Implement Louvain as a query module

Reviewers: teon.banek, dsantl

Reviewed By: teon.banek, dsantl

Subscribers: pullbot

Differential Revision: https://phabricator.memgraph.io/D2574
This commit is contained in:
Ivan Paljak 2019-12-03 15:43:59 +01:00
parent e605aed497
commit f6b6ea254d
6 changed files with 157 additions and 42 deletions

View File

@ -7,7 +7,6 @@ include_directories(src)
add_library(louvain-core STATIC ${SOURCES})
set_target_properties(louvain-core PROPERTIES POSITION_INDEPENDENT_CODE ON)
target_link_libraries(louvain-core PUBLIC Threads::Threads glog gflags)
add_executable(louvain-main ${MAIN})
target_link_libraries(louvain-main louvain-core)
@ -16,6 +15,7 @@ enable_testing()
add_subdirectory(test)
add_library(louvain SHARED ${MODULE})
target_link_libraries(louvain louvain-core)
target_include_directories(louvain PRIVATE ${CMAKE_SOURCE_DIR}/include)
if (NOT MG_COMMUNITY)

View File

@ -5,8 +5,6 @@
#include <random>
#include <unordered_map>
#include <glog/logging.h>
namespace {
void OptimizeLocally(comdata::Graph *graph) {

View File

@ -1,12 +1,11 @@
#include "data_structures/graph.hpp"
#include <exception>
#include <numeric>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include <glog/logging.h>
namespace comdata {
Graph::Graph(uint32_t n_nodes) : n_nodes_(n_nodes), total_w_(0) {
@ -22,15 +21,9 @@ uint32_t Graph::Size() const {
return n_nodes_;
}
uint32_t Graph::Community(uint32_t node) const {
CHECK(node < n_nodes_) << "Node index out of range";
return community_[node];
}
uint32_t Graph::Community(uint32_t node) const { return community_.at(node); }
void Graph::SetCommunity(uint32_t node, uint32_t c) {
CHECK(node < n_nodes_) << "Node index out of range";
community_[node] = c;
}
void Graph::SetCommunity(uint32_t node, uint32_t c) { community_.at(node) = c; }
uint32_t Graph::NormalizeCommunities() {
std::set<uint32_t> c_id(community_.begin(), community_.end());
@ -46,10 +39,11 @@ uint32_t Graph::NormalizeCommunities() {
}
void Graph::AddEdge(uint32_t node1, uint32_t node2, double weight) {
CHECK(node1 < n_nodes_) << "Node index out of range";
CHECK(node2 < n_nodes_) << "Node index out of range";
CHECK(weight > 0) << "Weights must be positive";
CHECK(edges_.find({node1, node2}) == edges_.end()) << "Edge already exists";
if (node1 >= n_nodes_ || node2 >= n_nodes_)
throw std::out_of_range("Node index out of range");
if (weight <= 0) throw std::out_of_range("Weights must be positive");
if (edges_.find({node1, node2}) != edges_.end())
throw std::invalid_argument("Edge already exists");
edges_.emplace(node1, node2);
edges_.emplace(node2, node1);
@ -66,13 +60,11 @@ void Graph::AddEdge(uint32_t node1, uint32_t node2, double weight) {
}
uint32_t Graph::Degree(uint32_t node) const {
CHECK(node < n_nodes_) << "Node index out of range";
return static_cast<uint32_t>(adj_list_[node].size());
return static_cast<uint32_t>(adj_list_.at(node).size());
}
double Graph::IncidentWeight(uint32_t node) const {
CHECK(node < n_nodes_) << "Node index out of range";
return inc_w_[node];
return inc_w_.at(node);
}
double Graph::TotalWeight() const {
@ -98,9 +90,8 @@ double Graph::Modularity() const {
return ret;
}
const std::vector<Neighbour>& Graph::Neighbours(uint32_t node) const {
CHECK(node < n_nodes_) << "Node index out of range";
return adj_list_[node];
const std::vector<Neighbour> &Graph::Neighbours(uint32_t node) const {
return adj_list_.at(node);
}
} // namespace comdata

View File

@ -40,16 +40,24 @@ public:
/// @param node1 index of an incident node.
/// @param node2 index of an incident node.
/// @param weight real value which represents the weight of the edge.
///
/// @throw std::out_of_range
/// @throw std::invalid_argument
void AddEdge(uint32_t node1, uint32_t node2, double weight);
/// @param node index of node.
///
/// @return community where the node belongs to.
///
/// @throw std::out_of_range
uint32_t Community(uint32_t node) const;
/// Adds a given node to a given community.
///
/// @param node index of node.
/// @param c community where the given node should go in.
///
/// @throw std::out_of_range
void SetCommunity(uint32_t node, uint32_t c);
/// Normalizes the values of communities. More precisely, after invoking this
@ -65,14 +73,20 @@ public:
/// contribute a single edge to the degree.
///
/// @param node index of node.
///
/// @return degree of given node.
///
/// @throw std::out_of_range
uint32_t Degree(uint32_t node) const;
/// Returns the total weight of incident edges to a given node. Weight
/// of a self loop contributes once to the total sum.
///
/// @param node index of node.
///
/// @return total incident weight of a given node.
///
/// @throw std::out_of_range
double IncidentWeight(uint32_t node) const;
/// @return total weight of all edges in a graph.
@ -91,7 +105,10 @@ public:
/// Returns nodes adjacent to a given node.
///
/// @param node index of node.
///
/// @return list of neighbouring nodes.
///
/// @throw std::out_of_range
const std::vector<Neighbour>& Neighbours(uint32_t node) const;
private:

View File

@ -1,19 +1,128 @@
#include "mg_procedure.h"
#include <exception>
#include <unordered_map>
#include "algorithms/algorithms.hpp"
#include "data_structures/graph.hpp"
static void communities(const mgp_list *args, const mgp_graph *graph,
mgp_result *result, mgp_memory *memory) {
mgp_result_record *record = mgp_result_new_record(result);
mgp_value *hello_world_value =
mgp_value_make_string("Louvain, fuck yeah!", memory);
mgp_result_record_insert(record, "result", hello_world_value);
mgp_value_destroy(hello_world_value);
mgp_vertices_iterator *vertices_iterator =
mgp_graph_iter_vertices(graph, memory);
if (vertices_iterator == nullptr) {
mgp_result_set_error_msg(result, "Not enough memory!");
return;
}
// Normalize vertex ids
std::unordered_map<int64_t, uint32_t> mem_to_louv_id;
uint32_t louv_id = 0;
for (const mgp_vertex *vertex = mgp_vertices_iterator_get(vertices_iterator);
vertex != nullptr; vertex = mgp_vertices_iterator_next(vertices_iterator)) {
mgp_vertex_id mem_id = mgp_vertex_get_id(vertex);
mem_to_louv_id[mem_id.as_int] = louv_id;
++louv_id;
}
mgp_vertices_iterator_destroy(vertices_iterator);
// Extract the graph structure
// TODO(ipaljak): consider filtering nodes and edges by labels.
comdata::Graph louvain_graph(louv_id);
for (const auto &p : mem_to_louv_id) {
mgp_vertex *vertex = mgp_graph_get_vertex_by_id(graph, {p.first}, memory);
if (!vertex) {
mgp_result_set_error_msg(result, "Not enough memory!");
return;
}
// iterate over inbound edges. This is enough because we will eventually
// iterate over outbound edges in another direction.
mgp_edges_iterator *edges_iterator =
mgp_vertex_iter_in_edges(vertex, memory);
if (edges_iterator == nullptr) {
mgp_vertex_destroy(vertex);
mgp_result_set_error_msg(result, "Not enough memory!");
return;
}
for (const mgp_edge *edge = mgp_edges_iterator_get(edges_iterator);
edge != nullptr; edge = mgp_edges_iterator_next(edges_iterator)) {
const mgp_vertex *next_vertex = mgp_edge_get_from(edge);
mgp_vertex_id next_mem_id = mgp_vertex_get_id(next_vertex);
uint32_t next_louv_id = mem_to_louv_id[next_mem_id.as_int];
// TODO(ipaljak): retrieve edge weight (default to 1)
double weight = 1;
try {
louvain_graph.AddEdge(p.second, next_louv_id, weight);
} catch (const std::exception &e) {
mgp_vertex_destroy(vertex);
mgp_edges_iterator_destroy(edges_iterator);
mgp_result_set_error_msg(result, e.what());
return;
}
}
mgp_vertex_destroy(vertex);
mgp_edges_iterator_destroy(edges_iterator);
}
try {
algorithms::Louvain(&louvain_graph);
} catch (const std::exception &e) {
const auto msg = std::string("[Internal error] ") + e.what();
mgp_result_set_error_msg(result, msg.c_str());
return;
}
// Return node ids and their corresponding communities.
for (const auto &p : mem_to_louv_id) {
mgp_result_record *record = mgp_result_new_record(result);
if (record == nullptr) {
mgp_result_set_error_msg(result, "Not enough memory!");
return;
}
mgp_value *mem_id_value = mgp_value_make_int(p.first, memory);
if (mem_id_value == nullptr) {
mgp_result_set_error_msg(result, "Not enough memory!");
return;
}
mgp_value *com_value =
mgp_value_make_int(louvain_graph.Community(p.second), memory);
if (com_value == nullptr) {
mgp_value_destroy(mem_id_value);
mgp_result_set_error_msg(result, "Not enough memory!");
return;
}
int mem_id_inserted =
mgp_result_record_insert(record, "id", mem_id_value);
int com_inserted =
mgp_result_record_insert(record, "community", com_value);
mgp_value_destroy(mem_id_value);
mgp_value_destroy(com_value);
if (!mem_id_inserted || !com_inserted) {
mgp_result_set_error_msg(result, "Not enough memory!");
return;
}
}
}
extern "C" int mgp_init_module(struct mgp_module *module,
struct mgp_memory *memory) {
struct mgp_proc *proc =
mgp_module_add_read_procedure(module, "communities", communities);
if (!mgp_proc_add_result(proc, "result", mgp_type_string())) return 1;
if (!proc) return 1;
if (!mgp_proc_add_result(proc, "id", mgp_type_int())) return 1;
if (!mgp_proc_add_result(proc, "community", mgp_type_int())) return 1;
return 0;
}

View File

@ -70,12 +70,12 @@ TEST(Graph, Communities) {
for (int i = 0; i < 100; ++i) ASSERT_EQ(graph.Community(i), i % 5);
// Try to set communities on non-existing nodes
ASSERT_DEATH({ graph.SetCommunity(100, 2); }, "");
ASSERT_DEATH({ graph.SetCommunity(150, 0); }, "");
EXPECT_THROW({ graph.SetCommunity(100, 2); }, std::out_of_range);
EXPECT_THROW({ graph.SetCommunity(150, 0); }, std::out_of_range);
// Try to get a the community of a non-existing node
ASSERT_DEATH({ graph.Community(100); }, "");
ASSERT_DEATH({ graph.Community(150); }, "");
EXPECT_THROW({ graph.Community(100); }, std::out_of_range);
EXPECT_THROW({ graph.Community(150); }, std::out_of_range);
}
TEST(Graph, CommunityNormalization) {
@ -108,15 +108,15 @@ TEST(Graph, AddEdge) {
comdata::Graph graph = GenRandomUnweightedGraph(5, 0);
// Node out of bounds.
ASSERT_DEATH({ graph.AddEdge(1, 5, 7); }, "");
EXPECT_THROW({ graph.AddEdge(1, 5, 7); }, std::out_of_range);
// Repeated edge
graph.AddEdge(1, 2, 1);
ASSERT_DEATH({ graph.AddEdge(1, 2, 7); }, "");
EXPECT_THROW({ graph.AddEdge(1, 2, 7); }, std::invalid_argument);
// Non-positive edge weight
ASSERT_DEATH({ graph.AddEdge(2, 3, -7); }, "");
ASSERT_DEATH({ graph.AddEdge(3, 4, 0); }, "");
EXPECT_THROW({ graph.AddEdge(2, 3, -7); }, std::out_of_range);
EXPECT_THROW({ graph.AddEdge(3, 4, 0); }, std::out_of_range);
}
TEST(Graph, Degrees) {
@ -183,8 +183,8 @@ TEST(Graph, Degrees) {
ASSERT_TRUE(DegreeCheck(graph, deg));
// Try to get degree of non-existing nodes
ASSERT_DEATH({ graph.Degree(5); }, "");
ASSERT_DEATH({ graph.Degree(100); }, "");
EXPECT_THROW({ graph.Degree(5); }, std::out_of_range);
EXPECT_THROW({ graph.Degree(100); }, std::out_of_range);
}
TEST(Graph, Weights) {
@ -256,8 +256,8 @@ TEST(Graph, Weights) {
EXPECT_NEAR(graph.TotalWeight(), 5.5, 1e-6);
// Try to get incident weight of non-existing node
ASSERT_DEATH({ graph.IncidentWeight(5); }, "");
ASSERT_DEATH({ graph.IncidentWeight(100); }, "");
EXPECT_THROW({ graph.IncidentWeight(5); }, std::out_of_range);
EXPECT_THROW({ graph.IncidentWeight(100); }, std::out_of_range);
}
TEST(Graph, Modularity) {