// Copyright 2022 Memgraph Ltd. // // Use of this software is governed by the Business Source License // included in the file licenses/BSL.txt; by using this file, you agree to be bound by the terms of the Business Source // License, and you may not use this file except in compliance with the Business Source License. // // As of the Change Date specified in that file, in accordance with // the Business Source License, use of this software will be governed // by the Apache License, Version 2.0, included in the file // licenses/APL.txt. #include #include #include #include #include #include #include #include #include #include "common.hpp" #include "common/types.hpp" #include "coordinator/coordinator_client.hpp" #include "coordinator/coordinator_rsm.hpp" #include "io/address.hpp" #include "io/errors.hpp" #include "io/rsm/raft.hpp" #include "io/rsm/rsm_client.hpp" #include "io/rsm/shard_rsm.hpp" #include "io/simulator/simulator.hpp" #include "io/simulator/simulator_transport.hpp" #include "query/v2/accessors.hpp" #include "query/v2/conversions.hpp" #include "query/v2/request_router.hpp" #include "query/v2/requests.hpp" #include "storage/v3/property_value.hpp" #include "utils/result.hpp" namespace memgraph::query::v2::tests { using coordinator::AddressAndStatus; using CompoundKey = coordinator::PrimaryKey; using coordinator::Coordinator; using coordinator::CoordinatorClient; using coordinator::CoordinatorRsm; using coordinator::HlcRequest; using coordinator::HlcResponse; using coordinator::ShardMap; using coordinator::ShardMetadata; using coordinator::Shards; using coordinator::Status; using io::Address; using io::Io; using io::ResponseEnvelope; using io::ResponseFuture; using io::Time; using io::TimedOut; using io::rsm::Raft; using io::rsm::ReadRequest; using io::rsm::ReadResponse; using io::rsm::StorageReadRequest; using io::rsm::StorageReadResponse; using io::rsm::StorageWriteRequest; using io::rsm::StorageWriteResponse; using io::rsm::WriteRequest; using io::rsm::WriteResponse; using io::simulator::Simulator; using io::simulator::SimulatorConfig; using io::simulator::SimulatorStats; using io::simulator::SimulatorTransport; using msgs::CreateVerticesRequest; using msgs::CreateVerticesResponse; using msgs::ScanVerticesRequest; using msgs::ScanVerticesResponse; using msgs::VertexId; using storage::v3::LabelId; using storage::v3::SchemaProperty; using storage::v3::tests::MockedShardRsm; using utils::BasicResult; namespace { ShardMap CreateDummyShardmap(coordinator::Address a_io_1, coordinator::Address a_io_2, coordinator::Address a_io_3, coordinator::Address b_io_1, coordinator::Address b_io_2, coordinator::Address b_io_3) { static const std::string label_name = std::string("test_label"); ShardMap sm; // register new properties const std::vector property_names = {"property_1", "property_2"}; const auto properties = sm.AllocatePropertyIds(property_names); const auto property_id_1 = properties.at("property_1"); const auto property_id_2 = properties.at("property_2"); const auto type_1 = common::SchemaType::INT; const auto type_2 = common::SchemaType::INT; // register new label space std::vector schema = { SchemaProperty{.property_id = property_id_1, .type = type_1}, SchemaProperty{.property_id = property_id_2, .type = type_2}, }; auto label_success = sm.InitializeNewLabel(label_name, schema, 1, sm.shard_map_version); MG_ASSERT(label_success); const LabelId label_id = sm.labels.at(label_name); auto &label_space = sm.label_spaces.at(label_id); Shards &shards_for_label = label_space.shards; shards_for_label.clear(); // add first shard at [0, 0] AddressAndStatus aas1_1{.address = a_io_1, .status = Status::CONSENSUS_PARTICIPANT}; AddressAndStatus aas1_2{.address = a_io_2, .status = Status::CONSENSUS_PARTICIPANT}; AddressAndStatus aas1_3{.address = a_io_3, .status = Status::CONSENSUS_PARTICIPANT}; ShardMetadata shard1 = ShardMetadata{.peers = {aas1_1, aas1_2, aas1_3}, .version = 1}; auto key1 = storage::v3::PropertyValue(0); auto key2 = storage::v3::PropertyValue(0); CompoundKey compound_key_1 = {key1, key2}; shards_for_label[compound_key_1] = shard1; // add second shard at [12, 13] AddressAndStatus aas2_1{.address = b_io_1, .status = Status::CONSENSUS_PARTICIPANT}; AddressAndStatus aas2_2{.address = b_io_2, .status = Status::CONSENSUS_PARTICIPANT}; AddressAndStatus aas2_3{.address = b_io_3, .status = Status::CONSENSUS_PARTICIPANT}; ShardMetadata shard2 = ShardMetadata{.peers = {aas2_1, aas2_2, aas2_3}, .version = 1}; auto key3 = storage::v3::PropertyValue(12); auto key4 = storage::v3::PropertyValue(13); CompoundKey compound_key_2 = {key3, key4}; shards_for_label[compound_key_2] = shard2; sm.AllocateEdgeTypeIds(std::vector{"edge_type"}); return sm; } } // namespace using WriteRequests = msgs::WriteRequests; using WriteResponses = msgs::WriteResponses; using ReadRequests = msgs::ReadRequests; using ReadResponses = msgs::ReadResponses; using ConcreteCoordinatorRsm = CoordinatorRsm; using ConcreteStorageRsm = Raft; template void RunStorageRaft(Raft server) { server.Run(); } void TestScanVertices(query::v2::RequestRouterInterface &request_router) { auto result = request_router.ScanVertices("test_label"); MG_ASSERT(result.size() == 2); { auto prop = result[0].GetProperty(msgs::PropertyId::FromUint(0)); MG_ASSERT(prop.int_v == 0); prop = result[1].GetProperty(msgs::PropertyId::FromUint(0)); MG_ASSERT(prop.int_v == 444); } } void TestCreateVertices(query::v2::RequestRouterInterface &request_router) { using PropVal = msgs::Value; std::vector new_vertices; auto label_id = request_router.NameToLabel("test_label"); msgs::NewVertex a1{.primary_key = {PropVal(int64_t(1)), PropVal(int64_t(0))}}; a1.label_ids.push_back({label_id}); msgs::NewVertex a2{.primary_key = {PropVal(int64_t(13)), PropVal(int64_t(13))}}; a2.label_ids.push_back({label_id}); new_vertices.push_back(std::move(a1)); new_vertices.push_back(std::move(a2)); auto result = request_router.CreateVertices(std::move(new_vertices)); MG_ASSERT(result.size() == 2); } void TestCreateExpand(query::v2::RequestRouterInterface &request_router) { using PropVal = msgs::Value; msgs::CreateExpandRequest state; std::vector new_expands; const auto edge_type_id = request_router.NameToEdgeType("edge_type"); const auto label = msgs::Label{request_router.NameToLabel("test_label")}; const msgs::VertexId vertex_id_1{label, {PropVal(int64_t(0)), PropVal(int64_t(0))}}; const msgs::VertexId vertex_id_2{label, {PropVal(int64_t(13)), PropVal(int64_t(13))}}; msgs::NewExpand expand_1{ .id = {.gid = 0}, .type = {edge_type_id}, .src_vertex = vertex_id_1, .dest_vertex = vertex_id_2}; msgs::NewExpand expand_2{ .id = {.gid = 1}, .type = {edge_type_id}, .src_vertex = vertex_id_2, .dest_vertex = vertex_id_1}; new_expands.push_back(std::move(expand_1)); new_expands.push_back(std::move(expand_2)); auto responses = request_router.CreateExpand(std::move(new_expands)); MG_ASSERT(responses.size() == 2); MG_ASSERT(!responses[0].error); MG_ASSERT(!responses[1].error); } void TestExpandOne(query::v2::RequestRouterInterface &request_router) { msgs::ExpandOneRequest state{}; msgs::ExpandOneRequest request; const auto edge_type_id = request_router.NameToEdgeType("edge_type"); const auto label = msgs::Label{request_router.NameToLabel("test_label")}; request.src_vertices.push_back(msgs::VertexId{label, {msgs::Value(int64_t(0)), msgs::Value(int64_t(0))}}); request.edge_types.push_back(msgs::EdgeType{edge_type_id}); request.direction = msgs::EdgeDirection::BOTH; auto result_rows = request_router.ExpandOne(std::move(request)); MG_ASSERT(result_rows.size() == 2); } void TestGetProperties(query::v2::RequestRouterInterface &request_router) { using PropVal = msgs::Value; auto label_id = request_router.NameToLabel("test_label"); msgs::VertexId v0{{label_id}, {PropVal(int64_t(0)), PropVal(int64_t(0))}}; msgs::VertexId v1{{label_id}, {PropVal(int64_t(1)), PropVal(int64_t(0))}}; msgs::VertexId v2{{label_id}, {PropVal(int64_t(13)), PropVal(int64_t(13))}}; msgs::GetPropertiesRequest request; request.vertex_ids.push_back({v0}); request.vertex_ids.push_back({v1}); request.vertex_ids.push_back({v2}); auto result = request_router.GetProperties(std::move(request)); MG_ASSERT(result.size() == 3); } template void TestAggregate(RequestRouter &request_router) {} void DoTest() { SimulatorConfig config{ .drop_percent = 0, .perform_timeouts = false, .scramble_messages = false, .rng_seed = 0, .start_time = Time::min() + std::chrono::microseconds{256 * 1024}, .abort_time = Time::min() + std::chrono::microseconds{2 * 8 * 1024 * 1024}, }; auto simulator = Simulator(config); const auto one_second = std::chrono::seconds(1); Io cli_io = simulator.RegisterNew(); cli_io.SetDefaultTimeout(one_second); // Register Io a_io_1 = simulator.RegisterNew(); a_io_1.SetDefaultTimeout(one_second); Io a_io_2 = simulator.RegisterNew(); a_io_2.SetDefaultTimeout(one_second); Io a_io_3 = simulator.RegisterNew(); a_io_3.SetDefaultTimeout(one_second); Io b_io_1 = simulator.RegisterNew(); b_io_1.SetDefaultTimeout(one_second); Io b_io_2 = simulator.RegisterNew(); b_io_2.SetDefaultTimeout(one_second); Io b_io_3 = simulator.RegisterNew(); b_io_3.SetDefaultTimeout(one_second); // Preconfigure coordinator with kv shard 'A' and 'B' auto sm1 = CreateDummyShardmap(a_io_1.GetAddress(), a_io_2.GetAddress(), a_io_3.GetAddress(), b_io_1.GetAddress(), b_io_2.GetAddress(), b_io_3.GetAddress()); auto sm2 = CreateDummyShardmap(a_io_1.GetAddress(), a_io_2.GetAddress(), a_io_3.GetAddress(), b_io_1.GetAddress(), b_io_2.GetAddress(), b_io_3.GetAddress()); auto sm3 = CreateDummyShardmap(a_io_1.GetAddress(), a_io_2.GetAddress(), a_io_3.GetAddress(), b_io_1.GetAddress(), b_io_2.GetAddress(), b_io_3.GetAddress()); // Spin up shard A std::vector
a_addrs = {a_io_1.GetAddress(), a_io_2.GetAddress(), a_io_3.GetAddress()}; std::vector
a_1_peers = {a_addrs[1], a_addrs[2]}; std::vector
a_2_peers = {a_addrs[0], a_addrs[2]}; std::vector
a_3_peers = {a_addrs[0], a_addrs[1]}; ConcreteStorageRsm a_1{std::move(a_io_1), a_1_peers, MockedShardRsm{}}; ConcreteStorageRsm a_2{std::move(a_io_2), a_2_peers, MockedShardRsm{}}; ConcreteStorageRsm a_3{std::move(a_io_3), a_3_peers, MockedShardRsm{}}; auto a_thread_1 = std::jthread(RunStorageRaft, std::move(a_1)); simulator.IncrementServerCountAndWaitForQuiescentState(a_addrs[0]); auto a_thread_2 = std::jthread(RunStorageRaft, std::move(a_2)); simulator.IncrementServerCountAndWaitForQuiescentState(a_addrs[1]); auto a_thread_3 = std::jthread(RunStorageRaft, std::move(a_3)); simulator.IncrementServerCountAndWaitForQuiescentState(a_addrs[2]); // Spin up shard B std::vector
b_addrs = {b_io_1.GetAddress(), b_io_2.GetAddress(), b_io_3.GetAddress()}; std::vector
b_1_peers = {b_addrs[1], b_addrs[2]}; std::vector
b_2_peers = {b_addrs[0], b_addrs[2]}; std::vector
b_3_peers = {b_addrs[0], b_addrs[1]}; ConcreteStorageRsm b_1{std::move(b_io_1), b_1_peers, MockedShardRsm{}}; ConcreteStorageRsm b_2{std::move(b_io_2), b_2_peers, MockedShardRsm{}}; ConcreteStorageRsm b_3{std::move(b_io_3), b_3_peers, MockedShardRsm{}}; auto b_thread_1 = std::jthread(RunStorageRaft, std::move(b_1)); simulator.IncrementServerCountAndWaitForQuiescentState(b_addrs[0]); auto b_thread_2 = std::jthread(RunStorageRaft, std::move(b_2)); simulator.IncrementServerCountAndWaitForQuiescentState(b_addrs[1]); auto b_thread_3 = std::jthread(RunStorageRaft, std::move(b_3)); simulator.IncrementServerCountAndWaitForQuiescentState(b_addrs[2]); // Spin up coordinators Io c_io_1 = simulator.RegisterNew(); c_io_1.SetDefaultTimeout(one_second); Io c_io_2 = simulator.RegisterNew(); c_io_2.SetDefaultTimeout(one_second); Io c_io_3 = simulator.RegisterNew(); c_io_3.SetDefaultTimeout(one_second); std::vector
c_addrs = {c_io_1.GetAddress(), c_io_2.GetAddress(), c_io_3.GetAddress()}; std::vector
c_1_peers = {c_addrs[1], c_addrs[2]}; std::vector
c_2_peers = {c_addrs[0], c_addrs[2]}; std::vector
c_3_peers = {c_addrs[0], c_addrs[1]}; ConcreteCoordinatorRsm c_1{std::move(c_io_1), c_1_peers, Coordinator{(sm1)}}; ConcreteCoordinatorRsm c_2{std::move(c_io_2), c_2_peers, Coordinator{(sm2)}}; ConcreteCoordinatorRsm c_3{std::move(c_io_3), c_3_peers, Coordinator{(sm3)}}; auto c_thread_1 = std::jthread([c_1]() mutable { c_1.Run(); }); simulator.IncrementServerCountAndWaitForQuiescentState(c_addrs[0]); auto c_thread_2 = std::jthread([c_2]() mutable { c_2.Run(); }); simulator.IncrementServerCountAndWaitForQuiescentState(c_addrs[1]); auto c_thread_3 = std::jthread([c_3]() mutable { c_3.Run(); }); simulator.IncrementServerCountAndWaitForQuiescentState(c_addrs[2]); std::cout << "beginning test after servers have become quiescent" << std::endl; // Have client contact coordinator RSM for a new transaction ID and // also get the current shard map CoordinatorClient coordinator_client(cli_io, c_addrs[0], c_addrs); query::v2::RequestRouter request_router(std::move(coordinator_client), std::move(cli_io)); std::function tick_simulator = simulator.GetSimulatorTickClosure(); request_router.InstallSimulatorTicker(tick_simulator); request_router.StartTransaction(); TestScanVertices(request_router); TestCreateVertices(request_router); TestCreateExpand(request_router); TestGetProperties(request_router); simulator.ShutDown(); SimulatorStats stats = simulator.Stats(); std::cout << "total messages: " << stats.total_messages << std::endl; std::cout << "dropped messages: " << stats.dropped_messages << std::endl; std::cout << "timed out requests: " << stats.timed_out_requests << std::endl; std::cout << "total requests: " << stats.total_requests << std::endl; std::cout << "total responses: " << stats.total_responses << std::endl; std::cout << "simulator ticks: " << stats.simulator_ticks << std::endl; std::cout << "========================== SUCCESS :) ==========================" << std::endl; } } // namespace memgraph::query::v2::tests int main() { spdlog::cfg::load_env_levels(); memgraph::query::v2::tests::DoTest(); }