent(&on_create); } TYPED_TEST(TestPlanner, MatchOptionalMatchWhereReturn) { // Test MATCH (n) OPTIONAL MATCH (n) -[r]- (m) WHERE m.prop < 42 RETURN r FakeDbAccessor dba; auto prop = dba.Property("prop"); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), OPTIONAL_MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m"))), WHERE(LESS(PROPERTY_LOOKUP(dba, "m", prop), LITERAL(42))), RETURN("r"))); std::list optional{new ExpectScanAll(), new ExpectExpand(), new ExpectFilter()}; CheckPlan(query, this->storage, ExpectScanAll(), ExpectOptional(optional), ExpectProduce()); DeleteListContent(&optional); } TYPED_TEST(TestPlanner, MatchOptionalMatchNodePropertyWithIndex) { // Test MATCH (n:Label) OPTIONAL MATCH (m:Label) WHERE n.prop = m.prop RETURN n FakeDbAccessor dba; const auto label_name = "label"; const auto label = dba.Label(label_name); const auto property = PROPERTY_PAIR(dba, "prop"); dba.SetIndexCount(label, property.second, 0); auto *query = QUERY(SINGLE_QUERY( MATCH(PATTERN(NODE("n", label_name))), OPTIONAL_MATCH(PATTERN(NODE("m", label_name))), WHERE(EQ(PROPERTY_LOOKUP(dba, "n", property.second), PROPERTY_LOOKUP(dba, "m", property.second))), RETURN("n"))); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); auto m_prop = PROPERTY_LOOKUP(dba, "m", property); std::list optional{new ExpectScanAllByLabelPropertyValue(label, property, m_prop)}; CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectFilter(), ExpectOptional(optional), ExpectProduce()); DeleteListContent(&optional); } TYPED_TEST(TestPlanner, MatchUnwindReturn) { // Test MATCH (n) UNWIND [1,2,3] AS x RETURN n, x FakeDbAccessor dba; auto *as_n = NEXPR("n", IDENT("n")); auto *as_x = NEXPR("x", IDENT("x")); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), UNWIND(LIST(LITERAL(1), LITERAL(2), LITERAL(3)), AS("x")), RETURN(as_n, as_x))); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectUnwind(), ExpectProduce()); } TYPED_TEST(TestPlanner, ReturnDistinctOrderBySkipLimit) { // Test RETURN DISTINCT 1 ORDER BY 1 SKIP 1 LIMIT 1 auto *query = QUERY( SINGLE_QUERY(RETURN_DISTINCT(LITERAL(1), AS("1"), ORDER_BY(LITERAL(1)), SKIP(LITERAL(1)), LIMIT(LITERAL(1))))); CheckPlan(query, this->storage, ExpectProduce(), ExpectDistinct(), ExpectOrderBy(), ExpectSkip(), ExpectLimit()); } TYPED_TEST(TestPlanner, CreateWithDistinctSumWhereReturn) { // Test CREATE (n) WITH DISTINCT SUM(n.prop) AS s WHERE s < 42 RETURN s FakeDbAccessor dba; auto prop = dba.Property("prop"); auto node_n = NODE("n"); auto sum = SUM(PROPERTY_LOOKUP(dba, "n", prop), false); auto query = QUERY(SINGLE_QUERY(CREATE(PATTERN(node_n)), WITH_DISTINCT(sum, AS("s")), WHERE(LESS(IDENT("s"), LITERAL(42))), RETURN("s"))); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto acc = ExpectAccumulate({symbol_table.at(*node_n->identifier_)}); auto aggr = ExpectAggregate({sum}, {}); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); CheckPlan(planner.plan(), symbol_table, ExpectCreateNode(), acc, aggr, ExpectProduce(), ExpectDistinct(), ExpectFilter(), ExpectProduce()); } TYPED_TEST(TestPlanner, MatchCrossReferenceVariable) { // Test MATCH (n {prop: m.prop}), (m {prop: n.prop}) RETURN n FakeDbAccessor dba; auto prop = PROPERTY_PAIR(dba, "prop"); auto node_n = NODE("n"); auto m_prop = PROPERTY_LOOKUP(dba, "m", prop.second); std::get<0>(node_n->properties_)[this->storage.GetPropertyIx(prop.first)] = m_prop; auto node_m = NODE("m"); auto n_prop = PROPERTY_LOOKUP(dba, "n", prop.second); std::get<0>(node_m->properties_)[this->storage.GetPropertyIx(prop.first)] = n_prop; auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(node_n), PATTERN(node_m)), RETURN("n"))); // We expect both ScanAll to come before filters (2 are joined into one), // because they need to populate the symbol values. CheckPlan(query, this->storage, ExpectScanAll(), ExpectScanAll(), ExpectFilter(), ExpectProduce()); } TYPED_TEST(TestPlanner, MatchWhereBeforeExpand) { // Test MATCH (n) -[r]- (m) WHERE n.prop < 42 RETURN n FakeDbAccessor dba; auto prop = dba.Property("prop"); auto *as_n = NEXPR("n", IDENT("n")); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m"))), WHERE(LESS(PROPERTY_LOOKUP(dba, "n", prop), LITERAL(42))), RETURN(as_n))); // We expect Filter to come immediately after ScanAll, since it only uses `n`. auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectFilter(), ExpectExpand(), ExpectProduce()); } TYPED_TEST(TestPlanner, MatchFilterPropIsNotNull) { FakeDbAccessor dba; auto label = dba.Label("label"); auto prop = PROPERTY_PAIR(dba, "prop"); dba.SetIndexCount(label, 1); dba.SetIndexCount(label, prop.second, 1); { // Test MATCH (n :label) -[r]- (m) WHERE n.prop IS NOT NULL RETURN n auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n", "label"), EDGE("r"), NODE("m"))), WHERE(NOT(IS_NULL(PROPERTY_LOOKUP(dba, "n", prop)))), RETURN("n"))); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); // We expect ScanAllByLabelProperty to come instead of ScanAll > Filter. CheckPlan(planner.plan(), symbol_table, ExpectScanAllByLabelProperty(label, prop), ExpectExpand(), ExpectProduce()); } { // Test MATCH (n :label) -[r]- (m) WHERE n.prop IS NOT NULL OR true RETURN n auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n", "label"), EDGE("r"), NODE("m"))), WHERE(OR(NOT(IS_NULL(PROPERTY_LOOKUP(dba, "n", prop))), LITERAL(true))), RETURN("n"))); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); // We expect ScanAllBy > Filter because of the "or true" condition. CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectFilter(), ExpectExpand(), ExpectProduce()); } { // Test MATCH (n :label) -[r]- (m) // WHERE n.prop IS NOT NULL AND n.x = 2 RETURN n auto prop_x = PROPERTY_PAIR(dba, "x"); auto *query = QUERY(SINGLE_QUERY( MATCH(PATTERN(NODE("n", "label"), EDGE("r"), NODE("m"))), WHERE(AND(NOT(IS_NULL(PROPERTY_LOOKUP(dba, "n", prop))), EQ(PROPERTY_LOOKUP(dba, "n", prop_x), LITERAL(2)))), RETURN("n"))); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); // We expect ScanAllByLabelProperty > Filter // to come instead of ScanAll > Filter. CheckPlan(planner.plan(), symbol_table, ExpectScanAllByLabelProperty(label, prop), ExpectFilter(), ExpectExpand(), ExpectProduce()); } } TYPED_TEST(TestPlanner, MultiMatchWhere) { // Test MATCH (n) -[r]- (m) MATCH (l) WHERE n.prop < 42 RETURN n FakeDbAccessor dba; auto prop = dba.Property("prop"); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m"))), MATCH(PATTERN(NODE("l"))), WHERE(LESS(PROPERTY_LOOKUP(dba, "n", prop), LITERAL(42))), RETURN("n"))); // Even though WHERE is in the second MATCH clause, we expect Filter to come // before second ScanAll, since it only uses the value from first ScanAll. CheckPlan(query, this->storage, ExpectScanAll(), ExpectFilter(), ExpectExpand(), ExpectScanAll(), ExpectProduce()); } TYPED_TEST(TestPlanner, MatchOptionalMatchWhere) { // Test MATCH (n) -[r]- (m) OPTIONAL MATCH (l) WHERE n.prop < 42 RETURN n FakeDbAccessor dba; auto prop = dba.Property("prop"); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m"))), OPTIONAL_MATCH(PATTERN(NODE("l"))), WHERE(LESS(PROPERTY_LOOKUP(dba, "n", prop), LITERAL(42))), RETURN("n"))); // Even though WHERE is in the second MATCH clause, and it uses the value from // first ScanAll, it must remain part of the Optional. It should come before // optional ScanAll. std::list optional{new ExpectFilter(), new ExpectScanAll()}; CheckPlan(query, this->storage, ExpectScanAll(), ExpectExpand(), ExpectOptional(optional), ExpectProduce()); DeleteListContent(&optional); } TYPED_TEST(TestPlanner, MatchReturnAsterisk) { // Test MATCH (n) -[e]- (m) RETURN *, m.prop FakeDbAccessor dba; auto prop = dba.Property("prop"); auto ret = RETURN(PROPERTY_LOOKUP(dba, "m", prop), AS("m.prop")); ret->body_.all_identifiers = true; auto query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), EDGE("e"), NODE("m"))), ret)); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectExpand(), ExpectProduce()); std::vector output_names; for (const auto &output_symbol : planner.plan().OutputSymbols(symbol_table)) { output_names.emplace_back(output_symbol.name()); } std::vector expected_names{"e", "m", "n", "m.prop"}; EXPECT_EQ(output_names, expected_names); } TYPED_TEST(TestPlanner, MatchReturnAsteriskSum) { // Test MATCH (n) RETURN *, SUM(n.prop) AS s FakeDbAccessor dba; auto prop = dba.Property("prop"); auto sum = SUM(PROPERTY_LOOKUP(dba, "n", prop), false); auto ret = RETURN(sum, AS("s")); ret->body_.all_identifiers = true; auto query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), ret)); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); auto *produce = dynamic_cast(&planner.plan()); ASSERT_TRUE(produce); const auto &named_expressions = produce->named_expressions_; ASSERT_EQ(named_expressions.size(), 2); auto *expanded_ident = dynamic_cast(named_expressions[0]->expression_); ASSERT_TRUE(expanded_ident); auto aggr = ExpectAggregate({sum}, {expanded_ident}); CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), aggr, ExpectProduce()); std::vector output_names; for (const auto &output_symbol : planner.plan().OutputSymbols(symbol_table)) { output_names.emplace_back(output_symbol.name()); } std::vector expected_names{"n", "s"}; EXPECT_EQ(output_names, expected_names); } TYPED_TEST(TestPlanner, UnwindMergeNodeProperty) { // Test UNWIND [1] AS i MERGE (n {prop: i}) auto node_n = NODE("n"); std::get<0>(node_n->properties_)[this->storage.GetPropertyIx("prop")] = IDENT("i"); auto *query = QUERY(SINGLE_QUERY(UNWIND(LIST(LITERAL(1)), AS("i")), MERGE(PATTERN(node_n)))); std::list on_match{new ExpectScanAll(), new ExpectFilter()}; std::list on_create{new ExpectCreateNode()}; CheckPlan(query, this->storage, ExpectUnwind(), ExpectMerge(on_match, on_create), ExpectEmptyResult()); DeleteListContent(&on_match); DeleteListContent(&on_create); } TYPED_TEST(TestPlanner, UnwindMergeNodePropertyWithIndex) { // Test UNWIND [1] AS i MERGE (n :label {prop: i}) with label-property index FakeDbAccessor dba; const auto label_name = "label"; const auto label = dba.Label(label_name); const auto property = PROPERTY_PAIR(dba, "prop"); dba.SetIndexCount(label, property.second, 1); auto node_n = NODE("n", label_name); std::get<0>(node_n->properties_)[this->storage.GetPropertyIx(property.first)] = IDENT("i"); auto *query = QUERY(SINGLE_QUERY(UNWIND(LIST(LITERAL(1)), AS("i")), MERGE(PATTERN(node_n)))); std::list on_match{new ExpectScanAllByLabelPropertyValue(label, property, IDENT("i"))}; std::list on_create{new ExpectCreateNode()}; auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); CheckPlan(planner.plan(), symbol_table, ExpectUnwind(), ExpectMerge(on_match, on_create), ExpectEmptyResult()); DeleteListContent(&on_match); DeleteListContent(&on_create); } TYPED_TEST(TestPlanner, MultipleOptionalMatchReturn) { // Test OPTIONAL MATCH (n) OPTIONAL MATCH (m) RETURN n auto *query = QUERY(SINGLE_QUERY(OPTIONAL_MATCH(PATTERN(NODE("n"))), OPTIONAL_MATCH(PATTERN(NODE("m"))), RETURN("n"))); std::list optional{new ExpectScanAll()}; CheckPlan(query, this->storage, ExpectOptional(optional), ExpectOptional(optional), ExpectProduce()); DeleteListContent(&optional); } TYPED_TEST(TestPlanner, FunctionAggregationReturn) { // Test RETURN sqrt(SUM(2)) AS result, 42 AS group_by auto sum = SUM(LITERAL(2), false); auto group_by_literal = LITERAL(42); auto *query = QUERY(SINGLE_QUERY(RETURN(FN("sqrt", sum), AS("result"), group_by_literal, AS("group_by")))); auto aggr = ExpectAggregate({sum}, {group_by_literal}); CheckPlan(query, this->storage, aggr, ExpectProduce()); } TYPED_TEST(TestPlanner, FunctionWithoutArguments) { // Test RETURN pi() AS pi auto *query = QUERY(SINGLE_QUERY(RETURN(FN("pi"), AS("pi")))); CheckPlan(query, this->storage, ExpectProduce()); } TYPED_TEST(TestPlanner, ListLiteralAggregationReturn) { // Test RETURN [SUM(2)] AS result, 42 AS group_by auto sum = SUM(LITERAL(2), false); auto group_by_literal = LITERAL(42); auto *query = QUERY(SINGLE_QUERY(RETURN(LIST(sum), AS("result"), group_by_literal, AS("group_by")))); auto aggr = ExpectAggregate({sum}, {group_by_literal}); CheckPlan(query, this->storage, aggr, ExpectProduce()); } TYPED_TEST(TestPlanner, MapLiteralAggregationReturn) { // Test RETURN {sum: SUM(2)} AS result, 42 AS group_by auto sum = SUM(LITERAL(2), false); auto group_by_literal = LITERAL(42); auto *query = QUERY(SINGLE_QUERY( RETURN(MAP({this->storage.GetPropertyIx("sum"), sum}), AS("result"), group_by_literal, AS("group_by")))); auto aggr = ExpectAggregate({sum}, {group_by_literal}); CheckPlan(query, this->storage, aggr, ExpectProduce()); } TYPED_TEST(TestPlanner, MapProjectionLiteralAggregationReturn) { // Test WITH {} as map RETURN map {sum: SUM(2)} AS result, 42 AS group_by AstStorage storage; FakeDbAccessor dba; auto sum = SUM(LITERAL(2), false); auto group_by_literal = LITERAL(42); auto elements = std::unordered_map{ {storage.GetPropertyIx("sum"), sum}}; auto *query = QUERY(SINGLE_QUERY(WITH(MAP(), AS("map")), RETURN(MAP_PROJECTION(IDENT("map"), elements), AS("result"), group_by_literal, AS("group_by")))); auto aggr = ExpectAggregate({sum}, {group_by_literal}); CheckPlan(query, storage, ExpectProduce(), aggr, ExpectProduce()); } TYPED_TEST(TestPlanner, EmptyListIndexAggregation) { // Test RETURN [][SUM(2)] AS result, 42 AS group_by auto sum = SUM(LITERAL(2), false); auto empty_list = LIST(); auto group_by_literal = LITERAL(42); auto *query = QUERY(SINGLE_QUERY(RETURN(this->storage.template Create(empty_list, sum), AS("result"), group_by_literal, AS("group_by")))); // We expect to group by '42' and the empty list, because it is a // sub-expression of a binary operator which contains an aggregation. This is // similar to grouping by '1' in `RETURN 1 + SUM(2)`. auto aggr = ExpectAggregate({sum}, {empty_list, group_by_literal}); CheckPlan(query, this->storage, aggr, ExpectProduce()); } TYPED_TEST(TestPlanner, ListSliceAggregationReturn) { // Test RETURN [1, 2][0..SUM(2)] AS result, 42 AS group_by auto sum = SUM(LITERAL(2), false); auto list = LIST(LITERAL(1), LITERAL(2)); auto group_by_literal = LITERAL(42); auto *query = QUERY(SINGLE_QUERY(RETURN(SLICE(list, LITERAL(0), sum), AS("result"), group_by_literal, AS("group_by")))); // Similarly to EmptyListIndexAggregation test, we expect grouping by list and // '42', because slicing is an operator. auto aggr = ExpectAggregate({sum}, {list, group_by_literal}); CheckPlan(query, this->storage, aggr, ExpectProduce()); } TYPED_TEST(TestPlanner, ListWithAggregationAndGroupBy) { // Test RETURN [sum(2), 42] auto sum = SUM(LITERAL(2), false); auto group_by_literal = LITERAL(42); auto *query = QUERY(SINGLE_QUERY(RETURN(LIST(sum, group_by_literal), AS("result")))); auto aggr = ExpectAggregate({sum}, {group_by_literal}); CheckPlan(query, this->storage, aggr, ExpectProduce()); } TYPED_TEST(TestPlanner, AggregationWithListWithAggregationAndGroupBy) { // Test RETURN sum(2), [sum(3), 42] auto sum2 = SUM(LITERAL(2), false); auto sum3 = SUM(LITERAL(3), false); auto group_by_literal = LITERAL(42); auto *query = QUERY(SINGLE_QUERY(RETURN(sum2, AS("sum2"), LIST(sum3, group_by_literal), AS("list")))); auto aggr = ExpectAggregate({sum2, sum3}, {group_by_literal}); CheckPlan(query, this->storage, aggr, ExpectProduce()); } TYPED_TEST(TestPlanner, MapWithAggregationAndGroupBy) { // Test RETURN {lit: 42, sum: sum(2)} auto sum = SUM(LITERAL(2), false); auto group_by_literal = LITERAL(42); auto *query = QUERY(SINGLE_QUERY( RETURN(MAP({this->storage.GetPropertyIx("sum"), sum}, {this->storage.GetPropertyIx("lit"), group_by_literal}), AS("result")))); auto aggr = ExpectAggregate({sum}, {group_by_literal}); CheckPlan(query, this->storage, aggr, ExpectProduce()); } TYPED_TEST(TestPlanner, MapProjectionWithAggregationAndGroupBy) { // Test WITH {} as map RETURN map {lit: 42, sum: SUM(2)} AS result AstStorage storage; FakeDbAccessor dba; auto sum = SUM(LITERAL(2), false); auto group_by_literal = LITERAL(42); auto projection = std::unordered_map{ {storage.GetPropertyIx("lit"), group_by_literal}, {storage.GetPropertyIx("sum"), sum}}; auto *query = QUERY(SINGLE_QUERY(WITH(MAP(), AS("map")), RETURN(MAP_PROJECTION(IDENT("map"), projection), AS("result")))); auto aggr = ExpectAggregate({sum}, {group_by_literal}); CheckPlan(query, storage, ExpectProduce(), aggr, ExpectProduce()); } TYPED_TEST(TestPlanner, AtomIndexedLabelProperty) { // Test MATCH (n :label {property: 42, not_indexed: 0}) RETURN n FakeDbAccessor dba; auto label = dba.Label("label"); auto property = PROPERTY_PAIR(dba, "property"); auto not_indexed = PROPERTY_PAIR(dba, "not_indexed"); dba.SetIndexCount(label, 1); dba.SetIndexCount(label, property.second, 1); auto node = NODE("n", "label"); auto lit_42 = LITERAL(42); std::get<0>(node->properties_)[this->storage.GetPropertyIx(property.first)] = lit_42; std::get<0>(node->properties_)[this->storage.GetPropertyIx(not_indexed.first)] = LITERAL(0); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(node)), RETURN("n"))); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); CheckPlan(planner.plan(), symbol_table, ExpectScanAllByLabelPropertyValue(label, property, lit_42), ExpectFilter(), ExpectProduce()); } TYPED_TEST(TestPlanner, AtomPropertyWhereLabelIndexing) { // Test MATCH (n {property: 42}) WHERE n.not_indexed AND n:label RETURN n FakeDbAccessor dba; auto label = dba.Label("label"); auto property = PROPERTY_PAIR(dba, "property"); auto not_indexed = PROPERTY_PAIR(dba, "not_indexed"); dba.SetIndexCount(label, property.second, 0); auto node = NODE("n"); auto lit_42 = LITERAL(42); std::get<0>(node->properties_)[this->storage.GetPropertyIx(property.first)] = lit_42; auto *query = QUERY(SINGLE_QUERY( MATCH(PATTERN(node)), WHERE(AND(PROPERTY_LOOKUP(dba, "n", not_indexed), this->storage.template Create( IDENT("n"), std::vector{this->storage.GetLabelIx("label")}))), RETURN("n"))); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); CheckPlan(planner.plan(), symbol_table, ExpectScanAllByLabelPropertyValue(label, property, lit_42), ExpectFilter(), ExpectProduce()); } TYPED_TEST(TestPlanner, WhereIndexedLabelProperty) { // Test MATCH (n :label) WHERE n.property = 42 RETURN n FakeDbAccessor dba; auto label = dba.Label("label"); auto property = PROPERTY_PAIR(dba, "property"); dba.SetIndexCount(label, property.second, 0); auto lit_42 = LITERAL(42); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n", "label"))), WHERE(EQ(PROPERTY_LOOKUP(dba, "n", property), lit_42)), RETURN("n"))); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); CheckPlan(planner.plan(), symbol_table, ExpectScanAllByLabelPropertyValue(label, property, lit_42), ExpectProduce()); } TYPED_TEST(TestPlanner, BestPropertyIndexed) { // Test MATCH (n :label) WHERE n.property = 1 AND n.better = 42 RETURN n FakeDbAccessor dba; auto label = dba.Label("label"); auto property = dba.Property("property"); // Add a vertex with :label+property combination, so that the best // :label+better remains empty and thus better choice. dba.SetIndexCount(label, property, 1); auto better = PROPERTY_PAIR(dba, "better"); dba.SetIndexCount(label, better.second, 0); auto lit_42 = LITERAL(42); auto *query = QUERY(SINGLE_QUERY( MATCH(PATTERN(NODE("n", "label"))), WHERE(AND(EQ(PROPERTY_LOOKUP(dba, "n", property), LITERAL(1)), EQ(PROPERTY_LOOKUP(dba, "n", better), lit_42))), RETURN("n"))); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); CheckPlan(planner.plan(), symbol_table, ExpectScanAllByLabelPropertyValue(label, better, lit_42), ExpectFilter(), ExpectProduce()); } TYPED_TEST(TestPlanner, MultiPropertyIndexScan) { // Test MATCH (n :label1), (m :label2) WHERE n.prop1 = 1 AND m.prop2 = 2 // RETURN n, m FakeDbAccessor dba; auto label1 = dba.Label("label1"); auto label2 = dba.Label("label2"); auto prop1 = PROPERTY_PAIR(dba, "prop1"); auto prop2 = PROPERTY_PAIR(dba, "prop2"); dba.SetIndexCount(label1, prop1.second, 0); dba.SetIndexCount(label2, prop2.second, 0); auto lit_1 = LITERAL(1); auto lit_2 = LITERAL(2); auto *query = QUERY( SINGLE_QUERY(MATCH(PATTERN(NODE("n", "label1")), PATTERN(NODE("m", "label2"))), WHERE(AND(EQ(PROPERTY_LOOKUP(dba, "n", prop1), lit_1), EQ(PROPERTY_LOOKUP(dba, "m", prop2), lit_2))), RETURN("n", "m"))); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); CheckPlan(planner.plan(), symbol_table, ExpectScanAllByLabelPropertyValue(label1, prop1, lit_1), ExpectScanAllByLabelPropertyValue(label2, prop2, lit_2), ExpectProduce()); } TYPED_TEST(TestPlanner, WhereIndexedLabelPropertyRange) { // Test MATCH (n :label) WHERE n.property REL_OP 42 RETURN n // REL_OP is one of: `<`, `<=`, `>`, `>=` FakeDbAccessor dba; auto label = dba.Label("label"); auto property = dba.Property("property"); dba.SetIndexCount(label, property, 0); auto lit_42 = LITERAL(42); auto n_prop = PROPERTY_LOOKUP(dba, "n", property); auto check_planned_range = [&, this](const auto &rel_expr, auto lower_bound, auto upper_bound) { // Shadow the first this->storage, so that the query is created in this one. this->storage.GetLabelIx("label"); this->storage.GetPropertyIx("property"); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n", "label"))), WHERE(rel_expr), RETURN("n"))); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); CheckPlan(planner.plan(), symbol_table, ExpectScanAllByLabelPropertyRange(label, property, lower_bound, upper_bound), ExpectProduce()); }; { // Test relation operators which form an upper bound for range. std::vector> upper_bound_rel_op{ std::make_pair(LESS(n_prop, lit_42), Bound::Type::EXCLUSIVE), std::make_pair(LESS_EQ(n_prop, lit_42), Bound::Type::INCLUSIVE), std::make_pair(GREATER(lit_42, n_prop), Bound::Type::EXCLUSIVE), std::make_pair(GREATER_EQ(lit_42, n_prop), Bound::Type::INCLUSIVE)}; for (const auto &rel_op : upper_bound_rel_op) { check_planned_range(rel_op.first, std::nullopt, Bound(lit_42, rel_op.second)); } } { // Test relation operators which form a lower bound for range. std::vector> lower_bound_rel_op{ std::make_pair(LESS(lit_42, n_prop), Bound::Type::EXCLUSIVE), std::make_pair(LESS_EQ(lit_42, n_prop), Bound::Type::INCLUSIVE), std::make_pair(GREATER(n_prop, lit_42), Bound::Type::EXCLUSIVE), std::make_pair(GREATER_EQ(n_prop, lit_42), Bound::Type::INCLUSIVE)}; for (const auto &rel_op : lower_bound_rel_op) { check_planned_range(rel_op.first, Bound(lit_42, rel_op.second), std::nullopt); } } } TYPED_TEST(TestPlanner, WherePreferEqualityIndexOverRange) { // Test MATCH (n :label) WHERE n.property = 42 AND n.property > 0 RETURN n FakeDbAccessor dba; auto label = dba.Label("label"); auto property = PROPERTY_PAIR(dba, "property"); dba.SetIndexCount(label, property.second, 0); auto lit_42 = LITERAL(42); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n", "label"))), WHERE(AND(EQ(PROPERTY_LOOKUP(dba, "n", property), lit_42), GREATER(PROPERTY_LOOKUP(dba, "n", property), LITERAL(0)))), RETURN("n"))); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); CheckPlan(planner.plan(), symbol_table, ExpectScanAllByLabelPropertyValue(label, property, lit_42), ExpectFilter(), ExpectProduce()); } TYPED_TEST(TestPlanner, UnableToUsePropertyIndex) { // Test MATCH (n: label) WHERE n.property = n.property RETURN n FakeDbAccessor dba; auto label = dba.Label("label"); auto property = dba.Property("property"); dba.SetIndexCount(label, 0); dba.SetIndexCount(label, property, 0); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n", "label"))), WHERE(EQ(PROPERTY_LOOKUP(dba, "n", property), PROPERTY_LOOKUP(dba, "n", property))), RETURN("n"))); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); // We can only get ScanAllByLabelIndex, because we are comparing properties // with those on the same node. CheckPlan(planner.plan(), symbol_table, ExpectScanAllByLabel(), ExpectFilter(), ExpectProduce()); } TYPED_TEST(TestPlanner, SecondPropertyIndex) { // Test MATCH (n :label), (m :label) WHERE m.property = n.property RETURN n FakeDbAccessor dba; auto label = dba.Label("label"); auto property = PROPERTY_PAIR(dba, "property"); dba.SetIndexCount(label, 0); dba.SetIndexCount(label, dba.Property("property"), 0); auto n_prop = PROPERTY_LOOKUP(dba, "n", property); auto m_prop = PROPERTY_LOOKUP(dba, "m", property); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n", "label")), PATTERN(NODE("m", "label"))), WHERE(EQ(m_prop, n_prop)), RETURN("n"))); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); CheckPlan(planner.plan(), symbol_table, ExpectScanAllByLabel(), // Note: We are scanning for m, therefore property should equal n_prop. ExpectScanAllByLabelPropertyValue(label, property, n_prop), ExpectProduce()); } TYPED_TEST(TestPlanner, ReturnSumGroupByAll) { // Test RETURN sum([1,2,3]), all(x in [1] where x = 1) auto sum = SUM(LIST(LITERAL(1), LITERAL(2), LITERAL(3)), false); auto *all = ALL("x", LIST(LITERAL(1)), WHERE(EQ(IDENT("x"), LITERAL(1)))); auto *query = QUERY(SINGLE_QUERY(RETURN(sum, AS("sum"), all, AS("all")))); auto aggr = ExpectAggregate({sum}, {all}); CheckPlan(query, this->storage, aggr, ExpectProduce()); } TYPED_TEST(TestPlanner, MatchExpandVariable) { // Test MATCH (n) -[r *..3]-> (m) RETURN r auto edge = EDGE_VARIABLE("r"); edge->upper_bound_ = LITERAL(3); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), edge, NODE("m"))), RETURN("r"))); CheckPlan(query, this->storage, ExpectScanAll(), ExpectExpandVariable(), ExpectProduce()); } TYPED_TEST(TestPlanner, MatchExpandVariableNoBounds) { // Test MATCH (n) -[r *]-> (m) RETURN r auto edge = EDGE_VARIABLE("r"); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), edge, NODE("m"))), RETURN("r"))); CheckPlan(query, this->storage, ExpectScanAll(), ExpectExpandVariable(), ExpectProduce()); } TYPED_TEST(TestPlanner, MatchExpandVariableInlinedFilter) { // Test MATCH (n) -[r :type * {prop: 42}]-> (m) RETURN r FakeDbAccessor dba; auto type = "type"; auto prop = PROPERTY_PAIR(dba, "prop"); auto edge = EDGE_VARIABLE("r", Type::DEPTH_FIRST, Direction::BOTH, {type}); std::get<0>(edge->properties_)[this->storage.GetPropertyIx(prop.first)] = LITERAL(42); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), edge, NODE("m"))), RETURN("r"))); CheckPlan(query, this->storage, ExpectScanAll(), ExpectExpandVariable(), // Filter is both inlined and post-expand ExpectFilter(), ExpectProduce()); } TYPED_TEST(TestPlanner, MatchExpandVariableNotInlinedFilter) { // Test MATCH (n) -[r :type * {prop: m.prop}]-> (m) RETURN r FakeDbAccessor dba; auto type = "type"; auto prop = PROPERTY_PAIR(dba, "prop"); auto edge = EDGE_VARIABLE("r", Type::DEPTH_FIRST, Direction::BOTH, {type}); std::get<0>(edge->properties_)[this->storage.GetPropertyIx(prop.first)] = EQ(PROPERTY_LOOKUP(dba, "m", prop), LITERAL(42)); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), edge, NODE("m"))), RETURN("r"))); CheckPlan(query, this->storage, ExpectScanAll(), ExpectExpandVariable(), ExpectFilter(), ExpectProduce()); } TYPED_TEST(TestPlanner, MatchExpandVariableTotalWeightSymbol) { // Test MATCH p = (a {id: 0})-[r* wShortest (e, v | 1) total_weight]->(b) // RETURN * FakeDbAccessor dba; auto edge = EDGE_VARIABLE("r", Type::WEIGHTED_SHORTEST_PATH, Direction::BOTH, {}, nullptr, nullptr, nullptr, nullptr, nullptr, IDENT("total_weight")); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), edge, NODE("m"))), RETURN("*"))); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); auto *root = dynamic_cast(&planner.plan()); ASSERT_TRUE(root); const auto &nes = root->named_expressions_; EXPECT_TRUE(nes.size() == 4); std::vector names(nes.size()); std::transform(nes.begin(), nes.end(), names.begin(), [](const auto *ne) { return ne->name_; }); EXPECT_TRUE(root->named_expressions_.size() == 4); EXPECT_TRUE(memgraph::utils::Contains(names, "m")); EXPECT_TRUE(memgraph::utils::Contains(names, "n")); EXPECT_TRUE(memgraph::utils::Contains(names, "r")); EXPECT_TRUE(memgraph::utils::Contains(names, "total_weight")); } TYPED_TEST(TestPlanner, UnwindMatchVariable) { // Test UNWIND [1,2,3] AS depth MATCH (n) -[r*d]-> (m) RETURN r auto edge = EDGE_VARIABLE("r", Type::DEPTH_FIRST, Direction::OUT); edge->lower_bound_ = IDENT("d"); edge->upper_bound_ = IDENT("d"); auto *query = QUERY(SINGLE_QUERY(UNWIND(LIST(LITERAL(1), LITERAL(2), LITERAL(3)), AS("d")), MATCH(PATTERN(NODE("n"), edge, NODE("m"))), RETURN("r"))); CheckPlan(query, this->storage, ExpectUnwind(), ExpectScanAll(), ExpectExpandVariable(), ExpectProduce()); } TYPED_TEST(TestPlanner, MatchBfs) { // Test MATCH (n) -[r:type *..10 (r, n|n)]-> (m) RETURN r FakeDbAccessor dba; auto edge_type = this->storage.GetEdgeTypeIx("type"); auto *bfs = this->storage.template Create( IDENT("r"), memgraph::query::EdgeAtom::Type::BREADTH_FIRST, Direction::OUT, std::vector{edge_type}); bfs->filter_lambda_.inner_edge = IDENT("r"); bfs->filter_lambda_.inner_node = IDENT("n"); bfs->filter_lambda_.expression = IDENT("n"); bfs->upper_bound_ = LITERAL(10); auto *as_r = NEXPR("r", IDENT("r")); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), bfs, NODE("m"))), RETURN(as_r))); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectExpandBfs(), ExpectProduce()); } TYPED_TEST(TestPlanner, MatchDoubleScanToExpandExisting) { // Test MATCH (n) -[r]- (m :label) RETURN r FakeDbAccessor dba; auto label = "label"; dba.SetIndexCount(dba.Label(label), 0); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m", label))), RETURN("r"))); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); // We expect 2x ScanAll and then Expand, since we are guessing that is // faster (due to low label index vertex count). CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectScanAllByLabel(), ExpectExpand(), ExpectProduce()); } TYPED_TEST(TestPlanner, MatchScanToExpand) { // Test MATCH (n) -[r]- (m :label {property: 1}) RETURN r FakeDbAccessor dba; auto label = dba.Label("label"); auto property = dba.Property("property"); // Fill vertices to the max + 1. dba.SetIndexCount(label, property, FLAGS_query_vertex_count_to_expand_existing + 1); dba.SetIndexCount(label, FLAGS_query_vertex_count_to_expand_existing + 1); auto node_m = NODE("m", "label"); std::get<0>(node_m->properties_)[this->storage.GetPropertyIx("property")] = LITERAL(1); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), EDGE("r"), node_m)), RETURN("r"))); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); // We expect 1x ScanAll and then Expand, since we are guessing that // is faster (due to high label index vertex count). CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectExpand(), ExpectFilter(), ExpectProduce()); } TYPED_TEST(TestPlanner, MatchWhereAndSplit) { // Test MATCH (n) -[r]- (m) WHERE n.prop AND r.prop RETURN m FakeDbAccessor dba; auto prop = PROPERTY_PAIR(dba, "prop"); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m"))), WHERE(AND(PROPERTY_LOOKUP(dba, "n", prop), PROPERTY_LOOKUP(dba, "r", prop))), RETURN("m"))); // We expect `n.prop` filter right after scanning `n`. CheckPlan(query, this->storage, ExpectScanAll(), ExpectFilter(), ExpectExpand(), ExpectFilter(), ExpectProduce()); } TYPED_TEST(TestPlanner, ReturnAsteriskOmitsLambdaSymbols) { // Test MATCH (n) -[r* (ie, in | true)]- (m) RETURN * FakeDbAccessor dba; auto edge = EDGE_VARIABLE("r", Type::DEPTH_FIRST, Direction::BOTH); edge->filter_lambda_.inner_edge = IDENT("ie"); edge->filter_lambda_.inner_node = IDENT("in"); edge->filter_lambda_.expression = LITERAL(true); auto ret = this->storage.template Create(); ret->body_.all_identifiers = true; auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), edge, NODE("m"))), ret)); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); auto *produce = dynamic_cast(&planner.plan()); ASSERT_TRUE(produce); std::vector outputs; for (const auto &output_symbol : produce->OutputSymbols(symbol_table)) { outputs.emplace_back(output_symbol.name()); } // We expect `*` expanded to `n`, `r` and `m`. EXPECT_EQ(outputs.size(), 3); for (const auto &name : {"n", "r", "m"}) { EXPECT_TRUE(memgraph::utils::Contains(outputs, name)); } } TYPED_TEST(TestPlanner, FilterRegexMatchIndex) { // Test MATCH (n :label) WHERE n.prop =~ "regex" RETURN n FakeDbAccessor dba; auto prop = dba.Property("prop"); auto label = dba.Label("label"); dba.SetIndexCount(label, 0); dba.SetIndexCount(label, prop, 0); auto *regex_match = this->storage.template Create(PROPERTY_LOOKUP(dba, "n", prop), LITERAL("regex")); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n", "label"))), WHERE(regex_match), RETURN("n"))); // We expect that we use index by property range where lower bound is an empty // string. Filter must still remain in place, because we don't have regex // based index. Bound lower_bound(LITERAL(""), Bound::Type::INCLUSIVE); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); CheckPlan(planner.plan(), symbol_table, ExpectScanAllByLabelPropertyRange(label, prop, lower_bound, std::nullopt), ExpectFilter(), ExpectProduce()); } TYPED_TEST(TestPlanner, FilterRegexMatchPreferEqualityIndex) { // Test MATCH (n :label) WHERE n.prop =~ "regex" AND n.prop = 42 RETURN n FakeDbAccessor dba; auto prop = PROPERTY_PAIR(dba, "prop"); auto label = dba.Label("label"); dba.SetIndexCount(label, 0); dba.SetIndexCount(label, prop.second, 0); auto *regex_match = this->storage.template Create(PROPERTY_LOOKUP(dba, "n", prop), LITERAL("regex")); auto *lit_42 = LITERAL(42); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n", "label"))), WHERE(AND(regex_match, EQ(PROPERTY_LOOKUP(dba, "n", prop), lit_42))), RETURN("n"))); // We expect that we use index by property value equal to 42, because that's // much better than property range for regex matching. auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); CheckPlan(planner.plan(), symbol_table, ExpectScanAllByLabelPropertyValue(label, prop, lit_42), ExpectFilter(), ExpectProduce()); } TYPED_TEST(TestPlanner, FilterRegexMatchPreferEqualityIndex2) { // Test MATCH (n :label) // WHERE n.prop =~ "regex" AND n.prop = 42 AND n.prop > 0 RETURN n FakeDbAccessor dba; auto prop = PROPERTY_PAIR(dba, "prop"); auto label = dba.Label("label"); dba.SetIndexCount(label, 0); dba.SetIndexCount(label, prop.second, 0); auto *regex_match = this->storage.template Create(PROPERTY_LOOKUP(dba, "n", prop), LITERAL("regex")); auto *lit_42 = LITERAL(42); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n", "label"))), WHERE(AND(AND(regex_match, EQ(PROPERTY_LOOKUP(dba, "n", prop), lit_42)), GREATER(PROPERTY_LOOKUP(dba, "n", prop), LITERAL(0)))), RETURN("n"))); // We expect that we use index by property value equal to 42, because that's // much better than property range. auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); CheckPlan(planner.plan(), symbol_table, ExpectScanAllByLabelPropertyValue(label, prop, lit_42), ExpectFilter(), ExpectProduce()); } TYPED_TEST(TestPlanner, FilterRegexMatchPreferRangeIndex) { // Test MATCH (n :label) WHERE n.prop =~ "regex" AND n.prop > 42 RETURN n FakeDbAccessor dba; auto prop = dba.Property("prop"); auto label = dba.Label("label"); dba.SetIndexCount(label, 0); dba.SetIndexCount(label, prop, 0); auto *regex_match = this->storage.template Create(PROPERTY_LOOKUP(dba, "n", prop), LITERAL("regex")); auto *lit_42 = LITERAL(42); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n", "label"))), WHERE(AND(regex_match, GREATER(PROPERTY_LOOKUP(dba, "n", prop), lit_42))), RETURN("n"))); // We expect that we use index by property range on a concrete value (42), as // it is much better than using a range from empty string for regex matching. Bound lower_bound(lit_42, Bound::Type::EXCLUSIVE); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); CheckPlan(planner.plan(), symbol_table, ExpectScanAllByLabelPropertyRange(label, prop, lower_bound, std::nullopt), ExpectFilter(), ExpectProduce()); } TYPED_TEST(TestPlanner, CallProcedureStandalone) { // Test CALL proc(1,2,3) YIELD field AS result FakeDbAccessor dba; auto *ast_call = this->storage.template Create(); ast_call->procedure_name_ = "proc"; ast_call->arguments_ = {LITERAL(1), LITERAL(2), LITERAL(3)}; ast_call->result_fields_ = {"field"}; ast_call->result_identifiers_ = {IDENT("result")}; auto *query = QUERY(SINGLE_QUERY(ast_call)); auto symbol_table = memgraph::query::MakeSymbolTable(query); std::vector result_syms; result_syms.reserve(ast_call->result_identifiers_.size()); for (const auto *ident : ast_call->result_identifiers_) { result_syms.push_back(symbol_table.at(*ident)); } auto planner = MakePlanner(&dba, this->storage, symbol_table, query); CheckPlan( planner.plan(), symbol_table, ExpectCallProcedure(ast_call->procedure_name_, ast_call->arguments_, ast_call->result_fields_, result_syms)); } TYPED_TEST(TestPlanner, CallProcedureAfterScanAll) { // Test MATCH (n) CALL proc(n) YIELD field AS result RETURN result FakeDbAccessor dba; auto *ast_call = this->storage.template Create(); ast_call->procedure_name_ = "proc"; ast_call->arguments_ = {IDENT("n")}; ast_call->result_fields_ = {"field"}; ast_call->result_identifiers_ = {IDENT("result")}; auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), ast_call, RETURN("result"))); auto symbol_table = memgraph::query::MakeSymbolTable(query); std::vector result_syms; result_syms.reserve(ast_call->result_identifiers_.size()); for (const auto *ident : ast_call->result_identifiers_) { result_syms.push_back(symbol_table.at(*ident)); } auto planner = MakePlanner(&dba, this->storage, symbol_table, query); CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectCallProcedure(ast_call->procedure_name_, ast_call->arguments_, ast_call->result_fields_, result_syms), ExpectProduce()); } TYPED_TEST(TestPlanner, CallProcedureBeforeScanAll) { // Test CALL proc() YIELD field MATCH (n) WHERE n.prop = field RETURN n FakeDbAccessor dba; auto *ast_call = this->storage.template Create(); ast_call->procedure_name_ = "proc"; ast_call->result_fields_ = {"field"}; ast_call->result_identifiers_ = {IDENT("field")}; auto property = dba.Property("prop"); auto *query = QUERY(SINGLE_QUERY(ast_call, MATCH(PATTERN(NODE("n"))), WHERE(EQ(PROPERTY_LOOKUP(dba, "n", property), IDENT("field"))), RETURN("n"))); auto symbol_table = memgraph::query::MakeSymbolTable(query); std::vector result_syms; result_syms.reserve(ast_call->result_identifiers_.size()); for (const auto *ident : ast_call->result_identifiers_) { result_syms.push_back(symbol_table.at(*ident)); } auto planner = MakePlanner(&dba, this->storage, symbol_table, query); CheckPlan(planner.plan(), symbol_table, ExpectCallProcedure(ast_call->procedure_name_, ast_call->arguments_, ast_call->result_fields_, result_syms), ExpectScanAll(), ExpectFilter(), ExpectProduce()); } TYPED_TEST(TestPlanner, ScanAllById) { // Test MATCH (n) WHERE id(n) = 42 RETURN n auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), WHERE(EQ(FN("id", IDENT("n")), LITERAL(42))), RETURN("n"))); CheckPlan(query, this->storage, ExpectScanAllById(), ExpectProduce()); } TYPED_TEST(TestPlanner, ScanAllByIdExpandToExisting) { // Test MATCH (n)-[r]-(m) WHERE id(m) = 42 RETURN r auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), EDGE("r"), NODE("m"))), WHERE(EQ(FN("id", IDENT("m")), LITERAL(42))), RETURN("r"))); CheckPlan(query, this->storage, ExpectScanAll(), ExpectScanAllById(), ExpectExpand(), ExpectProduce()); } TYPED_TEST(TestPlanner, BfsToExisting) { // Test MATCH (n)-[r *bfs]-(m) WHERE id(m) = 42 RETURN r auto *bfs = this->storage.template Create( IDENT("r"), memgraph::query::EdgeAtom::Type::BREADTH_FIRST, Direction::BOTH); bfs->filter_lambda_.inner_edge = IDENT("ie"); bfs->filter_lambda_.inner_node = IDENT("in"); bfs->filter_lambda_.expression = LITERAL(true); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), bfs, NODE("m"))), WHERE(EQ(FN("id", IDENT("m")), LITERAL(42))), RETURN("r"))); CheckPlan(query, this->storage, ExpectScanAll(), ExpectScanAllById(), ExpectExpandBfs(), ExpectProduce()); } TYPED_TEST(TestPlanner, LabelPropertyInListValidOptimization) { // Test MATCH (n:label) WHERE n.property IN ['a'] RETURN n FakeDbAccessor dba; auto label = dba.Label("label"); auto property = PROPERTY_PAIR(dba, "property"); auto *lit_list_a = LIST(LITERAL('a')); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n", "label"))), WHERE(IN_LIST(PROPERTY_LOOKUP(dba, "n", property), lit_list_a)), RETURN("n"))); { auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectFilter(), ExpectProduce()); } { dba.SetIndexCount(label, 1); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); CheckPlan(planner.plan(), symbol_table, ExpectScanAllByLabel(), ExpectFilter(), ExpectProduce()); } { dba.SetIndexCount(label, property.second, 1); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); CheckPlan(planner.plan(), symbol_table, ExpectUnwind(), ExpectScanAllByLabelPropertyValue(label, property, lit_list_a), ExpectProduce()); } } TYPED_TEST(TestPlanner, LabelPropertyInListWhereLabelPropertyOnLeftNotListOnRight) { // Test MATCH (n:label) WHERE n.property IN 'a' RETURN n FakeDbAccessor dba; auto label = dba.Label("label"); auto property = PROPERTY_PAIR(dba, "property"); auto *lit_a = LITERAL('a'); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n", "label"))), WHERE(IN_LIST(PROPERTY_LOOKUP(dba, "n", property), lit_a)), RETURN("n"))); { dba.SetIndexCount(label, property.second, 1); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectFilter(), ExpectProduce()); } } TYPED_TEST(TestPlanner, LabelPropertyInListWhereLabelPropertyOnRight) { // Test MATCH (n:label) WHERE ['a'] IN n.property RETURN n FakeDbAccessor dba; auto label = dba.Label("label"); auto property = PROPERTY_PAIR(dba, "property"); auto *lit_list_a = LIST(LITERAL('a')); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n", "label"))), WHERE(IN_LIST(lit_list_a, PROPERTY_LOOKUP(dba, "n", property))), RETURN("n"))); { auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectFilter(), ExpectProduce()); } { dba.SetIndexCount(label, 1); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); CheckPlan(planner.plan(), symbol_table, ExpectScanAllByLabel(), ExpectFilter(), ExpectProduce()); } { dba.SetIndexCount(label, property.second, 1); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); CheckPlan(planner.plan(), symbol_table, ExpectScanAllByLabel(), ExpectFilter(), ExpectProduce()); } } TYPED_TEST(TestPlanner, Foreach) { FakeDbAccessor dba; { auto *i = NEXPR("i", IDENT("i")); auto *query = QUERY(SINGLE_QUERY(FOREACH(i, {CREATE(PATTERN(NODE("n")))}))); auto create = ExpectCreateNode(); std::list updates{&create}; std::list input; CheckPlan(query, this->storage, ExpectForeach(input, updates), ExpectEmptyResult()); } { auto *i = NEXPR("i", IDENT("i")); auto *query = QUERY(SINGLE_QUERY(FOREACH(i, {DELETE(IDENT("i"))}))); auto del = ExpectDelete(); std::list updates{&del}; std::list input; CheckPlan(query, this->storage, ExpectForeach({input}, updates), ExpectEmptyResult()); } { auto prop = dba.Property("prop"); auto *i = NEXPR("i", IDENT("i")); auto *query = QUERY(SINGLE_QUERY(FOREACH(i, {SET(PROPERTY_LOOKUP(dba, "i", prop), LITERAL(10))}))); auto set_prop = ExpectSetProperty(); std::list updates{&set_prop}; std::list input; CheckPlan(query, this->storage, ExpectForeach({input}, updates), ExpectEmptyResult()); } { auto *i = NEXPR("i", IDENT("i")); auto *j = NEXPR("j", IDENT("j")); auto *query = QUERY(SINGLE_QUERY(FOREACH(i, {FOREACH(j, {CREATE(PATTERN(NODE("n"))), DELETE(IDENT("i"))})}))); auto create = ExpectCreateNode(); auto del = ExpectDelete(); std::list input; std::list nested_updates{{&create, &del}}; auto nested_foreach = ExpectForeach(input, nested_updates); std::list updates{&nested_foreach}; CheckPlan(query, this->storage, ExpectForeach(input, updates), ExpectEmptyResult()); } { auto *i = NEXPR("i", IDENT("i")); auto *j = NEXPR("j", IDENT("j")); auto create = ExpectCreateNode(); std::list empty; std::list updates{&create}; auto input_op = ExpectForeach(empty, updates); std::list input{&input_op}; auto *query = QUERY(SINGLE_QUERY(FOREACH(i, {CREATE(PATTERN(NODE("n")))}), FOREACH(j, {CREATE(PATTERN(NODE("n")))}))); CheckPlan(query, this->storage, ExpectForeach(input, updates), ExpectEmptyResult()); } { // FOREACH with index // FOREACH (n in [...] | MERGE (v:Label)); const auto label_name = "label"; const auto label = dba.Label(label_name); dba.SetIndexCount(label, 0); auto *n = NEXPR("n", IDENT("n")); auto *query = QUERY(SINGLE_QUERY(FOREACH(n, {MERGE(PATTERN(NODE("v", label_name)))}))); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); std::list on_match{new ExpectScanAllByLabel()}; std::list on_create{new ExpectCreateNode()}; auto create = ExpectMerge(on_match, on_create); std::list updates{&create}; std::list input; CheckPlan(planner.plan(), symbol_table, ExpectForeach(input, updates), ExpectEmptyResult()); DeleteListContent(&on_match); DeleteListContent(&on_create); } } TYPED_TEST(TestPlanner, Exists) { // MATCH (n) WHERE exists((n)-[]-()) FakeDbAccessor dba; { auto *query = QUERY(SINGLE_QUERY( MATCH(PATTERN(NODE("n"))), WHERE(EXISTS(PATTERN(NODE("n"), EDGE("edge", memgraph::query::EdgeAtom::Direction::BOTH, {}, false), NODE("node", std::nullopt, false)))), RETURN("n"))); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); std::list pattern_filter{new ExpectExpand(), new ExpectLimit(), new ExpectEvaluatePatternFilter()}; CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectFilter(std::vector>{pattern_filter}), ExpectProduce()); DeleteListContent(&pattern_filter); } // MATCH (n) WHERE exists((n)-[:TYPE]-(:Two)) { auto *query = QUERY(SINGLE_QUERY( MATCH(PATTERN(NODE("n"))), WHERE(EXISTS(PATTERN(NODE("n"), EDGE("edge", memgraph::query::EdgeAtom::Direction::BOTH, {"TYPE"}, false), NODE("node", "Two", false)))), RETURN("n"))); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); std::list pattern_filter{new ExpectExpand(), new ExpectFilter(), new ExpectLimit(), new ExpectEvaluatePatternFilter()}; CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectFilter(std::vector>{pattern_filter}), ExpectProduce()); DeleteListContent(&pattern_filter); } // MATCH (n) WHERE exists((n)-[:TYPE]-(:Two)) AND exists((n)-[]-()) { auto *query = QUERY(SINGLE_QUERY( MATCH(PATTERN(NODE("n"))), WHERE(AND(EXISTS(PATTERN(NODE("n"), EDGE("edge", memgraph::query::EdgeAtom::Direction::BOTH, {"TYPE"}, false), NODE("node", "Two", false))), EXISTS(PATTERN(NODE("n"), EDGE("edge2", memgraph::query::EdgeAtom::Direction::BOTH, {}, false), NODE("node2", std::nullopt, false))))), RETURN("n"))); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); std::list pattern_filter_with_types{new ExpectExpand(), new ExpectFilter(), new ExpectLimit(), new ExpectEvaluatePatternFilter()}; std::list pattern_filter_without_types{new ExpectExpand(), new ExpectLimit(), new ExpectEvaluatePatternFilter()}; CheckPlan( planner.plan(), symbol_table, ExpectScanAll(), ExpectFilter(std::vector>{pattern_filter_without_types, pattern_filter_with_types}), ExpectProduce()); DeleteListContent(&pattern_filter_with_types); DeleteListContent(&pattern_filter_without_types); } // MATCH (n) WHERE n.prop = 1 AND exists((n)-[:TYPE]-(:Two)) { auto property = dba.Property("prop"); auto *query = QUERY(SINGLE_QUERY( MATCH(PATTERN(NODE("n"))), WHERE(AND(EXISTS(PATTERN(NODE("n"), EDGE("edge", memgraph::query::EdgeAtom::Direction::BOTH, {"TYPE"}, false), NODE("node", "Two", false))), PROPERTY_LOOKUP(dba, "n", property))), RETURN("n"))); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); std::list pattern_filter{new ExpectExpand(), new ExpectFilter(), new ExpectLimit(), new ExpectEvaluatePatternFilter()}; CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectFilter(std::vector>{pattern_filter}), ExpectProduce()); DeleteListContent(&pattern_filter); } // MATCH (n) WHERE exists((n)-[:TYPE]-(:Two)) OR exists((n)-[]-()) { auto *query = QUERY(SINGLE_QUERY( MATCH(PATTERN(NODE("n"))), WHERE(OR(EXISTS(PATTERN(NODE("n"), EDGE("edge", memgraph::query::EdgeAtom::Direction::BOTH, {"TYPE"}, false), NODE("node", "Two", false))), EXISTS(PATTERN(NODE("n"), EDGE("edge2", memgraph::query::EdgeAtom::Direction::BOTH, {}, false), NODE("node2", std::nullopt, false))))), RETURN("n"))); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); std::list pattern_filter_with_types{new ExpectExpand(), new ExpectFilter(), new ExpectLimit(), new ExpectEvaluatePatternFilter()}; std::list pattern_filter_without_types{new ExpectExpand(), new ExpectLimit(), new ExpectEvaluatePatternFilter()}; CheckPlan( planner.plan(), symbol_table, ExpectScanAll(), ExpectFilter(std::vector>{pattern_filter_with_types, pattern_filter_without_types}), ExpectProduce()); DeleteListContent(&pattern_filter_with_types); DeleteListContent(&pattern_filter_without_types); } } TYPED_TEST(TestPlanner, Subqueries) { // MATCH (n) CALL { MATCH (m) RETURN (m) } RETURN n, m FakeDbAccessor dba; { auto *subquery = SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), RETURN("n")); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("m"))), CALL_SUBQUERY(subquery), RETURN("m", "n"))); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); std::list subquery_plan{new ExpectScanAll(), new ExpectProduce()}; CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectApply(subquery_plan), ExpectProduce()); DeleteListContent(&subquery_plan); } // MATCH (n) CALL { MATCH (m)-[r]->(n) RETURN (m) } RETURN n, m { auto *subquery = SINGLE_QUERY(MATCH(PATTERN(NODE("n"), EDGE("r", Direction::OUT), NODE("m"))), RETURN("n")); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("m"))), CALL_SUBQUERY(subquery), RETURN("m", "n"))); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); std::list subquery_plan{new ExpectScanAll(), new ExpectExpand(), new ExpectProduce()}; CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectApply(subquery_plan), ExpectProduce()); DeleteListContent(&subquery_plan); } // MATCH (n) CALL { MATCH (p)-[r]->(s) WHERE s.prop = 2 RETURN (p) } RETURN n, p { auto property = dba.Property("prop"); auto *subquery = SINGLE_QUERY(MATCH(PATTERN(NODE("p"), EDGE("r", Direction::OUT), NODE("s"))), WHERE(EQ(PROPERTY_LOOKUP(dba, "s", property), LITERAL(2))), RETURN("p")); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), CALL_SUBQUERY(subquery), RETURN("n", "p"))); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); std::list subquery_plan{new ExpectScanAll(), new ExpectExpand(), new ExpectFilter(), new ExpectProduce()}; CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectApply(subquery_plan), ExpectProduce()); DeleteListContent(&subquery_plan); } // MATCH (m) CALL { MATCH (n) CALL { MATCH (o) RETURN o } RETURN n, o } RETURN m, n, o { auto *subquery_inside_subquery = SINGLE_QUERY(MATCH(PATTERN(NODE("o"))), RETURN("o")); auto *subquery = SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), CALL_SUBQUERY(subquery_inside_subquery), RETURN("n", "o")); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("m"))), CALL_SUBQUERY(subquery), RETURN("m", "n", "o"))); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); std::list subquery_inside_subquery_plan{new ExpectScanAll(), new ExpectProduce()}; std::list subquery_plan{new ExpectScanAll(), new ExpectApply(subquery_inside_subquery_plan), new ExpectProduce()}; CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectApply(subquery_plan), ExpectProduce()); DeleteListContent(&subquery_plan); DeleteListContent(&subquery_inside_subquery_plan); } // MATCH (m) CALL { MATCH (n) RETURN n UNION MATCH (n) RETURN n } RETURN m, n { auto *subquery = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), RETURN("n")), UNION_ALL(SINGLE_QUERY(MATCH(PATTERN(NODE("n"))), RETURN("n")))); auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("m"))), CALL_SUBQUERY(subquery), RETURN("m", "n"))); auto symbol_table = memgraph::query::MakeSymbolTable(query); auto planner = MakePlanner(&dba, this->storage, symbol_table, query); std::list left_subquery_part{new ExpectScanAll(), new ExpectProduce()}; std::list right_subquery_part{new ExpectScanAll(), new ExpectProduce()}; std::list subquery_plan{new ExpectUnion(left_subquery_part, right_subquery_part)}; CheckPlan(planner.plan(), symbol_table, ExpectScanAll(), ExpectApply(subquery_plan), ExpectProduce()); DeleteListContent(&subquery_plan); DeleteListContent(&left_subquery_part); DeleteListContent(&right_subquery_part); } } } // namespace