Remove reactors

Summary: kill reactors

Reviewers: mislav.bradac

Reviewed By: mislav.bradac

Differential Revision: https://phabricator.memgraph.io/D1075
This commit is contained in:
Marin Tomic 2017-12-20 16:56:13 +01:00
parent 6d4113d9db
commit e999207b2f
11 changed files with 0 additions and 1864 deletions

View File

@ -7,9 +7,6 @@ set(memgraph_src_files
communication/messaging/distributed.cpp
communication/messaging/local.cpp
communication/messaging/protocol.cpp
communication/reactor/protocol.cpp
communication/reactor/reactor_distributed.cpp
communication/reactor/reactor_local.cpp
communication/rpc/rpc.cpp
data_structures/concurrent/skiplist_gc.cpp
database/graph_db.cpp

View File

@ -251,13 +251,6 @@ class RaftMember final {
const RaftConfig &config);
~RaftMember();
/* Just to make the tests work for now until we clean up the reactor stuff. */
std::experimental::optional<MemberId> Leader() {
std::lock_guard<std::mutex> lock(impl_.mutex_);
return impl_.leader_;
}
MemberId Id() const { return impl_.id_; }
ClientResult AddCommand(const typename State::Change &command, bool blocking);
RequestVoteReply OnRequestVote(const RequestVoteRequest &request);

View File

@ -1,52 +0,0 @@
#pragma once
#include "communication/reactor/reactor_local.hpp"
// TODO: Which of these I need to include.
#include "cereal/archives/binary.hpp"
#include "cereal/types/base_class.hpp"
#include "cereal/types/memory.hpp"
#include "cereal/types/polymorphic.hpp"
#include "cereal/types/string.hpp"
#include "cereal/types/utility.hpp"
#include "cereal/types/vector.hpp"
DECLARE_string(reactor_address);
DECLARE_int32(reactor_port);
namespace communication::reactor {
/**
* Message that includes the channel on which response is expected;
*/
class ReturnAddressMessage : public Message {
public:
ReturnAddressMessage(std::string reactor, std::string channel)
: address_(FLAGS_reactor_address),
port_(FLAGS_reactor_port),
reactor_(reactor),
channel_(channel) {}
const std::string &address() const { return address_; }
uint16_t port() const { return port_; }
const std::string &reactor_name() const { return reactor_; }
const std::string &channel_name() const { return channel_; }
template <class Archive>
void serialize(Archive &ar) {
ar(cereal::virtual_base_class<Message>(this), address_, port_, reactor_,
channel_);
}
protected:
friend class cereal::access;
ReturnAddressMessage() {} // Cereal needs access to a default constructor.
// Good luck these being const using cereal...
std::string address_;
uint16_t port_;
std::string reactor_;
std::string channel_;
};
}
CEREAL_REGISTER_TYPE(communication::reactor::ReturnAddressMessage);

View File

@ -1,146 +0,0 @@
#include <sstream>
#include "communication/reactor/protocol.hpp"
#include "communication/reactor/reactor_distributed.hpp"
#include "communication/reactor/reactor_local.hpp"
#include "glog/logging.h"
namespace communication::reactor {
Session::Session(Socket &&socket, SessionData &data)
: socket_(std::move(socket)), system_(data.system) {
event_.data.ptr = this;
}
bool Session::Alive() const { return alive_; }
std::string Session::GetStringAndShift(SizeT len) {
std::string ret(reinterpret_cast<char *>(buffer_.data()), len);
buffer_.Shift(len);
return ret;
}
void Session::Execute() {
if (!handshake_done_) {
// Note: this function can be multiple times before the buffer has the full
// packet.
// We currently have to check for this case and return without shifting
// the buffer.
// In other words, only shift anything from the buffer if you can read the
// entire (sub)message.
if (buffer_.size() < 2 * sizeof(SizeT)) return;
SizeT len_reactor = GetLength();
SizeT len_channel = GetLength(sizeof(SizeT));
if (buffer_.size() < 2 * sizeof(SizeT) + len_reactor + len_channel) return;
// remove the length bytes from the buffer
buffer_.Shift(2 * sizeof(SizeT));
reactor_ = GetStringAndShift(len_reactor);
channel_ = GetStringAndShift(len_channel);
DLOG(INFO) << "Reactor: " << reactor_ << "; Channel: " << channel_
<< std::endl;
LocalChannelWriter channel(reactor_, channel_, system_);
SendSuccess(true);
handshake_done_ = true;
}
if (buffer_.size() < sizeof(SizeT)) return;
SizeT len_data = GetLength();
if (buffer_.size() < sizeof(SizeT) + len_data) return;
// remove the length bytes from the buffer
buffer_.Shift(sizeof(SizeT));
// TODO: check for exceptions
std::istringstream stream;
stream.str(std::string(reinterpret_cast<char *>(buffer_.data()), len_data));
::cereal::BinaryInputArchive iarchive{stream};
std::unique_ptr<Message> message{nullptr};
iarchive(message);
buffer_.Shift(len_data);
LocalChannelWriter channel(reactor_, channel_, system_);
channel.Send(std::move(message));
}
StreamBuffer Session::Allocate() { return buffer_.Allocate(); }
void Session::Written(size_t len) { buffer_.Written(len); }
void Session::Close() {
DLOG(INFO) << "Closing session";
this->socket_.Close();
}
SizeT Session::GetLength(int offset) {
SizeT ret = *reinterpret_cast<SizeT *>(buffer_.data() + offset);
return ret;
}
bool Session::SendSuccess(bool success) {
if (success) {
return socket_.Write("\x80");
}
return socket_.Write("\x40");
}
bool SendLength(Socket &socket, SizeT length) {
return socket.Write(reinterpret_cast<uint8_t *>(&length), sizeof(SizeT));
}
void SendMessage(std::string address, uint16_t port, std::string reactor,
std::string channel, std::unique_ptr<Message> message) {
// Initialize endpoint.
Endpoint endpoint(address.c_str(), port);
// Initialize socket.
Socket socket;
if (!socket.Connect(endpoint)) {
LOG(INFO) << "Couldn't connect to remote address: " << address << ":"
<< port;
return;
}
// Send data
if (!SendLength(socket, reactor.size())) {
LOG(INFO) << "Couldn't send reactor size!";
return;
}
if (!SendLength(socket, channel.size())) {
LOG(INFO) << "Couldn't send channel size!";
return;
}
if (!socket.Write(reactor)) {
LOG(INFO) << "Couldn't send reactor data!";
return;
}
if (!socket.Write(channel)) {
LOG(INFO) << "Couldn't send channel data!";
return;
}
if (message == nullptr) return;
// Serialize and send message
std::ostringstream stream;
::cereal::BinaryOutputArchive oarchive(stream);
oarchive(message);
const std::string &buffer = stream.str();
if (!SendLength(socket, buffer.size())) {
LOG(INFO) << "Couldn't send message size!";
return;
}
if (!socket.Write(buffer)) {
LOG(INFO) << "Couldn't send message data!";
return;
}
}
}

View File

@ -1,137 +0,0 @@
#pragma once
#include <chrono>
#include "communication/bolt/v1/decoder/buffer.hpp"
#include "communication/reactor/reactor_local.hpp"
#include "io/network/epoll.hpp"
#include "io/network/network_endpoint.hpp"
#include "io/network/socket.hpp"
#include "io/network/stream_buffer.hpp"
/**
* @brief Protocol
*
* Has classes and functions that implement server and client sides of our
* distributed protocol.
*
* The protocol consists of two stages.
* The first stage is a handshake stage when the client sends to the server
* reactor and channel names which it wants to communicate with.
* The second stage is sending messages.
*
* HANDSHAKE
*
* Client sends:
* len_reactor_name(SizeT) len_channel_name(SizeT) reactor_name channel_name
* Server responds:
* 0x80
*
* MESSAGES
*
* Client sends:
* len_message(SizeT) cereal_encoded_binary_message
*
* Currently the server is implemented to handle more than one message after
* the initial handshake, but the client can only send one message.
* TODO: no reason to do any sort of handshake at all.
*/
namespace communication::reactor {
class Message;
using Endpoint = io::network::NetworkEndpoint;
using Socket = io::network::Socket;
using StreamBuffer = io::network::StreamBuffer;
// this buffer should be larger than the largest serialized message
using Buffer = bolt::Buffer<262144>;
using SizeT = uint16_t;
/**
* Distributed Protocol Data
*/
struct SessionData {
System system;
};
/**
* Distributed Protocol Session
*
* This class is responsible for handling a single client connection.
*
* @tparam Socket type of socket (could be a network socket or test socket)
*/
class Session {
private:
public:
Session(Socket &&socket, SessionData &data);
int Id() const { return socket_.fd(); }
/**
* Returns the protocol alive state
*/
bool Alive() const;
/**
* Executes the protocol after data has been read into the buffer.
* Goes through the protocol states in order to execute commands from the
* client.
*/
void Execute();
/**
* Allocates data from the internal buffer.
* Used in the underlying network stack to asynchronously read data
* from the client.
* @returns a StreamBuffer to the allocated internal data buffer
*/
StreamBuffer Allocate();
/**
* Notifies the internal buffer of written data.
* Used in the underlying network stack to notify the internal buffer
* how many bytes of data have been written.
* @param len how many data was written to the buffer
*/
void Written(size_t len);
bool TimedOut() { return false; }
/**
* Closes the session (client socket).
*/
void Close();
io::network::Epoll::Event event_;
Socket socket_;
System &system_;
std::chrono::time_point<std::chrono::steady_clock> last_event_time_;
private:
SizeT GetLength(int offset = 0);
std::string GetStringAndShift(SizeT len);
// Should be renamed to SendHandshake.
bool SendSuccess(bool success);
bool alive_{true};
bool handshake_done_{false};
std::string reactor_{""};
std::string channel_{""};
Buffer buffer_;
};
/**
* Distributed Protocol Send Message
*
* This function sends a message to the specified server.
* If message is a nullptr then it only checks whether the remote reactor
* and channel exist, else it returns the complete message send success.
*/
void SendMessage(std::string address, uint16_t port, std::string reactor,
std::string channel, std::unique_ptr<Message> message);
}

View File

@ -1,19 +0,0 @@
#include "communication/reactor/reactor_distributed.hpp"
// reactor adress can't be 0.0.0.0.
DEFINE_string(reactor_address, "127.0.0.1", "Network server bind address");
DEFINE_int32(reactor_port, 10000, "Network server bind port");
namespace communication::reactor {
RemoteChannelWriter::RemoteChannelWriter(const std::string &address,
uint16_t port,
const std::string &reactor,
const std::string &channel,
DistributedSystem &system)
: network_(&system.network_),
address_(address),
port_(port),
reactor_(reactor),
channel_(channel) {}
}

View File

@ -1,225 +0,0 @@
#pragma once
#include <cassert>
#include <exception>
#include <functional>
#include <iostream>
#include <memory>
#include <mutex>
#include <queue>
#include <stdexcept>
#include <tuple>
#include <typeindex>
#include <utility>
#include <gflags/gflags.h>
#include "communication/reactor/reactor_local.hpp"
#include "data_structures/queue.hpp"
#include "protocol.hpp"
#include "cereal/archives/binary.hpp"
#include "cereal/types/base_class.hpp"
#include "cereal/types/memory.hpp"
#include "cereal/types/polymorphic.hpp"
#include "cereal/types/string.hpp"
#include "cereal/types/utility.hpp"
#include "cereal/types/vector.hpp"
#include "communication/server.hpp"
#include "threading/sync/spinlock.hpp"
DECLARE_string(reactor_address);
DECLARE_int32(reactor_port);
namespace communication::reactor {
class DistributedSystem;
/**
* Networking service.
*/
class Network {
private:
using Endpoint = io::network::NetworkEndpoint;
using Socket = Socket;
using ServerT = communication::Server<Session, SessionData>;
friend class DistributedSystem;
struct NetworkMessage {
NetworkMessage() {}
NetworkMessage(const std::string &address, uint16_t port,
const std::string &reactor, const std::string &channel,
std::unique_ptr<Message> &&message)
: address(address),
port(port),
reactor(reactor),
channel(channel),
message(std::move(message)) {}
NetworkMessage(NetworkMessage &&nm) = default;
NetworkMessage &operator=(NetworkMessage &&nm) = default;
std::string address;
uint16_t port = 0;
std::string reactor;
std::string channel;
std::unique_ptr<Message> message;
};
public:
Network() = default;
/** Start a threadpool that dispatches the messages from the (outgoing) queue
* to the sockets */
void StartClient(int worker_count) {
LOG(INFO) << "Starting " << worker_count << " client workers";
// condition variables here...
for (int i = 0; i < worker_count; ++i) {
pool_.push_back(std::thread([this]() {
while (true) {
auto message = queue_.AwaitPop();
if (message == std::experimental::nullopt) break;
SendMessage(message->address, message->port, message->reactor,
message->channel, std::move(message->message));
}
}));
}
}
void StopClient() {
while (true) {
std::lock_guard<SpinLock> lock(mutex_);
if (queue_.empty()) {
break;
}
}
queue_.Shutdown();
for (size_t i = 0; i < pool_.size(); ++i) {
pool_[i].join();
}
pool_.clear();
}
class RemoteChannelWriter : public ChannelWriter {
public:
RemoteChannelWriter(const std::string &address, uint16_t port,
const std::string &reactor, const std::string &channel,
DistributedSystem &system);
// TODO: This is wrong. We should probbly have base class Address that would
// contain everything needed to reference a channel. (address, port,
// reactor_name, channel_name) in remote reactors and (reactor_name,
// channel_name) in local reactors.
virtual std::string Address() { return address_; }
virtual uint16_t Port() { return port_; }
std::string ReactorName() const override { return reactor_; }
std::string Name() const override { return channel_; }
template <typename TMessage, typename... Args>
void Send(Args &&... args) {
Send(std::unique_ptr<Message>(
std::make_unique<TMessage>(std::forward<Args>(args)...)));
}
void Send(std::unique_ptr<Message> message) override {
std::lock_guard<SpinLock> lock(network_->mutex_);
network_->queue_.Emplace(address_, port_, reactor_, channel_,
std::move(message));
}
private:
Network *network_;
std::string address_;
uint16_t port_;
std::string reactor_;
std::string channel_;
};
// server functions
std::string address() const { return FLAGS_reactor_address; }
uint16_t port() const { return FLAGS_reactor_port; }
/** Start a threadpool that relays the messages from the sockets to the
* LocalEventStreams */
void StartServer(int workers_count) {
if (server_ != nullptr) {
LOG(FATAL) << "Tried to start a running server!";
}
// Initialize endpoint.
Endpoint endpoint(FLAGS_reactor_address.c_str(), FLAGS_reactor_port);
// Initialize server
server_ = std::make_unique<ServerT>(endpoint, protocol_data_);
// Start server
thread_ = std::thread(
[workers_count, this]() { this->server_->Start(workers_count); });
}
void StopServer() {
if (server_ != nullptr) {
server_->Shutdown();
thread_.join();
server_ = nullptr;
}
}
private:
// client variables
SpinLock mutex_;
std::vector<std::thread> pool_;
Queue<NetworkMessage> queue_;
// server variables
std::thread thread_;
SessionData protocol_data_;
std::unique_ptr<ServerT> server_{nullptr};
};
using RemoteChannelWriter = Network::RemoteChannelWriter;
/**
* Placeholder for all functionality related to non-local communication.
* E.g. resolve remote channels by memgraph node id, etc.
*/
class DistributedSystem {
public:
DistributedSystem() {
network_.StartClient(4);
network_.StartServer(4);
}
// Thread safe.
std::unique_ptr<Reactor> Spawn(const std::string &name,
std::function<void(Reactor &)> setup) {
return system_.Spawn(name, setup);
}
// Non-thread safe.
// TODO: figure out what should be interection of this function and
// destructor.
void StopServices() {
network_.StopClient();
network_.StopServer();
}
Network &network() { return network_; }
const Network &network() const { return network_; }
// Should be private
Network network_;
private:
System &system_ = network_.protocol_data_.system;
DistributedSystem(const DistributedSystem &) = delete;
DistributedSystem(DistributedSystem &&) = delete;
DistributedSystem &operator=(const DistributedSystem &) = delete;
DistributedSystem &operator=(DistributedSystem &&) = delete;
};
} // namespace communication::reactor

View File

@ -1,169 +0,0 @@
#include "communication/reactor/reactor_local.hpp"
#include <chrono>
#include "utils/exceptions.hpp"
namespace communication::reactor {
using namespace std::literals::chrono_literals;
void EventStream::Subscription::Unsubscribe() const {
event_queue_.RemoveCallback(*this);
}
void EventStream::Subscription::CloseChannel() const { event_queue_.Close(); }
const std::string &EventStream::Subscription::channel_name() const {
return event_queue_.channel_name_;
}
std::string Channel::LocalChannelWriter::ReactorName() const {
return reactor_name_;
}
void Channel::LocalChannelWriter::Send(std::unique_ptr<Message> m) {
// Atomic, per the standard. We guarantee here that if channel exists it
// will not be destroyed by the end of this function.
std::shared_ptr<Channel> queue = queue_.lock();
// Check if cached queue exists and send message.
if (queue) {
queue->Push(std::move(m));
return;
}
// If it doesn't exist. Check if there is a new channel with same name.
auto channel = system_.Resolve(reactor_name_, channel_name_);
if (channel) {
channel->Push(std::move(m));
queue_ = channel;
}
}
std::string Channel::LocalChannelWriter::Name() const { return channel_name_; }
std::shared_ptr<Channel::LocalChannelWriter> Channel::LockedOpenChannel() {
return std::make_shared<LocalChannelWriter>(reactor_name_, channel_name_,
reactor_.system_);
}
void Channel::Close() { reactor_.CloseChannel(channel_name_); }
Reactor::Reactor(System &system, const std::string &name,
const std::function<void(Reactor &)> &setup)
: system_(system),
name_(name),
setup_(setup),
main_(Open("main")),
thread_([this] {
setup_(*this);
RunEventLoop();
system_.RemoveReactor(name_);
}) {}
Reactor::~Reactor() {
{
std::unique_lock<std::mutex> guard(*mutex_);
channels_.clear();
}
cvar_->notify_all();
thread_.join();
}
std::pair<EventStream *, std::shared_ptr<ChannelWriter>> Reactor::Open(
const std::string &channel_name) {
std::unique_lock<std::mutex> lock(*mutex_);
if (channels_.count(channel_name) != 0) {
throw utils::BasicException("Channel with name " + channel_name +
"already exists");
}
auto it = channels_
.emplace(channel_name,
std::make_shared<Channel>(Channel::Params{
name_, channel_name, mutex_, cvar_, *this}))
.first;
it->second->self_ptr_ = it->second;
return make_pair(&it->second->stream_, it->second->LockedOpenChannel());
}
std::pair<EventStream *, std::shared_ptr<ChannelWriter>> Reactor::Open() {
std::unique_lock<std::mutex> lock(*mutex_);
do {
std::string channel_name =
"stream-" + std::to_string(channel_name_counter_++);
if (channels_.count(channel_name) == 0) {
auto it = channels_
.emplace(channel_name,
std::make_shared<Channel>(Channel::Params{
name_, channel_name, mutex_, cvar_, *this}))
.first;
it->second->self_ptr_ = it->second;
return make_pair(&it->second->stream_, it->second->LockedOpenChannel());
}
} while (true);
}
std::shared_ptr<Channel> Reactor::FindChannel(const std::string &channel_name) {
std::unique_lock<std::mutex> lock(*mutex_);
auto it_channel = channels_.find(channel_name);
if (it_channel == channels_.end()) return nullptr;
return it_channel->second;
}
void Reactor::CloseChannel(const std::string &s) {
std::unique_lock<std::mutex> lock(*mutex_);
auto it = channels_.find(s);
CHECK(it != channels_.end()) << "Trying to close nonexisting channel";
channels_.erase(it);
cvar_->notify_all();
}
void Reactor::RunEventLoop() {
while (true) {
// Find (or wait) for the next Message.
PendingMessageInfo info;
{
std::unique_lock<std::mutex> guard(*mutex_);
// Exit the loop if there are no more Channels.
cvar_->wait_for(guard, 200ms, [&] {
if (channels_.empty()) return true;
info = GetPendingMessages();
return static_cast<bool>(info.message);
});
if (channels_.empty()) break;
}
for (auto &callback_info : info.callbacks) {
callback_info.first(*info.message, callback_info.second);
}
}
}
/**
* Checks if there is any nonempty EventStream.
*/
Reactor::PendingMessageInfo Reactor::GetPendingMessages() {
for (auto &channels_key_value : channels_) {
Channel &event_queue = *channels_key_value.second;
auto message = event_queue.LockedPop();
if (message == nullptr) continue;
std::type_index type_index = message->GetTypeIndex();
using Subscription = EventStream::Subscription;
std::vector<std::pair<EventStream::Callback, Subscription>> callback_info;
auto msg_type_cb_iter = event_queue.callbacks_.find(type_index);
if (msg_type_cb_iter != event_queue.callbacks_.end()) {
// There is a callback for this type.
for (auto &type_index_cb_key_value : msg_type_cb_iter->second) {
auto uid = type_index_cb_key_value.first;
auto callback = type_index_cb_key_value.second;
callback_info.emplace_back(callback,
Subscription(event_queue, type_index, uid));
}
}
return PendingMessageInfo{std::move(message), std::move(callback_info)};
}
return PendingMessageInfo{};
}
}

View File

@ -1,538 +0,0 @@
#pragma once
#include <condition_variable>
#include <memory>
#include <mutex>
#include <queue>
#include <thread>
#include <unordered_map>
#include <utility>
#include "cereal/types/memory.hpp"
#include "glog/logging.h"
namespace communication::reactor {
class EventStream;
class Reactor;
class System;
class Channel;
/**
* Base class for messages.
*/
class Message {
public:
virtual ~Message() {}
template <class Archive>
void serialize(Archive &) {}
/**
* Run-time type identification that is used for callbacks.
*
* Warning: this works because of the virtual destructor, don't remove it from
* this class
*/
std::type_index GetTypeIndex() { return typeid(*this); }
};
/**
* Write-end of a Channel (between two reactors).
*/
class ChannelWriter {
public:
ChannelWriter() = default;
ChannelWriter(const ChannelWriter &) = delete;
void operator=(const ChannelWriter &) = delete;
ChannelWriter(ChannelWriter &&) = delete;
void operator=(ChannelWriter &&) = delete;
/**
* Construct and send the message to the channel.
*/
template <typename TMessage, typename... Args>
void Send(Args &&... args) {
Send(std::unique_ptr<Message>(
std::make_unique<TMessage>(std::forward<Args>(args)...)));
}
virtual void Send(std::unique_ptr<Message> message) = 0;
virtual std::string ReactorName() const = 0;
virtual std::string Name() const = 0;
};
/**
* Read-end of a Channel (between two reactors).
*/
class EventStream {
public:
class OnEventOnceChainer;
class Subscription;
/**
* Register a callback that will be called whenever an event arrives.
*/
template <typename TMessage>
void OnEvent(
std::function<void(const TMessage &, const Subscription &)> &&callback) {
OnEventHelper(typeid(TMessage), [callback = std::move(callback)](
const Message &base_message,
const Subscription &subscription) {
const auto &message = dynamic_cast<const TMessage &>(base_message);
callback(message, subscription);
});
}
/**
* Register a callback that will be called only once.
* Once event is received, channel of this EventStream is closed.
*/
template <typename TMessage>
void OnEventOnceThenClose(std::function<void(const TMessage &)> &&callback) {
OnEventHelper(typeid(TMessage), [callback = std::move(callback)](
const Message &base_message,
const Subscription &subscription) {
const TMessage &message = dynamic_cast<const TMessage &>(base_message);
subscription.CloseChannel();
callback(message);
});
}
/**
* Starts a chain to register a callback that fires off only once.
*
* This method supports chaining (see the the class OnEventOnceChainer or the
* tests for examples).
* Warning: when chaining callbacks, make sure that EventStream does not
* deallocate before the last
* chained callback fired.
*/
OnEventOnceChainer OnEventOnce() { return OnEventOnceChainer(*this); }
/**
* Get the name of the channel.
*/
virtual const std::string &ChannelName() = 0;
/**
* Subscription Service.
*
* Unsubscribe from a callback. Lightweight object (can copy by value).
*/
class Subscription {
public:
/**
* Unsubscribe. Call only once.
*/
void Unsubscribe() const;
/**
* Close the stream. Convenience method.
*/
void CloseChannel() const;
/**
* Get the name of the channel the message is delivered to.
*/
const std::string &channel_name() const;
private:
friend class Reactor;
friend class Channel;
Subscription(Channel &event_queue, std::type_index type_index,
uint64_t callback_id)
: event_queue_(event_queue),
type_index_(type_index),
callback_id_(callback_id) {}
Channel &event_queue_;
std::type_index type_index_;
uint64_t callback_id_;
};
/**
* Close this event stream, disallowing further events from getting received.
*
* Any subsequent call after Close() to any function will be result in
* undefined
* behavior (invalid pointer dereference). Can only be called from the thread
* associated with the Reactor.
*/
virtual void Close() = 0;
/**
* Convenience class to chain one-off callbacks.
*
* Usage: Create this class with OnEventOnce() and then chain callbacks using
* ChainOnce.
* A callback will fire only once, unsubscribe and immediately subscribe the
* next callback to the stream.
*
* Example: stream->OnEventOnce().ChainOnce(firstCb).ChainOnce(secondCb);
*
* Implementation: This class is a temporary object that remembers the
* callbacks that are to be installed
* and finally installs them in the destructor. Not sure is this kosher, is
* there another way?
*/
class OnEventOnceChainer {
public:
explicit OnEventOnceChainer(EventStream &event_stream)
: event_stream_(event_stream) {}
~OnEventOnceChainer() { InstallCallbacks(); }
template <typename TMessage>
OnEventOnceChainer &ChainOnce(
std::function<void(const TMessage &, const Subscription &)>
&&callback) {
std::function<void(const Message &, const Subscription &)>
wrap = [callback = std::move(callback)](
const Message &base_message, const Subscription &subscription) {
const TMessage &message = dynamic_cast<const TMessage &>(base_message);
subscription.Unsubscribe();
// Warning: this can close the Channel, be careful what you put after
// it!
callback(message, subscription);
};
callbacks_.emplace_back(typeid(TMessage), std::move(wrap));
return *this;
}
private:
void InstallCallbacks() {
int num_callbacks = callbacks_.size();
CHECK(num_callbacks > 0) << "No callback will be installed";
std::function<void(const Message &, const Subscription &)> next_callback;
std::type_index next_type = typeid(nullptr);
for (int i = num_callbacks - 1; i >= 0; --i) {
std::function<void(const Message &, const Subscription &)>
tmp_callback = [
callback = std::move(callbacks_[i].second), next_type,
next_callback = std::move(next_callback),
event_stream = &this->event_stream_
](const Message &message, const Subscription &subscription) {
callback(message, subscription);
if (next_callback) {
event_stream->OnEventHelper(next_type, std::move(next_callback));
}
};
next_callback = std::move(tmp_callback);
next_type = callbacks_[i].first;
}
event_stream_.OnEventHelper(next_type, std::move(next_callback));
}
EventStream &event_stream_;
std::vector<
std::pair<std::type_index,
std::function<void(const Message &, const Subscription &)>>>
callbacks_;
};
typedef std::function<void(const Message &, const Subscription &)> Callback;
private:
virtual void OnEventHelper(std::type_index type_index, Callback callback) = 0;
};
/**
* Implementation of a channel.
*
* This class is an internal data structure that represents the state of the
* channel. This class is not meant to be used by the clients of the messaging
* framework. The Channel class wraps the event queue data structure, the mutex
* that protects concurrent access to the event queue, the local channel and the
* event stream. The class is owned by the Reactor. It gets closed when the
* owner reactor (the one that owns the read-end of a channel) removes/closes
* it.
*/
class Channel {
struct Params;
public:
friend class Reactor; // to create a Params initialization object
friend class EventStream::Subscription;
/**
* LocalChannelWriter represents the channels to reactors living in the same
* reactor system (write-end of the channels).
*
* Sending messages to the local channel requires acquiring the mutex.
* LocalChannelWriter holds a (weak) pointer to the enclosing Channel object.
* Messages sent to a closed channel are ignored.
* There can be multiple LocalChannelWriters refering to the same stream if
* needed.
*
* It must be outlived by System.
*/
class LocalChannelWriter : public ChannelWriter {
public:
friend class Channel;
LocalChannelWriter(const std::string &reactor_name,
const std::string &channel_name, System &system)
: reactor_name_(reactor_name),
channel_name_(channel_name),
system_(system) {}
template <typename TMessage, typename... Args>
void Send(Args &&... args) {
Send(std::unique_ptr<Message>(
std::make_unique<TMessage>(std::forward<Args>(args)...)));
}
void Send(std::unique_ptr<Message> m) override;
std::string ReactorName() const override;
std::string Name() const override;
private:
std::string reactor_name_;
std::string channel_name_;
// TODO: we shouldn't do this kind of caching inside of LocalChannelWriter.
std::weak_ptr<Channel> queue_;
System &system_;
};
explicit Channel(const Params &params)
: channel_name_(params.channel_name),
reactor_name_(params.reactor_name),
mutex_(params.mutex),
cvar_(params.cvar),
stream_(mutex_, this),
reactor_(params.reactor) {}
/**
* Implementation of the event stream.
*
* After the enclosing Channel object is destroyed (by a call to CloseChannel
* or Close).
*/
class LocalEventStream : public EventStream {
public:
friend class Channel;
LocalEventStream(const std::shared_ptr<std::mutex> &mutex, Channel *queue)
: mutex_(mutex), queue_(queue) {}
void OnEventHelper(std::type_index type_index, Callback callback) {
std::unique_lock<std::mutex> lock(*mutex_);
queue_->LockedOnEventHelper(type_index, callback);
}
const std::string &ChannelName() { return queue_->channel_name_; }
void Close() { queue_->Close(); }
private:
std::shared_ptr<std::mutex> mutex_;
std::string channel_name_;
Channel *queue_;
};
/**
* Close the channel. Must be called from the reactor that owns the channel.
*/
void Close();
Channel(const Channel &other) = delete;
Channel(Channel &&other) = default;
Channel &operator=(const Channel &other) = delete;
Channel &operator=(Channel &&other) = default;
private:
/**
* Initialization parameters to Channel.
* Warning: do not forget to initialize self_ptr_ individually. Private
* because it shouldn't be created outside of a Reactor.
*/
struct Params {
std::string reactor_name;
std::string channel_name;
std::shared_ptr<std::mutex> mutex;
std::shared_ptr<std::condition_variable> cvar;
Reactor &reactor;
};
void Push(std::unique_ptr<Message> m) {
std::unique_lock<std::mutex> guard(*mutex_);
queue_.emplace(std::move(m));
// This is OK because there is only one Reactor (thread) that can wait on
// this Channel.
cvar_->notify_one();
}
std::shared_ptr<LocalChannelWriter> LockedOpenChannel();
std::unique_ptr<Message> LockedPop() { return LockedRawPop(); }
void LockedOnEventHelper(std::type_index type_index,
EventStream::Callback callback) {
uint64_t callback_id = next_callback_id++;
callbacks_[type_index][callback_id] = callback;
}
std::unique_ptr<Message> LockedRawPop() {
if (queue_.empty()) return nullptr;
std::unique_ptr<Message> t = std::move(queue_.front());
queue_.pop();
return t;
}
void RemoveCallback(const EventStream::Subscription &subscription) {
std::unique_lock<std::mutex> lock(*mutex_);
auto num_erased =
callbacks_[subscription.type_index_].erase(subscription.callback_id_);
CHECK(num_erased == 1) << "Expected to remove 1 element";
}
std::string channel_name_;
std::string reactor_name_;
std::queue<std::unique_ptr<Message>> queue_;
// Should only be locked once since it's used by a cond. var. Also caught in
// dctor, so must be recursive.
std::shared_ptr<std::mutex> mutex_;
std::shared_ptr<std::condition_variable> cvar_;
/**
* A weak_ptr to itself.
*
* There are initialization problems with this, check Params.
*/
std::weak_ptr<Channel> self_ptr_;
LocalEventStream stream_;
Reactor &reactor_;
std::unordered_map<std::type_index,
std::unordered_map<uint64_t, EventStream::Callback>>
callbacks_;
uint64_t next_callback_id = 0;
};
/**
* A single unit of concurrent execution in the system.
*
* E.g. one worker, one client. Owned by System. Has a thread associated with
* it.
*/
class Reactor {
friend class System;
public:
Reactor(System &system, const std::string &name,
const std::function<void(Reactor &)> &setup);
~Reactor();
std::pair<EventStream *, std::shared_ptr<ChannelWriter>> Open(
const std::string &s);
std::pair<EventStream *, std::shared_ptr<ChannelWriter>> Open();
std::shared_ptr<Channel> FindChannel(const std::string &channel_name);
/**
* Close a channel by name.
*
* Should only be called from the Reactor thread.
*/
void CloseChannel(const std::string &s);
/**
* Get Reactor name
*/
const std::string &name() const { return name_; }
Reactor(const Reactor &other) = delete;
Reactor(Reactor &&other) = default;
Reactor &operator=(const Reactor &other) = delete;
Reactor &operator=(Reactor &&other) = default;
System &system_;
std::string name_;
std::function<void(Reactor &)> setup_;
/*
* Locks all Reactor data, including all Channel's in channels_.
*
* This should be a shared_ptr because LocalChannelWriter can outlive Reactor.
*/
std::shared_ptr<std::mutex> mutex_ = std::make_shared<std::mutex>();
std::shared_ptr<std::condition_variable> cvar_ =
std::make_shared<std::condition_variable>();
/**
* List of channels of a reactor indexed by name.
*/
std::unordered_map<std::string, std::shared_ptr<Channel>> channels_;
int64_t channel_name_counter_ = 0;
// I don't understand why ChannelWriter is shared. ChannelWriter is just
// endpoint that could be copied to every user.
std::pair<EventStream *, std::shared_ptr<ChannelWriter>> main_;
private:
struct PendingMessageInfo {
std::unique_ptr<Message> message;
std::vector<std::pair<EventStream::Callback, EventStream::Subscription>>
callbacks;
};
std::thread thread_;
/**
* Dispatches all waiting messages to callbacks. Shuts down when there are no
* callbacks left.
*/
void RunEventLoop();
PendingMessageInfo GetPendingMessages();
};
using LocalChannelWriter = Channel::LocalChannelWriter;
/**
* Placeholder for all reactors.
* Make sure object of this class outlives all Reactors created by it.
*/
class System {
public:
friend class Reactor;
System() = default;
std::unique_ptr<Reactor> Spawn(const std::string &name,
std::function<void(Reactor &)> setup) {
std::unique_lock<std::mutex> lock(mutex_);
CHECK(reactors_.find(name) == reactors_.end())
<< "Reactor with name: '" << name << "' already exists.";
auto reactor = std::make_unique<Reactor>(*this, name, setup);
reactors_.emplace(name, reactor.get());
return reactor;
}
// Next two functions shouldn't be exposed.
std::shared_ptr<Channel> Resolve(const std::string &reactor_name,
const std::string &channel_name) {
std::unique_lock<std::mutex> lock(mutex_);
auto it_reactor = reactors_.find(reactor_name);
if (it_reactor == reactors_.end()) return nullptr;
return it_reactor->second->FindChannel(channel_name);
}
void RemoveReactor(const std::string &name_) {
std::unique_lock<std::mutex> guard(mutex_);
auto it = reactors_.find(name_);
CHECK(it != reactors_.end()) << "Trying to delete notexisting reactor";
reactors_.erase(it);
}
private:
System(const System &) = delete;
System(System &&) = delete;
System &operator=(const System &) = delete;
System &operator=(System &&) = delete;
std::mutex mutex_;
std::unordered_map<std::string, Reactor *> reactors_;
};
using Subscription = Channel::LocalEventStream::Subscription;
} // namespace communication::reactor

View File

@ -1,164 +0,0 @@
/**
* This test file test the Distributed Reactors API on ONLY one process (no real
* networking).
* In other words, we send a message from one process to itself.
*/
#include <atomic>
#include <chrono>
#include <cstdlib>
#include <future>
#include <iostream>
#include <string>
#include <thread>
#include <vector>
#include "communication/reactor/common_messages.hpp"
#include "communication/reactor/reactor_distributed.hpp"
#include "gtest/gtest.h"
using namespace communication::reactor;
using namespace std::literals::chrono_literals;
struct MessageInt : public Message {
MessageInt() {} // cereal needs this
MessageInt(int x) : x(x) {}
int x;
template <class Archive>
void serialize(Archive &ar) {
ar(cereal::virtual_base_class<Message>(this), x);
}
};
CEREAL_REGISTER_TYPE(MessageInt);
struct RequestMessage : public ReturnAddressMessage {
RequestMessage() {}
RequestMessage(std::string reactor, std::string channel, int x)
: ReturnAddressMessage(reactor, channel), x(x){};
template <class Archive>
void serialize(Archive &ar) {
ar(cereal::virtual_base_class<ReturnAddressMessage>(this), x);
}
friend class cereal::access;
int x;
};
CEREAL_REGISTER_TYPE(RequestMessage);
/**
* Test do the services start up without crashes.
*/
TEST(SimpleTests, StartAndStopServices) {
DistributedSystem system;
// do nothing
std::this_thread::sleep_for(500ms);
system.StopServices();
}
/**
* Test simple message reception.
*
* Data flow:
* (1) Send an empty message from Master to Worker/main
*/
TEST(SimpleTests, SendEmptyMessage) {
DistributedSystem system;
auto master = system.Spawn("master", [&](Reactor &r) {
std::this_thread::sleep_for(100ms);
RemoteChannelWriter writer("127.0.0.1", 10000, "worker", "main", system);
writer.Send<Message>();
r.CloseChannel("main");
});
auto worker = system.Spawn("worker", [](Reactor &r) {
r.main_.first->OnEventOnce().ChainOnce<Message>(
[&](const Message &, const Subscription &subscription) {
// if this message isn't delivered, the main channel will never be
// closed and we infinite loop
subscription.CloseChannel(); // close "main"
});
});
std::this_thread::sleep_for(400ms);
system.StopServices();
}
/**
* Test ReturnAddressMsg functionality.
*
* Data flow:
* (1) Send an empty message from Master to Worker/main
* (2) Send an empty message from Worker to Master/main
*/
TEST(SimpleTests, SendReturnAddressMessage) {
DistributedSystem system;
auto master = system.Spawn("master", [&](Reactor &r) {
std::this_thread::sleep_for(100ms);
RemoteChannelWriter writer("127.0.0.1", 10000, "worker", "main", system);
writer.Send<ReturnAddressMessage>(r.name(), "main");
r.main_.first->OnEvent<MessageInt>(
[&](const MessageInt &message, const Subscription &) {
EXPECT_EQ(message.x, 5);
r.CloseChannel("main");
});
});
auto worker = system.Spawn("worker", [&](Reactor &r) {
r.main_.first->OnEvent<ReturnAddressMessage>(
[&](const ReturnAddressMessage &message, const Subscription &) {
RemoteChannelWriter writer(message.address(), message.port(),
message.reactor_name(),
message.channel_name(), system);
writer.Send<MessageInt>(5);
r.CloseChannel("main");
});
});
std::this_thread::sleep_for(400ms);
system.StopServices();
}
/**
* Test serializability of a complex message over the network layer.
*
* Data flow:
* (1) Send ("hi", 123) from Master to Worker/main
* (2) Send ("hi back", 779) from Worker to Master/main
*/
TEST(SimpleTests, SendSerializableMessage) {
DistributedSystem system;
auto master = system.Spawn("master", [&](Reactor &r) {
std::this_thread::sleep_for(100ms);
RemoteChannelWriter writer("127.0.0.1", 10000, "worker", "main", system);
writer.Send<RequestMessage>(r.name(), "main", 123);
r.main_.first->OnEvent<MessageInt>(
[&](const MessageInt &message, const Subscription &) {
ASSERT_EQ(message.x, 779);
r.CloseChannel("main");
});
});
auto worker = system.Spawn("worker", [&](Reactor &r) {
r.main_.first->OnEvent<RequestMessage>(
[&](const RequestMessage &message, const Subscription &) {
ASSERT_EQ(message.x, 123);
RemoteChannelWriter writer(message.address(), message.port(),
message.reactor_name(),
message.channel_name(), system);
writer.Send<MessageInt>(779);
r.CloseChannel("main");
});
});
std::this_thread::sleep_for(400ms);
system.StopServices();
}
int main(int argc, char **argv) {
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}

View File

@ -1,404 +0,0 @@
#include <atomic>
#include <chrono>
#include <cstdlib>
#include <future>
#include <iostream>
#include <string>
#include <thread>
#include <vector>
#include "communication/reactor/reactor_local.hpp"
#include "gtest/gtest.h"
#include "utils/exceptions.hpp"
using namespace std::literals::chrono_literals;
using namespace communication::reactor;
using Subscription = EventStream::Subscription;
TEST(SystemTest, ReturnWithoutThrowing) {
System system;
auto master =
system.Spawn("master", [](Reactor &r) { r.CloseChannel("main"); });
std::this_thread::sleep_for(100ms);
}
TEST(ChannelCreationTest, ThrowOnReusingChannelName) {
System system;
auto master = system.Spawn("master", [](Reactor &r) {
r.Open("channel");
ASSERT_THROW(r.Open("channel"), utils::BasicException);
r.CloseChannel("main");
r.CloseChannel("channel");
});
std::this_thread::sleep_for(100ms);
}
TEST(SimpleSendTest, OneCallback) {
struct MessageInt : public Message {
MessageInt(int xx) : x(xx) {}
int x;
};
System system;
auto master = system.Spawn("master", [](Reactor &r) {
std::this_thread::sleep_for(100ms);
LocalChannelWriter channel_writer("worker", "main", r.system_);
channel_writer.Send<MessageInt>(888);
r.CloseChannel("main");
});
auto worker = system.Spawn("worker", [](Reactor &r) {
EventStream *stream = r.main_.first;
stream->OnEvent<MessageInt>(
[&r](const MessageInt &msg, const Subscription &) {
ASSERT_EQ(msg.x, 888);
r.CloseChannel("main");
});
});
std::this_thread::sleep_for(200ms);
}
TEST(SimpleSendTest, IgnoreAfterClose) {
struct MessageInt : public Message {
MessageInt(int xx) : x(xx) {}
int x;
};
System system;
auto master = system.Spawn("master", [](Reactor &r) {
std::this_thread::sleep_for(100ms);
LocalChannelWriter channel_writer("worker", "main", r.system_);
channel_writer.Send<MessageInt>(101);
channel_writer.Send<MessageInt>(102); // should be ignored
std::this_thread::sleep_for(std::chrono::milliseconds(300));
channel_writer.Send<MessageInt>(103); // should be ignored
channel_writer.Send<MessageInt>(104); // should be ignored
// Write-end doesn't need to be closed because it's in RAII.
r.CloseChannel("main");
});
auto worker = system.Spawn("worker", [](Reactor &r) {
EventStream *stream = r.main_.first;
stream->OnEvent<MessageInt>(
[&r](const MessageInt &msg, const Subscription &) {
r.CloseChannel("main");
ASSERT_EQ(msg.x, 101);
});
});
std::this_thread::sleep_for(std::chrono::milliseconds(500));
}
TEST(SimpleSendTest, RecreateChannelAfterClosing) {
struct MessageInt : public Message {
MessageInt(int xx) : x(xx) {}
int x;
};
System system;
auto master = system.Spawn("master", [](Reactor &r) {
std::this_thread::sleep_for(100ms);
LocalChannelWriter channel_writer("worker", "main", r.system_);
// Original "worker" reactor will die after it process this message.
channel_writer.Send<MessageInt>(101);
std::this_thread::sleep_for(std::chrono::milliseconds(100));
// This message will be dropped since there is no reactor with name
// "worker".
channel_writer.Send<MessageInt>(102);
std::this_thread::sleep_for(std::chrono::milliseconds(200));
// This message should recieved by new "worker" reactor.
channel_writer.Send<MessageInt>(103);
r.CloseChannel("main");
});
auto worker = system.Spawn("worker", [](Reactor &r) {
EventStream *stream = r.main_.first;
stream->OnEvent<MessageInt>(
[&r](const MessageInt &msg, const Subscription &) {
r.CloseChannel("main");
ASSERT_EQ(msg.x, 101);
});
});
std::this_thread::sleep_for(std::chrono::milliseconds(300));
auto worker2 = system.Spawn("worker", [](Reactor &r) {
EventStream *stream = r.main_.first;
stream->OnEvent<MessageInt>(
[&r](const MessageInt &msg, const Subscription &) {
r.CloseChannel("main");
ASSERT_EQ(msg.x, 103);
});
});
std::this_thread::sleep_for(std::chrono::milliseconds(300));
}
TEST(SimpleSendTest, DuringFirstEvent) {
struct MessageInt : public Message {
MessageInt(int xx) : x(xx) {}
int x;
};
System system;
std::promise<int> p;
auto f = p.get_future();
auto master = system.Spawn("master", [&p](Reactor &r) mutable {
EventStream *stream = r.main_.first;
stream->OnEvent<MessageInt>(
[&](const Message &msg, const Subscription &subscription) {
const MessageInt &msgint = dynamic_cast<const MessageInt &>(msg);
if (msgint.x == 101) {
LocalChannelWriter channel_writer("master", "main", r.system_);
channel_writer.Send<MessageInt>(102);
}
if (msgint.x == 102) {
subscription.Unsubscribe();
r.CloseChannel("main");
p.set_value(777);
}
});
LocalChannelWriter channel_writer("master", "main", r.system_);
channel_writer.Send<MessageInt>(101);
});
f.wait();
ASSERT_EQ(f.get(), 777);
}
TEST(MultipleSendTest, UnsubscribeService) {
struct MessageInt : public Message {
MessageInt(int xx) : x(xx) {}
int x;
};
struct MessageChar : public Message {
MessageChar(char xx) : x(xx) {}
char x;
};
System system;
auto master = system.Spawn("master", [](Reactor &r) {
std::this_thread::sleep_for(100ms);
LocalChannelWriter channel_writer("worker", "main", r.system_);
channel_writer.Send<MessageInt>(55);
channel_writer.Send<MessageInt>(66);
channel_writer.Send<MessageInt>(77);
channel_writer.Send<MessageInt>(88);
std::this_thread::sleep_for(std::chrono::milliseconds(300));
channel_writer.Send<MessageChar>('a');
channel_writer.Send<MessageChar>('b');
channel_writer.Send<MessageChar>('c');
channel_writer.Send<MessageChar>('d');
r.CloseChannel("main");
});
auto worker =
system.Spawn("worker", [num_received_messages = 0](Reactor & r) mutable {
EventStream *stream = r.main_.first;
stream->OnEvent<MessageInt>(
[&](const MessageInt &msgint, const Subscription &subscription) {
ASSERT_TRUE(msgint.x == 55 || msgint.x == 66);
++num_received_messages;
if (msgint.x == 66) {
subscription.Unsubscribe(); // receive only two of them
}
});
stream->OnEvent<MessageChar>(
[&](const MessageChar &msgchar, const Subscription &subscription) {
char c = msgchar.x;
++num_received_messages;
ASSERT_TRUE(c == 'a' || c == 'b' || c == 'c');
if (num_received_messages == 5) {
subscription.Unsubscribe();
r.CloseChannel("main");
}
});
});
std::this_thread::sleep_for(std::chrono::milliseconds(500));
}
TEST(MultipleSendTest, OnEvent) {
struct MessageInt : public Message {
MessageInt(int xx) : x(xx) {}
int x;
};
struct MessageChar : public Message {
MessageChar(char xx) : x(xx) {}
char x;
};
System system;
auto master = system.Spawn("master", [](Reactor &r) {
std::this_thread::sleep_for(100ms);
LocalChannelWriter channel_writer("worker", "main", r.system_);
channel_writer.Send<MessageInt>(101);
channel_writer.Send<MessageChar>('a');
channel_writer.Send<MessageInt>(103);
channel_writer.Send<MessageChar>('b');
r.CloseChannel("main");
});
auto worker = system.Spawn("worker", [correct_vals = 0](Reactor & r) mutable {
struct EndMessage : Message {};
EventStream *stream = r.main_.first;
stream->OnEvent<MessageInt>(
[&](const MessageInt &msgint, const Subscription &) {
ASSERT_TRUE(msgint.x == 101 || msgint.x == 103);
++correct_vals;
r.main_.second->Send<EndMessage>();
});
stream->OnEvent<MessageChar>(
[&](const MessageChar &msgchar, const Subscription &) {
ASSERT_TRUE(msgchar.x == 'a' || msgchar.x == 'b');
++correct_vals;
r.main_.second->Send<EndMessage>();
});
stream->OnEvent<EndMessage>([&](const EndMessage &, const Subscription &) {
ASSERT_LE(correct_vals, 4);
if (correct_vals == 4) {
r.CloseChannel("main");
}
});
});
std::this_thread::sleep_for(std::chrono::milliseconds(300));
}
TEST(MultipleSendTest, Chaining) {
struct MessageInt : public Message {
MessageInt(int xx) : x(xx) {}
int x;
};
System system;
auto master = system.Spawn("master", [](Reactor &r) {
std::this_thread::sleep_for(100ms);
LocalChannelWriter channel_writer("worker", "main", r.system_);
channel_writer.Send<MessageInt>(55);
channel_writer.Send<MessageInt>(66);
channel_writer.Send<MessageInt>(77);
r.CloseChannel("main");
});
auto worker = system.Spawn("worker", [](Reactor &r) {
EventStream *stream = r.main_.first;
stream->OnEventOnce()
.ChainOnce<MessageInt>([](const MessageInt &msg, const Subscription &) {
ASSERT_EQ(msg.x, 55);
})
.ChainOnce<MessageInt>([](const MessageInt &msg, const Subscription &) {
ASSERT_EQ(msg.x, 66);
})
.ChainOnce<MessageInt>(
[&](const MessageInt &msg, const Subscription &) {
ASSERT_EQ(msg.x, 77);
r.CloseChannel("main");
});
});
std::this_thread::sleep_for(std::chrono::milliseconds(300));
}
TEST(MultipleSendTest, ChainingInRightOrder) {
struct MessageInt : public Message {
MessageInt(int xx) : x(xx) {}
int x;
};
struct MessageChar : public Message {
MessageChar(char xx) : x(xx) {}
char x;
};
System system;
auto master = system.Spawn("master", [](Reactor &r) {
std::this_thread::sleep_for(100ms);
LocalChannelWriter channel_writer("worker", "main", r.system_);
channel_writer.Send<MessageChar>('a');
channel_writer.Send<MessageInt>(55);
channel_writer.Send<MessageChar>('b');
channel_writer.Send<MessageInt>(77);
r.CloseChannel("main");
});
auto worker = system.Spawn("worker", [](Reactor &r) {
std::this_thread::sleep_for(100ms);
EventStream *stream = r.main_.first;
stream->OnEventOnce()
.ChainOnce<MessageInt>([](const MessageInt &msg, const Subscription &) {
ASSERT_EQ(msg.x, 55);
})
.ChainOnce<MessageChar>(
[](const MessageChar &msg, const Subscription &) {
ASSERT_EQ(msg.x, 'b');
})
.ChainOnce<MessageInt>(
[&](const MessageInt &msg, const Subscription &) {
ASSERT_EQ(msg.x, 77);
r.CloseChannel("main");
});
});
std::this_thread::sleep_for(300ms);
}
TEST(MultipleSendTest, ProcessManyMessages) {
const static int kNumTests = 100;
struct MessageInt : public Message {
MessageInt(int xx) : x(xx) {}
int x;
};
System system;
auto master = system.Spawn("master", [](Reactor &r) {
std::this_thread::sleep_for(100ms);
LocalChannelWriter channel_writer("worker", "main", r.system_);
for (int i = 0; i < kNumTests; ++i) {
channel_writer.Send<MessageInt>(rand());
std::this_thread::sleep_for(std::chrono::milliseconds(rand() % 5));
}
r.CloseChannel("main");
});
auto worker = system.Spawn("worker", [vals = 0](Reactor & r) mutable {
struct EndMessage : Message {};
EventStream *stream = r.main_.first;
vals = 0;
stream->OnEvent<MessageInt>([&](const Message &, const Subscription &) {
++vals;
r.main_.second->Send<EndMessage>();
});
stream->OnEvent<EndMessage>([&](const Message &, const Subscription &) {
ASSERT_LE(vals, kNumTests);
if (vals == kNumTests) {
r.CloseChannel("main");
}
});
});
std::this_thread::sleep_for(1000ms);
}
int main(int argc, char **argv) {
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}