Merge branch 'project-pineapples' into T1083-MG-limit-and-order-expand-one_v3

This commit is contained in:
jeremy 2022-11-08 15:02:56 +01:00
commit d7ce7cea13
75 changed files with 1812 additions and 16604 deletions

View File

@ -219,3 +219,12 @@ jobs:
# Run simulation tests.
cd build
ctest -R memgraph__simulation --output-on-failure -j$THREADS
- name: Run e2e tests
run: |
# TODO(gitbuda): Setup mgclient and pymgclient properly.
cd tests
./setup.sh
source ve3/bin/activate
cd e2e
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:../../libs/mgclient/lib python runner.py --workloads-root-directory ./distributed_queries

View File

@ -116,7 +116,7 @@ declare -A primary_urls=(
["pymgclient"]="http://$local_cache_host/git/pymgclient.git"
["mgconsole"]="http://$local_cache_host/git/mgconsole.git"
["spdlog"]="http://$local_cache_host/git/spdlog"
["nlohmann"]="http://$local_cache_host/file/nlohmann/json/4f8fba14066156b73f1189a2b8bd568bde5284c5/single_include/nlohmann/json.hpp"
["nlohmann"]="http://$local_cache_host/file/nlohmann/json/9d69186291aca4f0137b69c1dee313b391ff564c/single_include/nlohmann/json.hpp"
["neo4j"]="http://$local_cache_host/file/neo4j-community-3.2.3-unix.tar.gz"
["librdkafka"]="http://$local_cache_host/git/librdkafka.git"
["protobuf"]="http://$local_cache_host/git/protobuf.git"
@ -141,7 +141,7 @@ declare -A secondary_urls=(
["pymgclient"]="https://github.com/memgraph/pymgclient.git"
["mgconsole"]="http://github.com/memgraph/mgconsole.git"
["spdlog"]="https://github.com/gabime/spdlog"
["nlohmann"]="https://raw.githubusercontent.com/nlohmann/json/4f8fba14066156b73f1189a2b8bd568bde5284c5/single_include/nlohmann/json.hpp"
["nlohmann"]="https://raw.githubusercontent.com/nlohmann/json/9d69186291aca4f0137b69c1dee313b391ff564c/single_include/nlohmann/json.hpp"
["neo4j"]="https://s3-eu-west-1.amazonaws.com/deps.memgraph.io/neo4j-community-3.2.3-unix.tar.gz"
["librdkafka"]="https://github.com/edenhill/librdkafka.git"
["protobuf"]="https://github.com/protocolbuffers/protobuf.git"

View File

@ -0,0 +1,156 @@
// Copyright 2022 Memgraph Ltd.
//
// Use of this software is governed by the Business Source License
// included in the file licenses/BSL.txt; by using this file, you agree to be bound by the terms of the Business Source
// License, and you may not use this file except in compliance with the Business Source License.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0, included in the file
// licenses/APL.txt.
#pragma once
#include <chrono>
#include <deque>
#include <memory>
#include <queue>
#include <variant>
#include "coordinator/coordinator.hpp"
#include "coordinator/coordinator_rsm.hpp"
#include "coordinator/shard_map.hpp"
#include "io/address.hpp"
#include "io/future.hpp"
#include "io/messages.hpp"
#include "io/rsm/raft.hpp"
#include "io/time.hpp"
#include "io/transport.hpp"
#include "query/v2/requests.hpp"
namespace memgraph::coordinator::coordinator_worker {
/// Obligations:
/// * ShutDown
/// * Cron
/// * RouteMessage
using coordinator::Coordinator;
using coordinator::CoordinatorRsm;
using io::Address;
using io::RequestId;
using io::Time;
using io::messages::CoordinatorMessages;
using msgs::ReadRequests;
using msgs::ReadResponses;
using msgs::WriteRequests;
using msgs::WriteResponses;
struct ShutDown {};
struct Cron {};
struct RouteMessage {
CoordinatorMessages message;
RequestId request_id;
Address to;
Address from;
};
using Message = std::variant<RouteMessage, Cron, ShutDown>;
struct QueueInner {
std::mutex mu{};
std::condition_variable cv;
// TODO(tyler) handle simulator communication std::shared_ptr<std::atomic<int>> blocked;
// TODO(tyler) investigate using a priority queue that prioritizes messages in a way that
// improves overall QoS. For example, maybe we want to schedule raft Append messages
// ahead of Read messages or generally writes before reads for lowering the load on the
// overall system faster etc... When we do this, we need to make sure to avoid
// starvation by sometimes randomizing priorities, rather than following a strict
// prioritization.
std::deque<Message> queue;
};
/// There are two reasons to implement our own Queue instead of using
/// one off-the-shelf:
/// 1. we will need to know in the simulator when all threads are waiting
/// 2. we will want to implement our own priority queue within this for QoS
class Queue {
std::shared_ptr<QueueInner> inner_ = std::make_shared<QueueInner>();
public:
void Push(Message &&message) {
{
MG_ASSERT(inner_.use_count() > 0);
std::unique_lock<std::mutex> lock(inner_->mu);
inner_->queue.emplace_back(std::move(message));
} // lock dropped before notifying condition variable
inner_->cv.notify_all();
}
Message Pop() {
MG_ASSERT(inner_.use_count() > 0);
std::unique_lock<std::mutex> lock(inner_->mu);
while (inner_->queue.empty()) {
inner_->cv.wait(lock);
}
Message message = std::move(inner_->queue.front());
inner_->queue.pop_front();
return message;
}
};
/// A CoordinatorWorker owns Raft<CoordinatorRsm> instances. receives messages from the MachineManager.
template <typename IoImpl>
class CoordinatorWorker {
io::Io<IoImpl> io_;
Queue queue_;
CoordinatorRsm<IoImpl> coordinator_;
bool Process(ShutDown && /*shut_down*/) { return false; }
bool Process(Cron && /* cron */) {
coordinator_.Cron();
return true;
}
bool Process(RouteMessage &&route_message) {
coordinator_.Handle(std::move(route_message.message), route_message.request_id, route_message.from);
return true;
}
public:
CoordinatorWorker(io::Io<IoImpl> io, Queue queue, Coordinator coordinator)
: io_(std::move(io)),
queue_(std::move(queue)),
coordinator_{std::move(io_.ForkLocal()), {}, std::move(coordinator)} {}
CoordinatorWorker(CoordinatorWorker &&) noexcept = default;
CoordinatorWorker &operator=(CoordinatorWorker &&) noexcept = default;
CoordinatorWorker(const CoordinatorWorker &) = delete;
CoordinatorWorker &operator=(const CoordinatorWorker &) = delete;
~CoordinatorWorker() = default;
void Run() {
while (true) {
Message message = queue_.Pop();
const bool should_continue = std::visit(
[this](auto &&msg) { return this->Process(std::forward<decltype(msg)>(msg)); }, std::move(message));
if (!should_continue) {
return;
}
}
}
};
} // namespace memgraph::coordinator::coordinator_worker

View File

@ -9,6 +9,7 @@
// by the Apache License, Version 2.0, included in the file
// licenses/APL.txt.
#include <optional>
#include <unordered_map>
#include <vector>
@ -227,6 +228,24 @@ Hlc ShardMap::IncrementShardMapVersion() noexcept {
return shard_map_version;
}
// TODO(antaljanosbenjamin) use a single map for all name id
// mapping and a single counter to maintain the next id
std::unordered_map<uint64_t, std::string> ShardMap::IdToNames() {
std::unordered_map<uint64_t, std::string> id_to_names;
const auto map_type_ids = [&id_to_names](const auto &name_to_id_type) {
for (const auto &[name, id] : name_to_id_type) {
id_to_names.emplace(id.AsUint(), name);
}
};
map_type_ids(edge_types);
map_type_ids(labels);
map_type_ids(properties);
return id_to_names;
}
Hlc ShardMap::GetHlc() const noexcept { return shard_map_version; }
std::vector<ShardToInitialize> ShardMap::AssignShards(Address storage_manager,
@ -258,6 +277,7 @@ std::vector<ShardToInitialize> ShardMap::AssignShards(Address storage_manager,
if (same_machine) {
machine_contains_shard = true;
spdlog::info("reminding shard manager that they should begin participating in shard");
ret.push_back(ShardToInitialize{
.uuid = aas.address.unique_id,
.label_id = label_id,
@ -265,6 +285,7 @@ std::vector<ShardToInitialize> ShardMap::AssignShards(Address storage_manager,
.max_key = high_key,
.schema = schemas[label_id],
.config = Config{},
.id_to_names = IdToNames(),
});
}
}
@ -285,6 +306,7 @@ std::vector<ShardToInitialize> ShardMap::AssignShards(Address storage_manager,
.max_key = high_key,
.schema = schemas[label_id],
.config = Config{},
.id_to_names = IdToNames(),
});
AddressAndStatus aas = {
@ -365,7 +387,6 @@ std::optional<LabelId> ShardMap::GetLabelId(const std::string &label) const {
if (const auto it = labels.find(label); it != labels.end()) {
return it->second;
}
return std::nullopt;
}
@ -382,7 +403,6 @@ std::optional<PropertyId> ShardMap::GetPropertyId(const std::string &property_na
if (const auto it = properties.find(property_name); it != properties.end()) {
return it->second;
}
return std::nullopt;
}
@ -399,7 +419,6 @@ std::optional<EdgeTypeId> ShardMap::GetEdgeTypeId(const std::string &edge_type)
if (const auto it = edge_types.find(edge_type); it != edge_types.end()) {
return it->second;
}
return std::nullopt;
}
@ -411,6 +430,7 @@ const std::string &ShardMap::GetEdgeTypeName(const EdgeTypeId property) const {
}
throw utils::BasicException("EdgeTypeId not found!");
}
Shards ShardMap::GetShardsForRange(const LabelName &label_name, const PrimaryKey &start_key,
const PrimaryKey &end_key) const {
MG_ASSERT(start_key <= end_key);

View File

@ -25,6 +25,7 @@
#include "io/address.hpp"
#include "storage/v3/config.hpp"
#include "storage/v3/id_types.hpp"
#include "storage/v3/name_id_mapper.hpp"
#include "storage/v3/property_value.hpp"
#include "storage/v3/schemas.hpp"
#include "storage/v3/temporal.hpp"
@ -90,6 +91,7 @@ struct ShardToInitialize {
std::optional<PrimaryKey> max_key;
std::vector<SchemaProperty> schema;
Config config;
std::unordered_map<uint64_t, std::string> id_to_names;
};
PrimaryKey SchemaToMinKey(const std::vector<SchemaProperty> &schema);
@ -120,9 +122,9 @@ struct ShardMap {
std::map<PropertyName, PropertyId> properties;
std::map<EdgeTypeName, EdgeTypeId> edge_types;
uint64_t max_label_id{kNotExistingId};
std::map<LabelName, LabelId> labels;
std::map<LabelId, LabelSpace> label_spaces;
std::map<LabelId, std::vector<SchemaProperty>> schemas;
std::map<LabelName, LabelId> labels;
[[nodiscard]] static ShardMap Parse(std::istream &input_stream);
friend std::ostream &operator<<(std::ostream &in, const ShardMap &shard_map);
@ -136,6 +138,8 @@ struct ShardMap {
Hlc IncrementShardMapVersion() noexcept;
Hlc GetHlc() const noexcept;
std::unordered_map<uint64_t, std::string> IdToNames();
// Returns the shard UUIDs that have been assigned but not yet acknowledged for this storage manager
std::vector<ShardToInitialize> AssignShards(Address storage_manager, std::set<boost::uuids::uuid> initialized);

View File

@ -13,7 +13,7 @@
#ifndef MG_AST_INCLUDE_PATH
#ifdef MG_CLANG_TIDY_CHECK
// NOLINTNEXTLINE(cppcoreguidelines-macro-usage)
#define MG_AST_INCLUDE_PATH "query/v2/frontend/ast/ast.hpp"
#include "query/v2/bindings/bindings.hpp"
#else
#error Missing AST include path
#endif
@ -21,8 +21,6 @@
#ifndef MG_INJECTED_NAMESPACE_NAME
#ifdef MG_CLANG_TIDY_CHECK
// NOLINTNEXTLINE(cppcoreguidelines-macro-usage)
#define MG_INJECTED_NAMESPACE_NAME memgraph::query::v2
#else
#error Missing AST namespace
#endif

View File

@ -718,7 +718,7 @@ class ExpressionEvaluator : public ExpressionVisitor<TypedValue> {
TReturnType GetProperty(const TRecordAccessor &record_accessor, PropertyIx prop) {
auto maybe_prop = record_accessor.GetProperty(prop.name);
// Handler non existent property
return conv_(maybe_prop);
return conv_(maybe_prop, dba_);
}
template <class TRecordAccessor, class TTag = Tag,
@ -726,7 +726,7 @@ class ExpressionEvaluator : public ExpressionVisitor<TypedValue> {
TReturnType GetProperty(const TRecordAccessor &record_accessor, const std::string_view name) {
auto maybe_prop = record_accessor.GetProperty(std::string(name));
// Handler non existent property
return conv_(maybe_prop);
return conv_(maybe_prop, dba_);
}
template <class TRecordAccessor, class TTag = Tag,

View File

@ -18,6 +18,7 @@
#include "coordinator/shard_map.hpp"
#include "query/v2/accessors.hpp"
#include "query/v2/requests.hpp"
#include "query/v2/shard_request_manager.hpp"
#include "storage/v3/edge_accessor.hpp"
#include "storage/v3/id_types.hpp"
#include "storage/v3/result.hpp"
@ -70,51 +71,52 @@ query::v2::TypedValue ToTypedValue(const Value &value) {
}
}
storage::v3::Result<communication::bolt::Vertex> ToBoltVertex(const query::v2::accessors::VertexAccessor &vertex,
const coordinator::ShardMap &shard_map,
storage::v3::View /*view*/) {
storage::v3::Result<communication::bolt::Vertex> ToBoltVertex(
const query::v2::accessors::VertexAccessor &vertex, const msgs::ShardRequestManagerInterface *shard_request_manager,
storage::v3::View /*view*/) {
auto id = communication::bolt::Id::FromUint(0);
auto labels = vertex.Labels();
std::vector<std::string> new_labels;
new_labels.reserve(labels.size());
for (const auto &label : labels) {
new_labels.push_back(shard_map.GetLabelName(label.id));
new_labels.push_back(shard_request_manager->LabelToName(label.id));
}
auto properties = vertex.Properties();
std::map<std::string, Value> new_properties;
for (const auto &[prop, property_value] : properties) {
new_properties[shard_map.GetPropertyName(prop)] = ToBoltValue(property_value);
new_properties[shard_request_manager->PropertyToName(prop)] = ToBoltValue(property_value);
}
return communication::bolt::Vertex{id, new_labels, new_properties};
}
storage::v3::Result<communication::bolt::Edge> ToBoltEdge(const query::v2::accessors::EdgeAccessor &edge,
const coordinator::ShardMap &shard_map,
storage::v3::View /*view*/) {
storage::v3::Result<communication::bolt::Edge> ToBoltEdge(
const query::v2::accessors::EdgeAccessor &edge, const msgs::ShardRequestManagerInterface *shard_request_manager,
storage::v3::View /*view*/) {
// TODO(jbajic) Fix bolt communication
auto id = communication::bolt::Id::FromUint(0);
auto from = communication::bolt::Id::FromUint(0);
auto to = communication::bolt::Id::FromUint(0);
const auto &type = shard_map.GetEdgeTypeName(edge.EdgeType());
const auto &type = shard_request_manager->EdgeTypeToName(edge.EdgeType());
auto properties = edge.Properties();
std::map<std::string, Value> new_properties;
for (const auto &[prop, property_value] : properties) {
new_properties[shard_map.GetPropertyName(prop)] = ToBoltValue(property_value);
new_properties[shard_request_manager->PropertyToName(prop)] = ToBoltValue(property_value);
}
return communication::bolt::Edge{id, from, to, type, new_properties};
}
storage::v3::Result<communication::bolt::Path> ToBoltPath(const query::v2::accessors::Path & /*edge*/,
const coordinator::ShardMap & /*shard_map*/,
storage::v3::View /*view*/) {
storage::v3::Result<communication::bolt::Path> ToBoltPath(
const query::v2::accessors::Path & /*edge*/, const msgs::ShardRequestManagerInterface * /*shard_request_manager*/,
storage::v3::View /*view*/) {
// TODO(jbajic) Fix bolt communication
return {storage::v3::Error::DELETED_OBJECT};
}
storage::v3::Result<Value> ToBoltValue(const query::v2::TypedValue &value, const coordinator::ShardMap &shard_map,
storage::v3::Result<Value> ToBoltValue(const query::v2::TypedValue &value,
const msgs::ShardRequestManagerInterface *shard_request_manager,
storage::v3::View view) {
switch (value.type()) {
case query::v2::TypedValue::Type::Null:
@ -131,7 +133,7 @@ storage::v3::Result<Value> ToBoltValue(const query::v2::TypedValue &value, const
std::vector<Value> values;
values.reserve(value.ValueList().size());
for (const auto &v : value.ValueList()) {
auto maybe_value = ToBoltValue(v, shard_map, view);
auto maybe_value = ToBoltValue(v, shard_request_manager, view);
if (maybe_value.HasError()) return maybe_value.GetError();
values.emplace_back(std::move(*maybe_value));
}
@ -140,24 +142,24 @@ storage::v3::Result<Value> ToBoltValue(const query::v2::TypedValue &value, const
case query::v2::TypedValue::Type::Map: {
std::map<std::string, Value> map;
for (const auto &kv : value.ValueMap()) {
auto maybe_value = ToBoltValue(kv.second, shard_map, view);
auto maybe_value = ToBoltValue(kv.second, shard_request_manager, view);
if (maybe_value.HasError()) return maybe_value.GetError();
map.emplace(kv.first, std::move(*maybe_value));
}
return Value(std::move(map));
}
case query::v2::TypedValue::Type::Vertex: {
auto maybe_vertex = ToBoltVertex(value.ValueVertex(), shard_map, view);
auto maybe_vertex = ToBoltVertex(value.ValueVertex(), shard_request_manager, view);
if (maybe_vertex.HasError()) return maybe_vertex.GetError();
return Value(std::move(*maybe_vertex));
}
case query::v2::TypedValue::Type::Edge: {
auto maybe_edge = ToBoltEdge(value.ValueEdge(), shard_map, view);
auto maybe_edge = ToBoltEdge(value.ValueEdge(), shard_request_manager, view);
if (maybe_edge.HasError()) return maybe_edge.GetError();
return Value(std::move(*maybe_edge));
}
case query::v2::TypedValue::Type::Path: {
auto maybe_path = ToBoltPath(value.ValuePath(), shard_map, view);
auto maybe_path = ToBoltPath(value.ValuePath(), shard_request_manager, view);
if (maybe_path.HasError()) return maybe_path.GetError();
return Value(std::move(*maybe_path));
}
@ -209,12 +211,6 @@ Value ToBoltValue(msgs::Value value) {
}
}
storage::v3::Result<communication::bolt::Path> ToBoltPath(const query::v2::accessors::Path & /*path*/,
const storage::v3::Shard & /*db*/,
storage::v3::View /*view*/) {
return communication::bolt::Path();
}
storage::v3::PropertyValue ToPropertyValue(const Value &value) {
switch (value.type()) {
case Value::Type::Null:

View File

@ -15,6 +15,7 @@
#include "communication/bolt/v1/value.hpp"
#include "coordinator/shard_map.hpp"
#include "query/v2/bindings/typed_value.hpp"
#include "query/v2/shard_request_manager.hpp"
#include "storage/v3/property_value.hpp"
#include "storage/v3/result.hpp"
#include "storage/v3/shard.hpp"
@ -30,40 +31,40 @@ namespace memgraph::glue::v2 {
/// @param storage::v3::VertexAccessor for converting to
/// communication::bolt::Vertex.
/// @param coordinator::ShardMap shard_map getting label and property names.
/// @param msgs::ShardRequestManagerInterface *shard_request_manager getting label and property names.
/// @param storage::v3::View for deciding which vertex attributes are visible.
///
/// @throw std::bad_alloc
storage::v3::Result<communication::bolt::Vertex> ToBoltVertex(const storage::v3::VertexAccessor &vertex,
const coordinator::ShardMap &shard_map,
storage::v3::View view);
storage::v3::Result<communication::bolt::Vertex> ToBoltVertex(
const storage::v3::VertexAccessor &vertex, const msgs::ShardRequestManagerInterface *shard_request_manager,
storage::v3::View view);
/// @param storage::v3::EdgeAccessor for converting to communication::bolt::Edge.
/// @param coordinator::ShardMap shard_map getting edge type and property names.
/// @param msgs::ShardRequestManagerInterface *shard_request_manager getting edge type and property names.
/// @param storage::v3::View for deciding which edge attributes are visible.
///
/// @throw std::bad_alloc
storage::v3::Result<communication::bolt::Edge> ToBoltEdge(const storage::v3::EdgeAccessor &edge,
const coordinator::ShardMap &shard_map,
storage::v3::View view);
storage::v3::Result<communication::bolt::Edge> ToBoltEdge(
const storage::v3::EdgeAccessor &edge, const msgs::ShardRequestManagerInterface *shard_request_manager,
storage::v3::View view);
/// @param query::v2::Path for converting to communication::bolt::Path.
/// @param coordinator::ShardMap shard_map ToBoltVertex and ToBoltEdge.
/// @param msgs::ShardRequestManagerInterface *shard_request_manager ToBoltVertex and ToBoltEdge.
/// @param storage::v3::View for ToBoltVertex and ToBoltEdge.
///
/// @throw std::bad_alloc
storage::v3::Result<communication::bolt::Path> ToBoltPath(const query::v2::accessors::Path &path,
const coordinator::ShardMap &shard_map,
storage::v3::View view);
storage::v3::Result<communication::bolt::Path> ToBoltPath(
const query::v2::accessors::Path &path, const msgs::ShardRequestManagerInterface *shard_request_manager,
storage::v3::View view);
/// @param query::v2::TypedValue for converting to communication::bolt::Value.
/// @param coordinator::ShardMap shard_map ToBoltVertex and ToBoltEdge.
/// @param msgs::ShardRequestManagerInterface *shard_request_manager ToBoltVertex and ToBoltEdge.
/// @param storage::v3::View for ToBoltVertex and ToBoltEdge.
///
/// @throw std::bad_alloc
storage::v3::Result<communication::bolt::Value> ToBoltValue(const query::v2::TypedValue &value,
const coordinator::ShardMap &shard_map,
storage::v3::View view);
storage::v3::Result<communication::bolt::Value> ToBoltValue(
const query::v2::TypedValue &value, const msgs::ShardRequestManagerInterface *shard_request_manager,
storage::v3::View view);
query::v2::TypedValue ToTypedValue(const communication::bolt::Value &value);
@ -73,7 +74,8 @@ storage::v3::PropertyValue ToPropertyValue(const communication::bolt::Value &val
communication::bolt::Value ToBoltValue(msgs::Value value);
communication::bolt::Value ToBoltValue(msgs::Value value, const coordinator::ShardMap &shard_map,
communication::bolt::Value ToBoltValue(msgs::Value value,
const msgs::ShardRequestManagerInterface *shard_request_manager,
storage::v3::View view);
} // namespace memgraph::glue::v2

View File

@ -31,14 +31,9 @@ class LocalTransport {
: local_transport_handle_(std::move(local_transport_handle)) {}
template <Message RequestT, Message ResponseT>
ResponseFuture<ResponseT> Request(Address to_address, Address from_address, RequestId request_id, RequestT request,
Duration timeout) {
auto [future, promise] = memgraph::io::FuturePromisePair<ResponseResult<ResponseT>>();
local_transport_handle_->SubmitRequest(to_address, from_address, request_id, std::move(request), timeout,
std::move(promise));
return std::move(future);
ResponseFuture<ResponseT> Request(Address to_address, Address from_address, RequestT request, Duration timeout) {
return local_transport_handle_->template SubmitRequest<RequestT, ResponseT>(to_address, from_address,
std::move(request), timeout);
}
template <Message... Ms>
@ -60,5 +55,7 @@ class LocalTransport {
std::random_device rng;
return distrib(rng);
}
LatencyHistogramSummaries ResponseLatencies() { return local_transport_handle_->ResponseLatencies(); }
};
}; // namespace memgraph::io::local_transport

View File

@ -30,6 +30,7 @@ class LocalTransportHandle {
mutable std::condition_variable cv_;
bool should_shut_down_ = false;
MessageHistogramCollector histograms_;
RequestId request_id_counter_ = 0;
// the responses to requests that are being waited on
std::map<PromiseKey, DeadlineAndOpaquePromise> promises_;
@ -56,7 +57,7 @@ class LocalTransportHandle {
return should_shut_down_;
}
std::unordered_map<std::string, LatencyHistogramSummary> ResponseLatencies() {
LatencyHistogramSummaries ResponseLatencies() {
std::unique_lock<std::mutex> lock(mu_);
return histograms_.ResponseLatencies();
}
@ -113,8 +114,7 @@ class LocalTransportHandle {
.message = std::move(message_any),
.type_info = type_info};
PromiseKey promise_key{
.requester_address = to_address, .request_id = opaque_message.request_id, .replier_address = from_address};
PromiseKey promise_key{.requester_address = to_address, .request_id = opaque_message.request_id};
{
std::unique_lock<std::mutex> lock(mu_);
@ -139,8 +139,10 @@ class LocalTransportHandle {
}
template <Message RequestT, Message ResponseT>
void SubmitRequest(Address to_address, Address from_address, RequestId request_id, RequestT &&request,
Duration timeout, ResponsePromise<ResponseT> promise) {
ResponseFuture<ResponseT> SubmitRequest(Address to_address, Address from_address, RequestT &&request,
Duration timeout) {
auto [future, promise] = memgraph::io::FuturePromisePair<ResponseResult<ResponseT>>();
const bool port_matches = to_address.last_known_port == from_address.last_known_port;
const bool ip_matches = to_address.last_known_ip == from_address.last_known_ip;
@ -149,17 +151,22 @@ class LocalTransportHandle {
const auto now = Now();
const Time deadline = now + timeout;
RequestId request_id = 0;
{
std::unique_lock<std::mutex> lock(mu_);
PromiseKey promise_key{
.requester_address = from_address, .request_id = request_id, .replier_address = to_address};
request_id = ++request_id_counter_;
PromiseKey promise_key{.requester_address = from_address, .request_id = request_id};
OpaquePromise opaque_promise(std::move(promise).ToUnique());
DeadlineAndOpaquePromise dop{.requested_at = now, .deadline = deadline, .promise = std::move(opaque_promise)};
MG_ASSERT(!promises_.contains(promise_key));
promises_.emplace(std::move(promise_key), std::move(dop));
} // lock dropped
Send(to_address, from_address, request_id, std::forward<RequestT>(request));
return std::move(future);
}
};

View File

@ -11,6 +11,8 @@
#pragma once
#include <boost/core/demangle.hpp>
#include "io/transport.hpp"
#include "utils/type_info_ref.hpp"
@ -19,9 +21,6 @@ namespace memgraph::io {
struct PromiseKey {
Address requester_address;
uint64_t request_id;
// TODO(tyler) possibly remove replier_address from promise key
// once we want to support DSR.
Address replier_address;
public:
friend bool operator<(const PromiseKey &lhs, const PromiseKey &rhs) {
@ -29,11 +28,7 @@ struct PromiseKey {
return lhs.requester_address < rhs.requester_address;
}
if (lhs.request_id != rhs.request_id) {
return lhs.request_id < rhs.request_id;
}
return lhs.replier_address < rhs.replier_address;
return lhs.request_id < rhs.request_id;
}
};
@ -90,6 +85,10 @@ struct OpaqueMessage {
};
}
std::string demangled_name = "\"" + boost::core::demangle(message.type().name()) + "\"";
spdlog::error("failed to cast message of type {} to expected request type (probably in Receive argument types)",
demangled_name);
return std::nullopt;
}
};

View File

@ -20,6 +20,7 @@
#include "io/time.hpp"
#include "utils/histogram.hpp"
#include "utils/logging.hpp"
#include "utils/print_helpers.hpp"
#include "utils/type_info_ref.hpp"
namespace memgraph::io {
@ -57,6 +58,35 @@ struct LatencyHistogramSummary {
}
};
struct LatencyHistogramSummaries {
std::unordered_map<std::string, LatencyHistogramSummary> latencies;
std::string SummaryTable() {
std::string output;
const auto row = [&output](const auto &c1, const auto &c2, const auto &c3, const auto &c4, const auto &c5,
const auto &c6, const auto &c7) {
output +=
fmt::format("{: >50} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8} | {: >8}\n", c1, c2, c3, c4, c5, c6, c7);
};
row("name", "count", "min (μs)", "med (μs)", "p99 (μs)", "max (μs)", "sum (ms)");
for (const auto &[name, histo] : latencies) {
row(name, histo.count, histo.p0.count(), histo.p50.count(), histo.p99.count(), histo.p100.count(),
histo.sum.count() / 1000);
}
output += "\n";
return output;
}
friend std::ostream &operator<<(std::ostream &in, const LatencyHistogramSummaries &histo) {
using memgraph::utils::print_helpers::operator<<;
in << histo.latencies;
return in;
}
};
class MessageHistogramCollector {
std::unordered_map<utils::TypeInfoRef, utils::Histogram, utils::TypeInfoHasher, utils::TypeInfoEqualTo> histograms_;
@ -66,7 +96,7 @@ class MessageHistogramCollector {
histo.Measure(duration.count());
}
std::unordered_map<std::string, LatencyHistogramSummary> ResponseLatencies() {
LatencyHistogramSummaries ResponseLatencies() {
std::unordered_map<std::string, LatencyHistogramSummary> ret{};
for (const auto &[type_id, histo] : histograms_) {
@ -90,7 +120,7 @@ class MessageHistogramCollector {
ret.emplace(demangled_name, latency_histogram_summary);
}
return ret;
return LatencyHistogramSummaries{.latencies = ret};
}
};

View File

@ -22,6 +22,8 @@
#include <unordered_map>
#include <vector>
#include <boost/core/demangle.hpp>
#include "io/message_conversion.hpp"
#include "io/simulator/simulator.hpp"
#include "io/transport.hpp"
@ -109,6 +111,16 @@ utils::TypeInfoRef TypeInfoFor(const WriteResponse<WriteReturn> & /* write_respo
return typeid(WriteReturn);
}
template <class WriteOperation>
utils::TypeInfoRef TypeInfoFor(const WriteRequest<WriteOperation> & /* write_request */) {
return typeid(WriteOperation);
}
template <class... WriteOperations>
utils::TypeInfoRef TypeInfoFor(const WriteRequest<std::variant<WriteOperations...>> &write_request) {
return TypeInfoForVariant(write_request.operation);
}
/// AppendRequest is a raft-level message that the Leader
/// periodically broadcasts to all Follower peers. This
/// serves three main roles:
@ -569,7 +581,7 @@ class Raft {
const Time now = io_.Now();
const Duration broadcast_timeout = RandomTimeout(kMinimumBroadcastTimeout, kMaximumBroadcastTimeout);
if (now - leader.last_broadcast > broadcast_timeout) {
if (now > leader.last_broadcast + broadcast_timeout) {
BroadcastAppendEntries(leader.followers);
leader.last_broadcast = now;
}
@ -918,7 +930,9 @@ class Raft {
// only leaders actually handle replication requests from clients
std::optional<Role> Handle(Leader &leader, WriteRequest<WriteOperation> &&req, RequestId request_id,
Address from_address) {
Log("handling WriteRequest");
auto type_info = TypeInfoFor(req);
std::string demangled_name = boost::core::demangle(type_info.get().name());
Log("handling WriteRequest<" + demangled_name + ">");
// we are the leader. add item to log and send Append to peers
MG_ASSERT(state_.term >= LastLogTerm());

View File

@ -31,7 +31,7 @@ bool SimulatorHandle::ShouldShutDown() const {
return should_shut_down_;
}
std::unordered_map<std::string, LatencyHistogramSummary> SimulatorHandle::ResponseLatencies() {
LatencyHistogramSummaries SimulatorHandle::ResponseLatencies() {
std::unique_lock<std::mutex> lock(mu_);
return histograms_.ResponseLatencies();
}
@ -108,9 +108,7 @@ bool SimulatorHandle::MaybeTickSimulator() {
stats_.dropped_messages++;
}
PromiseKey promise_key{.requester_address = to_address,
.request_id = opaque_message.request_id,
.replier_address = opaque_message.from_address};
PromiseKey promise_key{.requester_address = to_address, .request_id = opaque_message.request_id};
if (promises_.contains(promise_key)) {
// complete waiting promise if it's there

View File

@ -56,14 +56,14 @@ class SimulatorHandle {
std::uniform_int_distribution<int> drop_distrib_{0, 99};
SimulatorConfig config_;
MessageHistogramCollector histograms_;
RequestId request_id_counter_{0};
void TimeoutPromisesPastDeadline() {
const Time now = cluster_wide_time_microseconds_;
for (auto it = promises_.begin(); it != promises_.end();) {
auto &[promise_key, dop] = *it;
if (dop.deadline < now && config_.perform_timeouts) {
spdlog::info("timing out request from requester {} to replier {}.", promise_key.requester_address.ToString(),
promise_key.replier_address.ToString());
spdlog::info("timing out request from requester {}.", promise_key.requester_address.ToString());
std::move(dop).promise.TimeOut();
it = promises_.erase(it);
@ -78,7 +78,7 @@ class SimulatorHandle {
explicit SimulatorHandle(SimulatorConfig config)
: cluster_wide_time_microseconds_(config.start_time), rng_(config.rng_seed), config_(config) {}
std::unordered_map<std::string, LatencyHistogramSummary> ResponseLatencies();
LatencyHistogramSummaries ResponseLatencies();
~SimulatorHandle() {
for (auto it = promises_.begin(); it != promises_.end();) {
@ -101,12 +101,17 @@ class SimulatorHandle {
bool ShouldShutDown() const;
template <Message Request, Message Response>
void SubmitRequest(Address to_address, Address from_address, RequestId request_id, Request &&request,
Duration timeout, ResponsePromise<Response> &&promise) {
ResponseFuture<Response> SubmitRequest(Address to_address, Address from_address, Request &&request, Duration timeout,
std::function<bool()> &&maybe_tick_simulator) {
auto type_info = TypeInfoFor(request);
auto [future, promise] = memgraph::io::FuturePromisePairWithNotifier<ResponseResult<Response>>(
std::forward<std::function<bool()>>(maybe_tick_simulator));
std::unique_lock<std::mutex> lock(mu_);
RequestId request_id = ++request_id_counter_;
const Time deadline = cluster_wide_time_microseconds_ + timeout;
std::any message(request);
@ -117,19 +122,24 @@ class SimulatorHandle {
.type_info = type_info};
in_flight_.emplace_back(std::make_pair(to_address, std::move(om)));
PromiseKey promise_key{.requester_address = from_address, .request_id = request_id, .replier_address = to_address};
PromiseKey promise_key{.requester_address = from_address, .request_id = request_id};
OpaquePromise opaque_promise(std::move(promise).ToUnique());
DeadlineAndOpaquePromise dop{
.requested_at = cluster_wide_time_microseconds_,
.deadline = deadline,
.promise = std::move(opaque_promise),
};
MG_ASSERT(!promises_.contains(promise_key));
promises_.emplace(std::move(promise_key), std::move(dop));
stats_.total_messages++;
stats_.total_requests++;
cv_.notify_all();
return std::move(future);
}
template <Message... Ms>

View File

@ -33,16 +33,11 @@ class SimulatorTransport {
: simulator_handle_(simulator_handle), address_(address), rng_(std::mt19937{seed}) {}
template <Message RequestT, Message ResponseT>
ResponseFuture<ResponseT> Request(Address to_address, Address from_address, uint64_t request_id, RequestT request,
Duration timeout) {
ResponseFuture<ResponseT> Request(Address to_address, Address from_address, RequestT request, Duration timeout) {
std::function<bool()> maybe_tick_simulator = [this] { return simulator_handle_->MaybeTickSimulator(); };
auto [future, promise] =
memgraph::io::FuturePromisePairWithNotifier<ResponseResult<ResponseT>>(maybe_tick_simulator);
simulator_handle_->SubmitRequest(to_address, from_address, request_id, std::move(request), timeout,
std::move(promise));
return std::move(future);
return simulator_handle_->template SubmitRequest<RequestT, ResponseT>(to_address, from_address, std::move(request),
timeout, std::move(maybe_tick_simulator));
}
template <Message... Ms>
@ -64,8 +59,6 @@ class SimulatorTransport {
return distrib(rng_);
}
std::unordered_map<std::string, LatencyHistogramSummary> ResponseLatencies() {
return simulator_handle_->ResponseLatencies();
}
LatencyHistogramSummaries ResponseLatencies() { return simulator_handle_->ResponseLatencies(); }
};
}; // namespace memgraph::io::simulator

View File

@ -68,7 +68,6 @@ template <typename I>
class Io {
I implementation_;
Address address_;
RequestId request_id_counter_ = 0;
Duration default_timeout_ = std::chrono::microseconds{100000};
public:
@ -84,20 +83,17 @@ class Io {
/// Issue a request with an explicit timeout in microseconds provided. This tends to be used by clients.
template <Message RequestT, Message ResponseT>
ResponseFuture<ResponseT> RequestWithTimeout(Address address, RequestT request, Duration timeout) {
const RequestId request_id = ++request_id_counter_;
const Address from_address = address_;
return implementation_.template Request<RequestT, ResponseT>(address, from_address, request_id, request, timeout);
return implementation_.template Request<RequestT, ResponseT>(address, from_address, request, timeout);
}
/// Issue a request that times out after the default timeout. This tends
/// to be used by clients.
template <Message RequestT, Message ResponseT>
ResponseFuture<ResponseT> Request(Address to_address, RequestT request) {
const RequestId request_id = ++request_id_counter_;
const Duration timeout = default_timeout_;
const Address from_address = address_;
return implementation_.template Request<RequestT, ResponseT>(to_address, from_address, request_id,
std::move(request), timeout);
return implementation_.template Request<RequestT, ResponseT>(to_address, from_address, std::move(request), timeout);
}
/// Wait for an explicit number of microseconds for a request of one of the
@ -143,8 +139,6 @@ class Io {
Io<I> ForkLocal() { return Io(implementation_, address_.ForkUniqueAddress()); }
std::unordered_map<std::string, LatencyHistogramSummary> ResponseLatencies() {
return implementation_.ResponseLatencies();
}
LatencyHistogramSummaries ResponseLatencies() { return implementation_.ResponseLatencies(); }
};
}; // namespace memgraph::io

View File

@ -11,7 +11,11 @@
#pragma once
#include <algorithm>
#include <thread>
#include <boost/asio/ip/tcp.hpp>
#include "io/address.hpp"
#include "storage/v3/property_value.hpp"
#include "storage/v3/schemas.hpp"
@ -37,6 +41,7 @@ struct MachineConfig {
bool is_query_engine;
boost::asio::ip::address listen_ip;
uint16_t listen_port;
size_t shard_worker_threads = std::max(static_cast<unsigned int>(1), std::thread::hardware_concurrency());
};
} // namespace memgraph::machine_manager

View File

@ -11,40 +11,43 @@
#pragma once
#include <coordinator/coordinator_rsm.hpp>
#include <io/message_conversion.hpp>
#include <io/messages.hpp>
#include <io/rsm/rsm_client.hpp>
#include <io/time.hpp>
#include <machine_manager/machine_config.hpp>
#include <storage/v3/shard_manager.hpp>
#include "coordinator/shard_map.hpp"
#include "coordinator/coordinator_rsm.hpp"
#include "coordinator/coordinator_worker.hpp"
#include "io/message_conversion.hpp"
#include "io/messages.hpp"
#include "io/rsm/rsm_client.hpp"
#include "io/time.hpp"
#include "machine_manager/machine_config.hpp"
#include "storage/v3/shard_manager.hpp"
namespace memgraph::machine_manager {
using memgraph::coordinator::Coordinator;
using memgraph::coordinator::CoordinatorReadRequests;
using memgraph::coordinator::CoordinatorReadResponses;
using memgraph::coordinator::CoordinatorRsm;
using memgraph::coordinator::CoordinatorWriteRequests;
using memgraph::coordinator::CoordinatorWriteResponses;
using memgraph::io::ConvertVariant;
using memgraph::io::Duration;
using memgraph::io::RequestId;
using memgraph::io::Time;
using memgraph::io::messages::CoordinatorMessages;
using memgraph::io::messages::ShardManagerMessages;
using memgraph::io::messages::ShardMessages;
using memgraph::io::messages::StorageReadRequest;
using memgraph::io::messages::StorageWriteRequest;
using memgraph::io::rsm::AppendRequest;
using memgraph::io::rsm::AppendResponse;
using memgraph::io::rsm::ReadRequest;
using memgraph::io::rsm::VoteRequest;
using memgraph::io::rsm::VoteResponse;
using memgraph::io::rsm::WriteRequest;
using memgraph::io::rsm::WriteResponse;
using memgraph::storage::v3::ShardManager;
using coordinator::Coordinator;
using coordinator::CoordinatorReadRequests;
using coordinator::CoordinatorReadResponses;
using coordinator::CoordinatorRsm;
using coordinator::CoordinatorWriteRequests;
using coordinator::CoordinatorWriteResponses;
using coordinator::coordinator_worker::CoordinatorWorker;
using CoordinatorRouteMessage = coordinator::coordinator_worker::RouteMessage;
using CoordinatorQueue = coordinator::coordinator_worker::Queue;
using io::ConvertVariant;
using io::Duration;
using io::RequestId;
using io::Time;
using io::messages::CoordinatorMessages;
using io::messages::ShardManagerMessages;
using io::messages::ShardMessages;
using io::messages::StorageReadRequest;
using io::messages::StorageWriteRequest;
using io::rsm::AppendRequest;
using io::rsm::AppendResponse;
using io::rsm::ReadRequest;
using io::rsm::VoteRequest;
using io::rsm::VoteResponse;
using io::rsm::WriteRequest;
using io::rsm::WriteResponse;
using storage::v3::ShardManager;
/// The MachineManager is responsible for:
/// * starting the entire system and ensuring that high-level
@ -63,20 +66,39 @@ template <typename IoImpl>
class MachineManager {
io::Io<IoImpl> io_;
MachineConfig config_;
CoordinatorRsm<IoImpl> coordinator_;
Address coordinator_address_;
CoordinatorQueue coordinator_queue_;
std::jthread coordinator_handle_;
ShardManager<IoImpl> shard_manager_;
Time next_cron_ = Time::min();
public:
// TODO initialize ShardManager with "real" coordinator addresses instead of io.GetAddress
// which is only true for single-machine config.
MachineManager(io::Io<IoImpl> io, MachineConfig config, Coordinator coordinator, coordinator::ShardMap &shard_map)
MachineManager(io::Io<IoImpl> io, MachineConfig config, Coordinator coordinator)
: io_(io),
config_(config),
coordinator_{std::move(io.ForkLocal()), {}, std::move(coordinator)},
shard_manager_{io.ForkLocal(), coordinator_.GetAddress(), shard_map} {}
coordinator_address_(io.GetAddress().ForkUniqueAddress()),
shard_manager_{io.ForkLocal(), config.shard_worker_threads, coordinator_address_} {
auto coordinator_io = io.ForkLocal();
coordinator_io.SetAddress(coordinator_address_);
CoordinatorWorker coordinator_worker{coordinator_io, coordinator_queue_, coordinator};
coordinator_handle_ = std::jthread([coordinator = std::move(coordinator_worker)]() mutable { coordinator.Run(); });
}
Address CoordinatorAddress() { return coordinator_.GetAddress(); }
MachineManager(MachineManager &&) noexcept = default;
MachineManager &operator=(MachineManager &&) noexcept = default;
MachineManager(const MachineManager &) = delete;
MachineManager &operator=(const MachineManager &) = delete;
~MachineManager() {
if (coordinator_handle_.joinable()) {
coordinator_queue_.Push(coordinator::coordinator_worker::ShutDown{});
coordinator_handle_.join();
}
}
Address CoordinatorAddress() { return coordinator_address_; }
void Run() {
while (!io_.ShouldShutDown()) {
@ -86,7 +108,7 @@ class MachineManager {
next_cron_ = Cron();
}
Duration receive_timeout = next_cron_ - now;
Duration receive_timeout = std::max(next_cron_, now) - now;
// Note: this parameter pack must be kept in-sync with the ReceiveWithTimeout parameter pack below
using AllMessages =
@ -114,7 +136,7 @@ class MachineManager {
spdlog::info("MM got message to {}", request_envelope.to_address.ToString());
// If message is for the coordinator, cast it to subset and pass it to the coordinator
bool to_coordinator = coordinator_.GetAddress() == request_envelope.to_address;
bool to_coordinator = coordinator_address_ == request_envelope.to_address;
if (to_coordinator) {
std::optional<CoordinatorMessages> conversion_attempt =
ConvertVariant<AllMessages, ReadRequest<CoordinatorReadRequests>, AppendRequest<CoordinatorWriteRequests>,
@ -127,8 +149,13 @@ class MachineManager {
CoordinatorMessages &&cm = std::move(conversion_attempt.value());
coordinator_.Handle(std::forward<CoordinatorMessages>(cm), request_envelope.request_id,
request_envelope.from_address);
CoordinatorRouteMessage route_message{
.message = std::move(cm),
.request_id = request_envelope.request_id,
.to = request_envelope.to_address,
.from = request_envelope.from_address,
};
coordinator_queue_.Push(std::move(route_message));
continue;
}
@ -169,6 +196,7 @@ class MachineManager {
private:
Time Cron() {
spdlog::info("running MachineManager::Cron, address {}", io_.GetAddress().ToString());
coordinator_queue_.Push(coordinator::coordinator_worker::Cron{});
return shard_manager_.Cron();
}
};

View File

@ -407,9 +407,8 @@ DEFINE_string(organization_name, "", "Organization name.");
struct SessionData {
// Explicit constructor here to ensure that pointers to all objects are
// supplied.
SessionData(memgraph::coordinator::ShardMap &shard_map, memgraph::query::v2::InterpreterContext *interpreter_context)
: shard_map(&shard_map), interpreter_context(interpreter_context) {}
memgraph::coordinator::ShardMap *shard_map;
explicit SessionData(memgraph::query::v2::InterpreterContext *interpreter_context)
: interpreter_context(interpreter_context) {}
memgraph::query::v2::InterpreterContext *interpreter_context;
};
@ -424,7 +423,6 @@ class BoltSession final : public memgraph::communication::bolt::Session<memgraph
memgraph::communication::v2::OutputStream *output_stream)
: memgraph::communication::bolt::Session<memgraph::communication::v2::InputStream,
memgraph::communication::v2::OutputStream>(input_stream, output_stream),
shard_map_(data.shard_map),
interpreter_(data.interpreter_context),
endpoint_(endpoint) {}
@ -455,7 +453,7 @@ class BoltSession final : public memgraph::communication::bolt::Session<memgraph
std::map<std::string, memgraph::communication::bolt::Value> Pull(TEncoder *encoder, std::optional<int> n,
std::optional<int> qid) override {
TypedValueResultStream stream(encoder, *shard_map_);
TypedValueResultStream stream(encoder, interpreter_.GetShardRequestManager());
return PullResults(stream, n, qid);
}
@ -482,7 +480,8 @@ class BoltSession final : public memgraph::communication::bolt::Session<memgraph
const auto &summary = interpreter_.Pull(&stream, n, qid);
std::map<std::string, memgraph::communication::bolt::Value> decoded_summary;
for (const auto &kv : summary) {
auto maybe_value = memgraph::glue::v2::ToBoltValue(kv.second, *shard_map_, memgraph::storage::v3::View::NEW);
auto maybe_value = memgraph::glue::v2::ToBoltValue(kv.second, interpreter_.GetShardRequestManager(),
memgraph::storage::v3::View::NEW);
if (maybe_value.HasError()) {
switch (maybe_value.GetError()) {
case memgraph::storage::v3::Error::DELETED_OBJECT:
@ -507,14 +506,14 @@ class BoltSession final : public memgraph::communication::bolt::Session<memgraph
/// before forwarding the calls to original TEncoder.
class TypedValueResultStream {
public:
TypedValueResultStream(TEncoder *encoder, const memgraph::coordinator::ShardMap &shard_map)
: encoder_(encoder), shard_map_(&shard_map) {}
TypedValueResultStream(TEncoder *encoder, const memgraph::msgs::ShardRequestManagerInterface *shard_request_manager)
: encoder_(encoder), shard_request_manager_(shard_request_manager) {}
void Result(const std::vector<memgraph::query::v2::TypedValue> &values) {
std::vector<memgraph::communication::bolt::Value> decoded_values;
decoded_values.reserve(values.size());
for (const auto &v : values) {
auto maybe_value = memgraph::glue::v2::ToBoltValue(v, *shard_map_, memgraph::storage::v3::View::NEW);
auto maybe_value = memgraph::glue::v2::ToBoltValue(v, shard_request_manager_, memgraph::storage::v3::View::NEW);
if (maybe_value.HasError()) {
switch (maybe_value.GetError()) {
case memgraph::storage::v3::Error::DELETED_OBJECT:
@ -534,12 +533,8 @@ class BoltSession final : public memgraph::communication::bolt::Session<memgraph
private:
TEncoder *encoder_;
// NOTE: Needed only for ToBoltValue conversions
const memgraph::coordinator::ShardMap *shard_map_;
const memgraph::msgs::ShardRequestManagerInterface *shard_request_manager_{nullptr};
};
// NOTE: Needed only for ToBoltValue conversions
const memgraph::coordinator::ShardMap *shard_map_;
memgraph::query::v2::Interpreter interpreter_;
memgraph::communication::v2::ServerEndpoint endpoint_;
};
@ -663,8 +658,7 @@ int main(int argc, char **argv) {
memgraph::coordinator::Coordinator coordinator{sm};
memgraph::machine_manager::MachineManager<memgraph::io::local_transport::LocalTransport> mm{io, config, coordinator,
sm};
memgraph::machine_manager::MachineManager<memgraph::io::local_transport::LocalTransport> mm{io, config, coordinator};
std::jthread mm_thread([&mm] { mm.Run(); });
memgraph::query::v2::InterpreterContext interpreter_context{
@ -680,7 +674,7 @@ int main(int argc, char **argv) {
std::move(io),
mm.CoordinatorAddress()};
SessionData session_data{sm, &interpreter_context};
SessionData session_data{&interpreter_context};
interpreter_context.auth = nullptr;
interpreter_context.auth_checker = nullptr;

View File

@ -11,38 +11,59 @@
#include "query/v2/accessors.hpp"
#include "query/v2/requests.hpp"
#include "query/v2/shard_request_manager.hpp"
#include "storage/v3/id_types.hpp"
namespace memgraph::query::v2::accessors {
EdgeAccessor::EdgeAccessor(Edge edge) : edge(std::move(edge)) {}
EdgeAccessor::EdgeAccessor(Edge edge, const msgs::ShardRequestManagerInterface *manager)
: edge(std::move(edge)), manager_(manager) {}
EdgeTypeId EdgeAccessor::EdgeType() const { return edge.type.id; }
const std::vector<std::pair<PropertyId, Value>> &EdgeAccessor::Properties() const {
return edge.properties;
// std::map<std::string, TypedValue> res;
// for (const auto &[name, value] : *properties) {
// res[name] = ValueToTypedValue(value);
// }
// return res;
}
const std::vector<std::pair<PropertyId, Value>> &EdgeAccessor::Properties() const { return edge.properties; }
// NOLINTNEXTLINE(readability-convert-member-functions-to-static)
Value EdgeAccessor::GetProperty(const std::string & /*prop_name*/) const {
// TODO(kostasrim) fix this
return {};
Value EdgeAccessor::GetProperty(const std::string &prop_name) const {
auto prop_id = manager_->NameToProperty(prop_name);
auto it = std::find_if(edge.properties.begin(), edge.properties.end(), [&](auto &pr) { return prop_id == pr.first; });
if (it == edge.properties.end()) {
return {};
}
return it->second;
}
const Edge &EdgeAccessor::GetEdge() const { return edge; }
bool EdgeAccessor::IsCycle() const { return edge.src == edge.dst; };
VertexAccessor EdgeAccessor::To() const { return VertexAccessor(Vertex{edge.dst}, {}); }
VertexAccessor EdgeAccessor::To() const {
return VertexAccessor(Vertex{edge.dst}, std::vector<std::pair<PropertyId, msgs::Value>>{}, manager_);
}
VertexAccessor EdgeAccessor::From() const { return VertexAccessor(Vertex{edge.src}, {}); }
VertexAccessor EdgeAccessor::From() const {
return VertexAccessor(Vertex{edge.src}, std::vector<std::pair<PropertyId, msgs::Value>>{}, manager_);
}
VertexAccessor::VertexAccessor(Vertex v, std::vector<std::pair<PropertyId, Value>> props)
: vertex(std::move(v)), properties(std::move(props)) {}
VertexAccessor::VertexAccessor(Vertex v, std::vector<std::pair<PropertyId, Value>> props,
const msgs::ShardRequestManagerInterface *manager)
: vertex(std::move(v)), properties(std::move(props)), manager_(manager) {}
VertexAccessor::VertexAccessor(Vertex v, std::map<PropertyId, Value> &&props,
const msgs::ShardRequestManagerInterface *manager)
: vertex(std::move(v)), manager_(manager) {
properties.reserve(props.size());
for (auto &[id, value] : props) {
properties.emplace_back(std::make_pair(id, std::move(value)));
}
}
VertexAccessor::VertexAccessor(Vertex v, const std::map<PropertyId, Value> &props,
const msgs::ShardRequestManagerInterface *manager)
: vertex(std::move(v)), manager_(manager) {
properties.reserve(props.size());
for (const auto &[id, value] : props) {
properties.emplace_back(std::make_pair(id, value));
}
}
Label VertexAccessor::PrimaryLabel() const { return vertex.id.first; }
@ -58,15 +79,16 @@ bool VertexAccessor::HasLabel(Label &label) const {
const std::vector<std::pair<PropertyId, Value>> &VertexAccessor::Properties() const { return properties; }
Value VertexAccessor::GetProperty(PropertyId prop_id) const {
return std::find_if(properties.begin(), properties.end(), [&](auto &pr) { return prop_id == pr.first; })->second;
// return ValueToTypedValue(properties[prop_name]);
auto it = std::find_if(properties.begin(), properties.end(), [&](auto &pr) { return prop_id == pr.first; });
if (it == properties.end()) {
return {};
}
return it->second;
}
// NOLINTNEXTLINE(readability-convert-member-functions-to-static)
Value VertexAccessor::GetProperty(const std::string & /*prop_name*/) const {
// TODO(kostasrim) Add string mapping
return {};
// return ValueToTypedValue(properties[prop_name]);
Value VertexAccessor::GetProperty(const std::string &prop_name) const {
return GetProperty(manager_->NameToProperty(prop_name));
}
msgs::Vertex VertexAccessor::GetVertex() const { return vertex; }

View File

@ -11,6 +11,7 @@
#pragma once
#include <map>
#include <optional>
#include <utility>
#include <vector>
@ -23,6 +24,10 @@
#include "utils/memory.hpp"
#include "utils/memory_tracker.hpp"
namespace memgraph::msgs {
class ShardRequestManagerInterface;
} // namespace memgraph::msgs
namespace memgraph::query::v2::accessors {
using Value = memgraph::msgs::Value;
@ -36,7 +41,7 @@ class VertexAccessor;
class EdgeAccessor final {
public:
explicit EdgeAccessor(Edge edge);
explicit EdgeAccessor(Edge edge, const msgs::ShardRequestManagerInterface *manager);
[[nodiscard]] EdgeTypeId EdgeType() const;
@ -64,6 +69,7 @@ class EdgeAccessor final {
private:
Edge edge;
const msgs::ShardRequestManagerInterface *manager_;
};
class VertexAccessor final {
@ -71,7 +77,11 @@ class VertexAccessor final {
using PropertyId = msgs::PropertyId;
using Label = msgs::Label;
using VertexId = msgs::VertexId;
VertexAccessor(Vertex v, std::vector<std::pair<PropertyId, Value>> props);
VertexAccessor(Vertex v, std::vector<std::pair<PropertyId, Value>> props,
const msgs::ShardRequestManagerInterface *manager);
VertexAccessor(Vertex v, std::map<PropertyId, Value> &&props, const msgs::ShardRequestManagerInterface *manager);
VertexAccessor(Vertex v, const std::map<PropertyId, Value> &props, const msgs::ShardRequestManagerInterface *manager);
[[nodiscard]] Label PrimaryLabel() const;
@ -140,6 +150,7 @@ class VertexAccessor final {
private:
Vertex vertex;
std::vector<std::pair<PropertyId, Value>> properties;
const msgs::ShardRequestManagerInterface *manager_;
};
// inline VertexAccessor EdgeAccessor::To() const { return VertexAccessor(impl_.ToVertex()); }

View File

@ -23,6 +23,10 @@
#include "storage/v3/property_value.hpp"
#include "storage/v3/view.hpp"
namespace memgraph::msgs {
class ShardRequestManagerInterface;
} // namespace memgraph::msgs
namespace memgraph::query::v2 {
inline const auto lam = [](const auto &val) { return ValueToTypedValue(val); };
@ -32,13 +36,14 @@ class Callable {
auto operator()(const memgraph::storage::v3::PropertyValue &val) const {
return memgraph::storage::v3::PropertyToTypedValue<TypedValue>(val);
};
auto operator()(const msgs::Value &val) const { return ValueToTypedValue(val); };
auto operator()(const msgs::Value &val, memgraph::msgs::ShardRequestManagerInterface *manager) const {
return ValueToTypedValue(val, manager);
};
};
} // namespace detail
using ExpressionEvaluator =
memgraph::expr::ExpressionEvaluator<TypedValue, memgraph::query::v2::EvaluationContext, DbAccessor,
storage::v3::View, storage::v3::LabelId, msgs::Value, detail::Callable,
memgraph::storage::v3::Error, memgraph::expr::QueryEngineTag>;
using ExpressionEvaluator = memgraph::expr::ExpressionEvaluator<
TypedValue, memgraph::query::v2::EvaluationContext, memgraph::msgs::ShardRequestManagerInterface, storage::v3::View,
storage::v3::LabelId, msgs::Value, detail::Callable, memgraph::storage::v3::Error, memgraph::expr::QueryEngineTag>;
} // namespace memgraph::query::v2

View File

@ -98,7 +98,7 @@ struct ExecutionContext {
ExecutionStats execution_stats;
utils::AsyncTimer timer;
msgs::ShardRequestManagerInterface *shard_request_manager{nullptr};
IdAllocator edge_ids_alloc;
IdAllocator *edge_ids_alloc;
};
static_assert(std::is_move_assignable_v<ExecutionContext>, "ExecutionContext must be move assignable!");

View File

@ -13,10 +13,11 @@
#include "bindings/typed_value.hpp"
#include "query/v2/accessors.hpp"
#include "query/v2/requests.hpp"
#include "query/v2/shard_request_manager.hpp"
namespace memgraph::query::v2 {
inline TypedValue ValueToTypedValue(const msgs::Value &value) {
inline TypedValue ValueToTypedValue(const msgs::Value &value, msgs::ShardRequestManagerInterface *manager) {
using Value = msgs::Value;
switch (value.type) {
case Value::Type::Null:
@ -34,7 +35,7 @@ inline TypedValue ValueToTypedValue(const msgs::Value &value) {
std::vector<TypedValue> dst;
dst.reserve(lst.size());
for (const auto &elem : lst) {
dst.push_back(ValueToTypedValue(elem));
dst.push_back(ValueToTypedValue(elem, manager));
}
return TypedValue(std::move(dst));
}
@ -42,14 +43,15 @@ inline TypedValue ValueToTypedValue(const msgs::Value &value) {
const auto &value_map = value.map_v;
std::map<std::string, TypedValue> dst;
for (const auto &[key, val] : value_map) {
dst[key] = ValueToTypedValue(val);
dst[key] = ValueToTypedValue(val, manager);
}
return TypedValue(std::move(dst));
}
case Value::Type::Vertex:
return TypedValue(accessors::VertexAccessor(value.vertex_v, {}));
return TypedValue(accessors::VertexAccessor(
value.vertex_v, std::vector<std::pair<storage::v3::PropertyId, msgs::Value>>{}, manager));
case Value::Type::Edge:
return TypedValue(accessors::EdgeAccessor(value.edge_v));
return TypedValue(accessors::EdgeAccessor(value.edge_v, manager));
}
throw std::runtime_error("Incorrect type in conversion");
}

View File

@ -22,8 +22,8 @@
#include "query/v2/bindings/typed_value.hpp"
#include "query/v2/conversions.hpp"
#include "query/v2/db_accessor.hpp"
#include "query/v2/exceptions.hpp"
#include "query/v2/shard_request_manager.hpp"
#include "storage/v3/conversions.hpp"
#include "utils/string.hpp"
#include "utils/temporal.hpp"

View File

@ -16,12 +16,15 @@
#include <unordered_map>
#include "query/v2/bindings/typed_value.hpp"
#include "query/v2/db_accessor.hpp"
#include "storage/v3/view.hpp"
#include "utils/memory.hpp"
namespace memgraph::query::v2 {
namespace memgraph::msgs {
class ShardRequestManagerInterface;
} // namespace memgraph::msgs
class DbAccessor;
namespace memgraph::query::v2 {
namespace {
const char kStartsWith[] = "STARTSWITH";
@ -31,7 +34,9 @@ const char kId[] = "ID";
} // namespace
struct FunctionContext {
DbAccessor *db_accessor;
// TODO(kostasrim) consider optional here. ShardRequestManager does not exist on the storage.
// DbAccessor *db_accessor;
msgs::ShardRequestManagerInterface *manager;
utils::MemoryResource *memory;
int64_t timestamp;
std::unordered_map<std::string, int64_t> *counters;

View File

@ -144,7 +144,7 @@ class ReplQueryHandler final : public query::v2::ReplicationQueryHandler {
/// @throw QueryRuntimeException if an error ocurred.
Callback HandleAuthQuery(AuthQuery *auth_query, AuthQueryHandler *auth, const Parameters &parameters,
DbAccessor *db_accessor) {
msgs::ShardRequestManagerInterface *manager) {
// Empty frame for evaluation of password expression. This is OK since
// password should be either null or string literal and it's evaluation
// should not depend on frame.
@ -155,7 +155,7 @@ Callback HandleAuthQuery(AuthQuery *auth_query, AuthQueryHandler *auth, const Pa
// the argument to Callback.
evaluation_context.timestamp = QueryTimestamp();
evaluation_context.parameters = parameters;
ExpressionEvaluator evaluator(&frame, symbol_table, evaluation_context, db_accessor, storage::v3::View::OLD);
ExpressionEvaluator evaluator(&frame, symbol_table, evaluation_context, manager, storage::v3::View::OLD);
std::string username = auth_query->user_;
std::string rolename = auth_query->role_;
@ -313,7 +313,7 @@ Callback HandleAuthQuery(AuthQuery *auth_query, AuthQueryHandler *auth, const Pa
}
Callback HandleReplicationQuery(ReplicationQuery *repl_query, const Parameters &parameters,
InterpreterContext *interpreter_context, DbAccessor *db_accessor,
InterpreterContext *interpreter_context, msgs::ShardRequestManagerInterface *manager,
std::vector<Notification> *notifications) {
expr::Frame<TypedValue> frame(0);
SymbolTable symbol_table;
@ -322,7 +322,7 @@ Callback HandleReplicationQuery(ReplicationQuery *repl_query, const Parameters &
// the argument to Callback.
evaluation_context.timestamp = QueryTimestamp();
evaluation_context.parameters = parameters;
ExpressionEvaluator evaluator(&frame, symbol_table, evaluation_context, db_accessor, storage::v3::View::OLD);
ExpressionEvaluator evaluator(&frame, symbol_table, evaluation_context, manager, storage::v3::View::OLD);
Callback callback;
switch (repl_query->action_) {
@ -448,7 +448,8 @@ Callback HandleReplicationQuery(ReplicationQuery *repl_query, const Parameters &
}
}
Callback HandleSettingQuery(SettingQuery *setting_query, const Parameters &parameters, DbAccessor *db_accessor) {
Callback HandleSettingQuery(SettingQuery *setting_query, const Parameters &parameters,
msgs::ShardRequestManagerInterface *manager) {
expr::Frame<TypedValue> frame(0);
SymbolTable symbol_table;
EvaluationContext evaluation_context;
@ -458,7 +459,7 @@ Callback HandleSettingQuery(SettingQuery *setting_query, const Parameters &param
std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::system_clock::now().time_since_epoch())
.count();
evaluation_context.parameters = parameters;
ExpressionEvaluator evaluator(&frame, symbol_table, evaluation_context, db_accessor, storage::v3::View::OLD);
ExpressionEvaluator evaluator(&frame, symbol_table, evaluation_context, manager, storage::v3::View::OLD);
Callback callback;
switch (setting_query->action_) {
@ -696,7 +697,7 @@ PullPlan::PullPlan(const std::shared_ptr<CachedPlan> plan, const Parameters &par
ctx_.is_shutting_down = &interpreter_context->is_shutting_down;
ctx_.is_profile_query = is_profile_query;
ctx_.shard_request_manager = shard_request_manager;
ctx_.edge_ids_alloc = interpreter_context->edge_ids_alloc;
ctx_.edge_ids_alloc = &interpreter_context->edge_ids_alloc;
}
std::optional<plan::ProfilingStatsWithTotalTime> PullPlan::Pull(AnyStream *stream, std::optional<int> n,
@ -886,7 +887,8 @@ PreparedQuery PrepareCypherQuery(ParsedQuery parsed_query, std::map<std::string,
EvaluationContext evaluation_context;
evaluation_context.timestamp = QueryTimestamp();
evaluation_context.parameters = parsed_query.parameters;
ExpressionEvaluator evaluator(&frame, symbol_table, evaluation_context, dba, storage::v3::View::OLD);
ExpressionEvaluator evaluator(&frame, symbol_table, evaluation_context, shard_request_manager,
storage::v3::View::OLD);
const auto memory_limit =
expr::EvaluateMemoryLimit(&evaluator, cypher_query->memory_limit_, cypher_query->memory_scale_);
if (memory_limit) {
@ -901,7 +903,6 @@ PreparedQuery PrepareCypherQuery(ParsedQuery parsed_query, std::map<std::string,
"convert the parsed row values to the appropriate type. This can be done using the built-in "
"conversion functions such as ToInteger, ToFloat, ToBoolean etc.");
}
shard_request_manager->StartTransaction();
auto plan = CypherQueryToPlan(
parsed_query.stripped_query.hash(), std::move(parsed_query.ast_storage), cypher_query, parsed_query.parameters,
parsed_query.is_cacheable ? &interpreter_context->plan_cache : nullptr, shard_request_manager);
@ -957,10 +958,10 @@ PreparedQuery PrepareExplainQuery(ParsedQuery parsed_query, std::map<std::string
auto *cypher_query = utils::Downcast<CypherQuery>(parsed_inner_query.query);
MG_ASSERT(cypher_query, "Cypher grammar should not allow other queries in EXPLAIN");
auto cypher_query_plan =
CypherQueryToPlan(parsed_inner_query.stripped_query.hash(), std::move(parsed_inner_query.ast_storage),
cypher_query, parsed_inner_query.parameters,
parsed_inner_query.is_cacheable ? &interpreter_context->plan_cache : nullptr, nullptr);
auto cypher_query_plan = CypherQueryToPlan(
parsed_inner_query.stripped_query.hash(), std::move(parsed_inner_query.ast_storage), cypher_query,
parsed_inner_query.parameters, parsed_inner_query.is_cacheable ? &interpreter_context->plan_cache : nullptr,
shard_request_manager);
std::stringstream printed_plan;
plan::PrettyPrint(*shard_request_manager, &cypher_query_plan->plan(), &printed_plan);
@ -1030,7 +1031,8 @@ PreparedQuery PrepareProfileQuery(ParsedQuery parsed_query, bool in_explicit_tra
EvaluationContext evaluation_context;
evaluation_context.timestamp = QueryTimestamp();
evaluation_context.parameters = parsed_inner_query.parameters;
ExpressionEvaluator evaluator(&frame, symbol_table, evaluation_context, dba, storage::v3::View::OLD);
ExpressionEvaluator evaluator(&frame, symbol_table, evaluation_context, shard_request_manager,
storage::v3::View::OLD);
const auto memory_limit =
expr::EvaluateMemoryLimit(&evaluator, cypher_query->memory_limit_, cypher_query->memory_scale_);
@ -1041,7 +1043,7 @@ PreparedQuery PrepareProfileQuery(ParsedQuery parsed_query, bool in_explicit_tra
auto rw_type_checker = plan::ReadWriteTypeChecker();
rw_type_checker.InferRWType(const_cast<plan::LogicalOperator &>(cypher_query_plan->plan()));
return PreparedQuery{{"OPERATOR", "ACTUAL HITS", "RELATIVE TIME", "ABSOLUTE TIME"},
return PreparedQuery{{"OPERATOR", "ACTUAL HITS", "RELATIVE TIME", "ABSOLUTE TIME", "CUSTOM DATA"},
std::move(parsed_query.required_privileges),
[plan = std::move(cypher_query_plan), parameters = std::move(parsed_inner_query.parameters),
summary, dba, interpreter_context, execution_memory, memory_limit, shard_request_manager,
@ -1179,14 +1181,15 @@ PreparedQuery PrepareIndexQuery(ParsedQuery parsed_query, bool in_explicit_trans
PreparedQuery PrepareAuthQuery(ParsedQuery parsed_query, bool in_explicit_transaction,
std::map<std::string, TypedValue> *summary, InterpreterContext *interpreter_context,
DbAccessor *dba, utils::MemoryResource *execution_memory) {
DbAccessor *dba, utils::MemoryResource *execution_memory,
msgs::ShardRequestManagerInterface *manager) {
if (in_explicit_transaction) {
throw UserModificationInMulticommandTxException();
}
auto *auth_query = utils::Downcast<AuthQuery>(parsed_query.query);
auto callback = HandleAuthQuery(auth_query, interpreter_context->auth, parsed_query.parameters, dba);
auto callback = HandleAuthQuery(auth_query, interpreter_context->auth, parsed_query.parameters, manager);
SymbolTable symbol_table;
std::vector<Symbol> output_symbols;
@ -1215,14 +1218,14 @@ PreparedQuery PrepareAuthQuery(ParsedQuery parsed_query, bool in_explicit_transa
PreparedQuery PrepareReplicationQuery(ParsedQuery parsed_query, const bool in_explicit_transaction,
std::vector<Notification> *notifications, InterpreterContext *interpreter_context,
DbAccessor *dba) {
msgs::ShardRequestManagerInterface *manager) {
if (in_explicit_transaction) {
throw ReplicationModificationInMulticommandTxException();
}
auto *replication_query = utils::Downcast<ReplicationQuery>(parsed_query.query);
auto callback =
HandleReplicationQuery(replication_query, parsed_query.parameters, interpreter_context, dba, notifications);
HandleReplicationQuery(replication_query, parsed_query.parameters, interpreter_context, manager, notifications);
return PreparedQuery{callback.header, std::move(parsed_query.required_privileges),
[callback_fn = std::move(callback.fn), pull_plan = std::shared_ptr<PullPlanVector>{nullptr}](
@ -1310,14 +1313,15 @@ PreparedQuery PrepareCreateSnapshotQuery(ParsedQuery parsed_query, bool in_expli
throw SemanticException("CreateSnapshot query is not supported!");
}
PreparedQuery PrepareSettingQuery(ParsedQuery parsed_query, const bool in_explicit_transaction, DbAccessor *dba) {
PreparedQuery PrepareSettingQuery(ParsedQuery parsed_query, const bool in_explicit_transaction,
msgs::ShardRequestManagerInterface *manager) {
if (in_explicit_transaction) {
throw SettingConfigInMulticommandTxException{};
}
auto *setting_query = utils::Downcast<SettingQuery>(parsed_query.query);
MG_ASSERT(setting_query);
auto callback = HandleSettingQuery(setting_query, parsed_query.parameters, dba);
auto callback = HandleSettingQuery(setting_query, parsed_query.parameters, manager);
return PreparedQuery{std::move(callback.header), std::move(parsed_query.required_privileges),
[callback_fn = std::move(callback.fn), pull_plan = std::shared_ptr<PullPlanVector>{nullptr}](
@ -1511,6 +1515,11 @@ Interpreter::PrepareResult Interpreter::Prepare(const std::string &query_string,
ParsedQuery parsed_query =
ParseQuery(query_string, params, &interpreter_context_->ast_cache, interpreter_context_->config.query);
query_execution->summary["parsing_time"] = parsing_timer.Elapsed().count();
if (!in_explicit_transaction_ &&
(utils::Downcast<CypherQuery>(parsed_query.query) || utils::Downcast<ExplainQuery>(parsed_query.query) ||
utils::Downcast<ProfileQuery>(parsed_query.query))) {
shard_request_manager_->StartTransaction();
}
utils::Timer planning_timer;
PreparedQuery prepared_query;
@ -1533,9 +1542,9 @@ Interpreter::PrepareResult Interpreter::Prepare(const std::string &query_string,
prepared_query = PrepareIndexQuery(std::move(parsed_query), in_explicit_transaction_,
&query_execution->notifications, interpreter_context_);
} else if (utils::Downcast<AuthQuery>(parsed_query.query)) {
prepared_query = PrepareAuthQuery(std::move(parsed_query), in_explicit_transaction_, &query_execution->summary,
interpreter_context_, &*execution_db_accessor_,
&query_execution->execution_memory_with_exception);
prepared_query = PrepareAuthQuery(
std::move(parsed_query), in_explicit_transaction_, &query_execution->summary, interpreter_context_,
&*execution_db_accessor_, &query_execution->execution_memory_with_exception, shard_request_manager_.get());
} else if (utils::Downcast<InfoQuery>(parsed_query.query)) {
prepared_query = PrepareInfoQuery(std::move(parsed_query), in_explicit_transaction_, &query_execution->summary,
interpreter_context_, interpreter_context_->db,
@ -1546,7 +1555,7 @@ Interpreter::PrepareResult Interpreter::Prepare(const std::string &query_string,
} else if (utils::Downcast<ReplicationQuery>(parsed_query.query)) {
prepared_query =
PrepareReplicationQuery(std::move(parsed_query), in_explicit_transaction_, &query_execution->notifications,
interpreter_context_, &*execution_db_accessor_);
interpreter_context_, shard_request_manager_.get());
} else if (utils::Downcast<LockPathQuery>(parsed_query.query)) {
prepared_query = PrepareLockPathQuery(std::move(parsed_query), in_explicit_transaction_, interpreter_context_,
&*execution_db_accessor_);
@ -1563,7 +1572,8 @@ Interpreter::PrepareResult Interpreter::Prepare(const std::string &query_string,
prepared_query =
PrepareCreateSnapshotQuery(std::move(parsed_query), in_explicit_transaction_, interpreter_context_);
} else if (utils::Downcast<SettingQuery>(parsed_query.query)) {
prepared_query = PrepareSettingQuery(std::move(parsed_query), in_explicit_transaction_, &*execution_db_accessor_);
prepared_query =
PrepareSettingQuery(std::move(parsed_query), in_explicit_transaction_, shard_request_manager_.get());
} else if (utils::Downcast<VersionQuery>(parsed_query.query)) {
prepared_query = PrepareVersionQuery(std::move(parsed_query), in_explicit_transaction_);
} else if (utils::Downcast<SchemaQuery>(parsed_query.query)) {

View File

@ -296,6 +296,8 @@ class Interpreter final {
*/
void Abort();
const msgs::ShardRequestManagerInterface *GetShardRequestManager() const { return shard_request_manager_.get(); }
private:
struct QueryExecution {
std::optional<PreparedQuery> prepared_query;

View File

@ -12,8 +12,8 @@
#pragma once
#include <algorithm>
#include <unordered_map>
#include <utility>
#include <vector>
#include "storage/v3/property_value.hpp"
#include "utils/logging.hpp"
@ -32,7 +32,7 @@ struct Parameters {
* @param position Token position in query of value.
* @param value
*/
void Add(int position, const storage::v3::PropertyValue &value) { storage_.emplace_back(position, value); }
void Add(int position, const storage::v3::PropertyValue &value) { storage_.emplace(position, value); }
/**
* Returns the value found for the given token position.
@ -41,23 +41,11 @@ struct Parameters {
* @return Value for the given token position.
*/
const storage::v3::PropertyValue &AtTokenPosition(int position) const {
auto found = std::find_if(storage_.begin(), storage_.end(), [&](const auto &a) { return a.first == position; });
auto found = storage_.find(position);
MG_ASSERT(found != storage_.end(), "Token position must be present in container");
return found->second;
}
/**
* Returns the position-th stripped value. Asserts that this
* container has at least (position + 1) elements.
*
* @param position Which stripped param is sought.
* @return Token position and value for sought param.
*/
const std::pair<int, storage::v3::PropertyValue> &At(int position) const {
MG_ASSERT(position < static_cast<int>(storage_.size()), "Invalid position");
return storage_[position];
}
/** Returns the number of arguments in this container */
auto size() const { return storage_.size(); }
@ -65,7 +53,7 @@ struct Parameters {
auto end() const { return storage_.end(); }
private:
std::vector<std::pair<int, storage::v3::PropertyValue>> storage_;
std::unordered_map<int, storage::v3::PropertyValue> storage_;
};
} // namespace memgraph::query::v2

View File

@ -155,7 +155,16 @@ uint64_t ComputeProfilingKey(const T *obj) {
} // namespace
#define SCOPED_PROFILE_OP(name) ScopedProfile profile{ComputeProfilingKey(this), name, &context};
// NOLINTNEXTLINE(cppcoreguidelines-macro-usage)
#define SCOPED_PROFILE_OP(name) \
ScopedProfile profile { ComputeProfilingKey(this), name, &context }
// NOLINTNEXTLINE(cppcoreguidelines-macro-usage)
#define SCOPED_CUSTOM_PROFILE(name) \
ScopedCustomProfile custom_profile { name, context }
// NOLINTNEXTLINE(cppcoreguidelines-macro-usage)
#define SCOPED_REQUEST_WAIT_PROFILE SCOPED_CUSTOM_PROFILE("request_wait")
class DistributedCreateNodeCursor : public Cursor {
public:
@ -168,7 +177,11 @@ class DistributedCreateNodeCursor : public Cursor {
SCOPED_PROFILE_OP("CreateNode");
if (input_cursor_->Pull(frame, context)) {
auto &shard_manager = context.shard_request_manager;
shard_manager->Request(state_, NodeCreationInfoToRequest(context, frame));
{
SCOPED_REQUEST_WAIT_PROFILE;
shard_manager->Request(state_, NodeCreationInfoToRequest(context, frame));
}
PlaceNodeOnTheFrame(frame, context);
return true;
}
@ -179,8 +192,19 @@ class DistributedCreateNodeCursor : public Cursor {
void Reset() override { state_ = {}; }
std::vector<msgs::NewVertex> NodeCreationInfoToRequest(ExecutionContext &context, Frame &frame) const {
void PlaceNodeOnTheFrame(Frame &frame, ExecutionContext &context) {
// TODO(kostasrim) Make this work with batching
const auto primary_label = msgs::Label{.id = nodes_info_[0]->labels[0]};
msgs::Vertex v{.id = std::make_pair(primary_label, primary_keys_[0])};
frame[nodes_info_.front()->symbol] = TypedValue(
query::v2::accessors::VertexAccessor(std::move(v), src_vertex_props_[0], context.shard_request_manager));
}
std::vector<msgs::NewVertex> NodeCreationInfoToRequest(ExecutionContext &context, Frame &frame) {
std::vector<msgs::NewVertex> requests;
// TODO(kostasrim) this assertion should be removed once we support multiple vertex creation
MG_ASSERT(nodes_info_.size() == 1);
msgs::PrimaryKey pk;
for (const auto &node_info : nodes_info_) {
msgs::NewVertex rqst;
MG_ASSERT(!node_info->labels.empty(), "Cannot determine primary label");
@ -188,17 +212,14 @@ class DistributedCreateNodeCursor : public Cursor {
// TODO(jbajic) Fix properties not send,
// suggestion: ignore distinction between properties and primary keys
// since schema validation is done on storage side
std::map<msgs::PropertyId, msgs::Value> properties;
ExpressionEvaluator evaluator(&frame, context.symbol_table, context.evaluation_context, nullptr,
storage::v3::View::NEW);
if (const auto *node_info_properties = std::get_if<PropertiesMapList>(&node_info->properties)) {
for (const auto &[key, value_expression] : *node_info_properties) {
TypedValue val = value_expression->Accept(evaluator);
if (context.shard_request_manager->IsPrimaryKey(primary_label, key)) {
rqst.primary_key.push_back(TypedValueToValue(val));
} else {
properties[key] = TypedValueToValue(val);
pk.push_back(TypedValueToValue(val));
}
}
} else {
@ -207,9 +228,8 @@ class DistributedCreateNodeCursor : public Cursor {
auto key_str = std::string(key);
auto property_id = context.shard_request_manager->NameToProperty(key_str);
if (context.shard_request_manager->IsPrimaryKey(primary_label, property_id)) {
rqst.primary_key.push_back(storage::v3::TypedValueToValue(value));
} else {
properties[property_id] = TypedValueToValue(value);
rqst.primary_key.push_back(TypedValueToValue(value));
pk.push_back(TypedValueToValue(value));
}
}
}
@ -219,14 +239,18 @@ class DistributedCreateNodeCursor : public Cursor {
}
// TODO(kostasrim) Copy non primary labels as well
rqst.label_ids.push_back(msgs::Label{.id = primary_label});
src_vertex_props_.push_back(rqst.properties);
requests.push_back(std::move(rqst));
}
primary_keys_.push_back(std::move(pk));
return requests;
}
private:
const UniqueCursorPtr input_cursor_;
std::vector<const NodeCreationInfo *> nodes_info_;
std::vector<std::vector<std::pair<storage::v3::PropertyId, msgs::Value>>> src_vertex_props_;
std::vector<msgs::PrimaryKey> primary_keys_;
msgs::ExecutionState<msgs::CreateVerticesRequest> state_;
};
@ -361,38 +385,43 @@ class DistributedScanAllAndFilterCursor : public Cursor {
using VertexAccessor = accessors::VertexAccessor;
bool MakeRequest(msgs::ShardRequestManagerInterface &shard_manager) {
current_batch = shard_manager.Request(request_state_);
bool MakeRequest(msgs::ShardRequestManagerInterface &shard_manager, ExecutionContext &context) {
{
SCOPED_REQUEST_WAIT_PROFILE;
current_batch = shard_manager.Request(request_state_);
}
current_vertex_it = current_batch.begin();
return !current_batch.empty();
}
bool Pull(Frame &frame, ExecutionContext &context) override {
SCOPED_PROFILE_OP(op_name_);
auto &shard_manager = *context.shard_request_manager;
if (MustAbort(context)) {
throw HintedAbortError();
}
using State = msgs::ExecutionState<msgs::ScanVerticesRequest>;
if (request_state_.state == State::INITIALIZING) {
if (!input_cursor_->Pull(frame, context)) {
return false;
while (true) {
if (MustAbort(context)) {
throw HintedAbortError();
}
}
using State = msgs::ExecutionState<msgs::ScanVerticesRequest>;
request_state_.label = label_.has_value() ? std::make_optional(shard_manager.LabelToName(*label_)) : std::nullopt;
if (request_state_.state == State::INITIALIZING) {
if (!input_cursor_->Pull(frame, context)) {
return false;
}
}
if (current_vertex_it == current_batch.end()) {
if (request_state_.state == State::COMPLETED || !MakeRequest(shard_manager)) {
request_state_.label = label_.has_value() ? std::make_optional(shard_manager.LabelToName(*label_)) : std::nullopt;
if (current_vertex_it == current_batch.end() &&
(request_state_.state == State::COMPLETED || !MakeRequest(shard_manager, context))) {
ResetExecutionState();
return Pull(frame, context);
continue;
}
}
frame[output_symbol_] = TypedValue(std::move(*current_vertex_it));
++current_vertex_it;
return true;
frame[output_symbol_] = TypedValue(std::move(*current_vertex_it));
++current_vertex_it;
return true;
}
}
void Shutdown() override { input_cursor_->Shutdown(); }
@ -687,7 +716,7 @@ bool Filter::FilterCursor::Pull(Frame &frame, ExecutionContext &context) {
// Like all filters, newly set values should not affect filtering of old
// nodes and edges.
ExpressionEvaluator evaluator(&frame, context.symbol_table, context.evaluation_context, context.db_accessor,
ExpressionEvaluator evaluator(&frame, context.symbol_table, context.evaluation_context, context.shard_request_manager,
storage::v3::View::OLD);
while (input_cursor_->Pull(frame, context)) {
if (EvaluateFilter(evaluator, self_.expression_)) return true;
@ -728,8 +757,8 @@ bool Produce::ProduceCursor::Pull(Frame &frame, ExecutionContext &context) {
if (input_cursor_->Pull(frame, context)) {
// Produce should always yield the latest results.
ExpressionEvaluator evaluator(&frame, context.symbol_table, context.evaluation_context, context.db_accessor,
storage::v3::View::NEW);
ExpressionEvaluator evaluator(&frame, context.symbol_table, context.evaluation_context,
context.shard_request_manager, storage::v3::View::NEW);
for (auto named_expr : self_.named_expressions_) named_expr->Accept(evaluator);
return true;
@ -1149,8 +1178,8 @@ class AggregateCursor : public Cursor {
* aggregation results, and not on the number of inputs.
*/
void ProcessAll(Frame *frame, ExecutionContext *context) {
ExpressionEvaluator evaluator(frame, context->symbol_table, context->evaluation_context, context->db_accessor,
storage::v3::View::NEW);
ExpressionEvaluator evaluator(frame, context->symbol_table, context->evaluation_context,
context->shard_request_manager, storage::v3::View::NEW);
while (input_cursor_->Pull(*frame, *context)) {
ProcessOne(*frame, &evaluator);
}
@ -1370,8 +1399,8 @@ bool Skip::SkipCursor::Pull(Frame &frame, ExecutionContext &context) {
// First successful pull from the input, evaluate the skip expression.
// The skip expression doesn't contain identifiers so graph view
// parameter is not important.
ExpressionEvaluator evaluator(&frame, context.symbol_table, context.evaluation_context, context.db_accessor,
storage::v3::View::OLD);
ExpressionEvaluator evaluator(&frame, context.symbol_table, context.evaluation_context,
context.shard_request_manager, storage::v3::View::OLD);
TypedValue to_skip = self_.expression_->Accept(evaluator);
if (to_skip.type() != TypedValue::Type::Int)
throw QueryRuntimeException("Number of elements to skip must be an integer.");
@ -1425,8 +1454,8 @@ bool Limit::LimitCursor::Pull(Frame &frame, ExecutionContext &context) {
if (limit_ == -1) {
// Limit expression doesn't contain identifiers so graph view is not
// important.
ExpressionEvaluator evaluator(&frame, context.symbol_table, context.evaluation_context, context.db_accessor,
storage::v3::View::OLD);
ExpressionEvaluator evaluator(&frame, context.symbol_table, context.evaluation_context,
context.shard_request_manager, storage::v3::View::OLD);
TypedValue limit = self_.expression_->Accept(evaluator);
if (limit.type() != TypedValue::Type::Int)
throw QueryRuntimeException("Limit on number of returned elements must be an integer.");
@ -1481,8 +1510,8 @@ class OrderByCursor : public Cursor {
SCOPED_PROFILE_OP("OrderBy");
if (!did_pull_all_) {
ExpressionEvaluator evaluator(&frame, context.symbol_table, context.evaluation_context, context.db_accessor,
storage::v3::View::OLD);
ExpressionEvaluator evaluator(&frame, context.symbol_table, context.evaluation_context,
context.shard_request_manager, storage::v3::View::OLD);
auto *mem = cache_.get_allocator().GetMemoryResource();
while (input_cursor_->Pull(frame, context)) {
// collect the order_by elements
@ -1739,8 +1768,8 @@ class UnwindCursor : public Cursor {
if (!input_cursor_->Pull(frame, context)) return false;
// successful pull from input, initialize value and iterator
ExpressionEvaluator evaluator(&frame, context.symbol_table, context.evaluation_context, context.db_accessor,
storage::v3::View::OLD);
ExpressionEvaluator evaluator(&frame, context.symbol_table, context.evaluation_context,
context.shard_request_manager, storage::v3::View::OLD);
TypedValue input_value = self_.input_expression_->Accept(evaluator);
if (input_value.type() != TypedValue::Type::List)
throw QueryRuntimeException("Argument of UNWIND must be a list, but '{}' was provided.", input_value.type());
@ -2217,7 +2246,7 @@ class LoadCsvCursor : public Cursor {
// self_->delimiter_, and self_->quote_ earlier (say, in the interpreter.cpp)
// without massacring the code even worse than I did here
if (UNLIKELY(!reader_)) {
reader_ = MakeReader(&context.evaluation_context);
reader_ = MakeReader(context);
}
bool input_pulled = input_cursor_->Pull(frame, context);
@ -2246,11 +2275,12 @@ class LoadCsvCursor : public Cursor {
void Shutdown() override { input_cursor_->Shutdown(); }
private:
csv::Reader MakeReader(EvaluationContext *eval_context) {
csv::Reader MakeReader(ExecutionContext &context) {
auto &eval_context = context.evaluation_context;
Frame frame(0);
SymbolTable symbol_table;
DbAccessor *dba = nullptr;
auto evaluator = ExpressionEvaluator(&frame, symbol_table, *eval_context, dba, storage::v3::View::OLD);
auto evaluator =
ExpressionEvaluator(&frame, symbol_table, eval_context, context.shard_request_manager, storage::v3::View::OLD);
auto maybe_file = ToOptionalString(&evaluator, self_->file_);
auto maybe_delim = ToOptionalString(&evaluator, self_->delimiter_);
@ -2287,8 +2317,8 @@ class ForeachCursor : public Cursor {
return false;
}
ExpressionEvaluator evaluator(&frame, context.symbol_table, context.evaluation_context, context.db_accessor,
storage::v3::View::NEW);
ExpressionEvaluator evaluator(&frame, context.symbol_table, context.evaluation_context,
context.shard_request_manager, storage::v3::View::NEW);
TypedValue expr_result = expression->Accept(evaluator);
if (expr_result.IsNull()) {
@ -2366,7 +2396,10 @@ class DistributedCreateExpandCursor : public Cursor {
}
auto &shard_manager = context.shard_request_manager;
ResetExecutionState();
shard_manager->Request(state_, ExpandCreationInfoToRequest(context, frame));
{
SCOPED_REQUEST_WAIT_PROFILE;
shard_manager->Request(state_, ExpandCreationInfoToRequest(context, frame));
}
return true;
}
@ -2389,7 +2422,7 @@ class DistributedCreateExpandCursor : public Cursor {
std::vector<msgs::NewExpand> ExpandCreationInfoToRequest(ExecutionContext &context, Frame &frame) const {
std::vector<msgs::NewExpand> edge_requests;
for (const auto &edge_info : std::vector{self_.edge_info_}) {
msgs::NewExpand request{.id = {context.edge_ids_alloc.AllocateId()}};
msgs::NewExpand request{.id = {context.edge_ids_alloc->AllocateId()}};
ExpressionEvaluator evaluator(&frame, context.symbol_table, context.evaluation_context, nullptr,
storage::v3::View::NEW);
request.type = {edge_info.edge_type};
@ -2425,13 +2458,13 @@ class DistributedCreateExpandCursor : public Cursor {
std::invoke([&]() {
switch (edge_info.direction) {
case EdgeAtom::Direction::IN: {
set_vertex(v1, request.src_vertex);
set_vertex(v2, request.dest_vertex);
set_vertex(v2, request.src_vertex);
set_vertex(v1, request.dest_vertex);
break;
}
case EdgeAtom::Direction::OUT: {
set_vertex(v1, request.dest_vertex);
set_vertex(v2, request.src_vertex);
set_vertex(v1, request.src_vertex);
set_vertex(v2, request.dest_vertex);
break;
}
case EdgeAtom::Direction::BOTH:
@ -2458,15 +2491,52 @@ class DistributedExpandCursor : public Cursor {
: self_(self),
input_cursor_(self.input_->MakeCursor(mem)),
current_in_edge_it_(current_in_edges_.begin()),
current_out_edge_it_(current_out_edges_.begin()) {
if (self_.common_.existing_node) {
throw QueryRuntimeException("Cannot use existing node with DistributedExpandOne cursor!");
}
}
current_out_edge_it_(current_out_edges_.begin()) {}
using VertexAccessor = accessors::VertexAccessor;
using EdgeAccessor = accessors::EdgeAccessor;
static constexpr auto DirectionToMsgsDirection(const auto direction) {
switch (direction) {
case EdgeAtom::Direction::IN:
return msgs::EdgeDirection::IN;
case EdgeAtom::Direction::OUT:
return msgs::EdgeDirection::OUT;
case EdgeAtom::Direction::BOTH:
return msgs::EdgeDirection::BOTH;
}
};
void PullDstVertex(Frame &frame, ExecutionContext &context, const EdgeAtom::Direction direction) {
if (self_.common_.existing_node) {
return;
}
MG_ASSERT(direction != EdgeAtom::Direction::BOTH);
const auto &edge = frame[self_.common_.edge_symbol].ValueEdge();
static constexpr auto get_dst_vertex = [](const EdgeAccessor &edge,
const EdgeAtom::Direction direction) -> msgs::VertexId {
switch (direction) {
case EdgeAtom::Direction::IN:
return edge.From().Id();
case EdgeAtom::Direction::OUT:
return edge.To().Id();
case EdgeAtom::Direction::BOTH:
throw std::runtime_error("EdgeDirection Both not implemented");
}
};
msgs::ExpandOneRequest request;
// to not fetch any properties of the edges
request.edge_properties.emplace();
request.src_vertices.push_back(get_dst_vertex(edge, direction));
request.direction = (direction == EdgeAtom::Direction::IN) ? msgs::EdgeDirection::OUT : msgs::EdgeDirection::IN;
msgs::ExecutionState<msgs::ExpandOneRequest> request_state;
auto result_rows = context.shard_request_manager->Request(request_state, std::move(request));
MG_ASSERT(result_rows.size() == 1);
auto &result_row = result_rows.front();
frame[self_.common_.node_symbol] = accessors::VertexAccessor(
msgs::Vertex{result_row.src_vertex}, result_row.src_vertex_properties, context.shard_request_manager);
}
bool InitEdges(Frame &frame, ExecutionContext &context) {
// Input Vertex could be null if it is created by a failed optional match. In
// those cases we skip that input pull and continue with the next.
@ -2480,44 +2550,45 @@ class DistributedExpandCursor : public Cursor {
ExpectType(self_.input_symbol_, vertex_value, TypedValue::Type::Vertex);
auto &vertex = vertex_value.ValueVertex();
static constexpr auto direction_to_msgs_direction = [](const EdgeAtom::Direction direction) {
switch (direction) {
case EdgeAtom::Direction::IN:
return msgs::EdgeDirection::IN;
case EdgeAtom::Direction::OUT:
return msgs::EdgeDirection::OUT;
case EdgeAtom::Direction::BOTH:
return msgs::EdgeDirection::BOTH;
}
};
msgs::ExpandOneRequest request;
request.direction = direction_to_msgs_direction(self_.common_.direction);
request.direction = DirectionToMsgsDirection(self_.common_.direction);
// to not fetch any properties of the edges
request.edge_properties.emplace();
request.src_vertices.push_back(vertex.Id());
msgs::ExecutionState<msgs::ExpandOneRequest> request_state;
auto result_rows = context.shard_request_manager->Request(request_state, std::move(request));
auto result_rows = std::invoke([&context, &request_state, &request]() mutable {
SCOPED_REQUEST_WAIT_PROFILE;
return context.shard_request_manager->Request(request_state, std::move(request));
});
MG_ASSERT(result_rows.size() == 1);
auto &result_row = result_rows.front();
const auto convert_edges = [&vertex](
if (self_.common_.existing_node) {
const auto &node = frame[self_.common_.node_symbol].ValueVertex().Id();
auto &in = result_row.in_edges_with_specific_properties;
std::erase_if(in, [&node](auto &edge) { return edge.other_end != node; });
auto &out = result_row.out_edges_with_specific_properties;
std::erase_if(out, [&node](auto &edge) { return edge.other_end != node; });
}
const auto convert_edges = [&vertex, &context](
std::vector<msgs::ExpandOneResultRow::EdgeWithSpecificProperties> &&edge_messages,
const EdgeAtom::Direction direction) {
std::vector<EdgeAccessor> edge_accessors;
edge_accessors.reserve(edge_messages.size());
switch (direction) {
case EdgeAtom::Direction::IN: {
for (auto &edge : edge_messages) {
edge_accessors.emplace_back(
msgs::Edge{std::move(edge.other_end), vertex.Id(), {}, {edge.gid}, edge.type});
edge_accessors.emplace_back(msgs::Edge{std::move(edge.other_end), vertex.Id(), {}, {edge.gid}, edge.type},
context.shard_request_manager);
}
break;
}
case EdgeAtom::Direction::OUT: {
for (auto &edge : edge_messages) {
edge_accessors.emplace_back(
msgs::Edge{vertex.Id(), std::move(edge.other_end), {}, {edge.gid}, edge.type});
edge_accessors.emplace_back(msgs::Edge{vertex.Id(), std::move(edge.other_end), {}, {edge.gid}, edge.type},
context.shard_request_manager);
}
break;
}
@ -2527,12 +2598,13 @@ class DistributedExpandCursor : public Cursor {
}
return edge_accessors;
};
current_in_edges_ =
convert_edges(std::move(result_row.in_edges_with_specific_properties), EdgeAtom::Direction::IN);
current_in_edge_it_ = current_in_edges_.begin();
current_in_edges_ =
convert_edges(std::move(result_row.in_edges_with_specific_properties), EdgeAtom::Direction::OUT);
current_in_edge_it_ = current_in_edges_.begin();
current_out_edges_ =
convert_edges(std::move(result_row.out_edges_with_specific_properties), EdgeAtom::Direction::OUT);
current_out_edge_it_ = current_out_edges_.begin();
return true;
}
}
@ -2540,19 +2612,6 @@ class DistributedExpandCursor : public Cursor {
bool Pull(Frame &frame, ExecutionContext &context) override {
SCOPED_PROFILE_OP("DistributedExpand");
// A helper function for expanding a node from an edge.
auto pull_node = [this, &frame](const EdgeAccessor &new_edge, EdgeAtom::Direction direction) {
if (self_.common_.existing_node) return;
switch (direction) {
case EdgeAtom::Direction::IN:
frame[self_.common_.node_symbol] = new_edge.From();
break;
case EdgeAtom::Direction::OUT:
frame[self_.common_.node_symbol] = new_edge.To();
break;
case EdgeAtom::Direction::BOTH:
LOG_FATAL("Must indicate exact expansion direction here");
}
};
while (true) {
if (MustAbort(context)) throw HintedAbortError();
@ -2561,7 +2620,7 @@ class DistributedExpandCursor : public Cursor {
auto &edge = *current_in_edge_it_;
++current_in_edge_it_;
frame[self_.common_.edge_symbol] = edge;
pull_node(edge, EdgeAtom::Direction::IN);
PullDstVertex(frame, context, EdgeAtom::Direction::IN);
return true;
}
@ -2573,7 +2632,7 @@ class DistributedExpandCursor : public Cursor {
continue;
};
frame[self_.common_.edge_symbol] = edge;
pull_node(edge, EdgeAtom::Direction::OUT);
PullDstVertex(frame, context, EdgeAtom::Direction::OUT);
return true;
}

View File

@ -24,18 +24,18 @@ namespace memgraph::query::v2::plan {
namespace {
unsigned long long IndividualCycles(const ProfilingStats &cumulative_stats) {
uint64_t IndividualCycles(const ProfilingStats &cumulative_stats) {
return cumulative_stats.num_cycles - std::accumulate(cumulative_stats.children.begin(),
cumulative_stats.children.end(), 0ULL,
[](auto acc, auto &stats) { return acc + stats.num_cycles; });
}
double RelativeTime(unsigned long long num_cycles, unsigned long long total_cycles) {
return static_cast<double>(num_cycles) / total_cycles;
double RelativeTime(const uint64_t num_cycles, const uint64_t total_cycles) {
return static_cast<double>(num_cycles) / static_cast<double>(total_cycles);
}
double AbsoluteTime(unsigned long long num_cycles, unsigned long long total_cycles,
std::chrono::duration<double> total_time) {
double AbsoluteTime(const uint64_t num_cycles, const uint64_t total_cycles,
const std::chrono::duration<double> total_time) {
return (RelativeTime(num_cycles, total_cycles) * static_cast<std::chrono::duration<double, std::milli>>(total_time))
.count();
}
@ -50,26 +50,29 @@ namespace {
class ProfilingStatsToTableHelper {
public:
ProfilingStatsToTableHelper(unsigned long long total_cycles, std::chrono::duration<double> total_time)
ProfilingStatsToTableHelper(uint64_t total_cycles, std::chrono::duration<double> total_time)
: total_cycles_(total_cycles), total_time_(total_time) {}
void Output(const ProfilingStats &cumulative_stats) {
auto cycles = IndividualCycles(cumulative_stats);
auto custom_data_copy = cumulative_stats.custom_data;
ConvertCyclesToTime(custom_data_copy);
rows_.emplace_back(std::vector<TypedValue>{
TypedValue(FormatOperator(cumulative_stats.name)), TypedValue(cumulative_stats.actual_hits),
TypedValue(FormatRelativeTime(cycles)), TypedValue(FormatAbsoluteTime(cycles))});
rows_.emplace_back(
std::vector<TypedValue>{TypedValue(FormatOperator(cumulative_stats.name)),
TypedValue(cumulative_stats.actual_hits), TypedValue(FormatRelativeTime(cycles)),
TypedValue(FormatAbsoluteTime(cycles)), TypedValue(custom_data_copy.dump())});
for (size_t i = 1; i < cumulative_stats.children.size(); ++i) {
Branch(cumulative_stats.children[i]);
}
if (cumulative_stats.children.size() >= 1) {
if (!cumulative_stats.children.empty()) {
Output(cumulative_stats.children[0]);
}
}
std::vector<std::vector<TypedValue>> rows() { return rows_; }
std::vector<std::vector<TypedValue>> rows() const { return rows_; }
private:
void Branch(const ProfilingStats &cumulative_stats) {
@ -80,7 +83,28 @@ class ProfilingStatsToTableHelper {
--depth_;
}
std::string Format(const char *str) {
double AbsoluteTime(const uint64_t cycles) const { return plan::AbsoluteTime(cycles, total_cycles_, total_time_); }
double RelativeTime(const uint64_t cycles) const { return plan::RelativeTime(cycles, total_cycles_); }
void ConvertCyclesToTime(nlohmann::json &custom_data) const {
const auto convert_cycles_in_json = [this](nlohmann::json &json) {
if (!json.is_object()) {
return;
}
if (auto it = json.find(ProfilingStats::kNumCycles); it != json.end()) {
auto num_cycles = it.value().get<uint64_t>();
json[ProfilingStats::kAbsoluteTime] = AbsoluteTime(num_cycles);
json[ProfilingStats::kRelativeTime] = RelativeTime(num_cycles);
}
};
for (auto &json : custom_data) {
convert_cycles_in_json(json);
}
}
std::string Format(const char *str) const {
std::ostringstream ss;
for (int64_t i = 0; i < depth_; ++i) {
ss << "| ";
@ -89,21 +113,21 @@ class ProfilingStatsToTableHelper {
return ss.str();
}
std::string Format(const std::string &str) { return Format(str.c_str()); }
std::string Format(const std::string &str) const { return Format(str.c_str()); }
std::string FormatOperator(const char *str) { return Format(std::string("* ") + str); }
std::string FormatOperator(const char *str) const { return Format(std::string("* ") + str); }
std::string FormatRelativeTime(unsigned long long num_cycles) {
return fmt::format("{: 10.6f} %", RelativeTime(num_cycles, total_cycles_) * 100);
std::string FormatRelativeTime(uint64_t num_cycles) const {
return fmt::format("{: 10.6f} %", RelativeTime(num_cycles) * 100);
}
std::string FormatAbsoluteTime(unsigned long long num_cycles) {
return fmt::format("{: 10.6f} ms", AbsoluteTime(num_cycles, total_cycles_, total_time_));
std::string FormatAbsoluteTime(uint64_t num_cycles) const {
return fmt::format("{: 10.6f} ms", AbsoluteTime(num_cycles));
}
int64_t depth_{0};
std::vector<std::vector<TypedValue>> rows_;
unsigned long long total_cycles_;
uint64_t total_cycles_;
std::chrono::duration<double> total_time_;
};
@ -126,7 +150,7 @@ class ProfilingStatsToJsonHelper {
using json = nlohmann::json;
public:
ProfilingStatsToJsonHelper(unsigned long long total_cycles, std::chrono::duration<double> total_time)
ProfilingStatsToJsonHelper(uint64_t total_cycles, std::chrono::duration<double> total_time)
: total_cycles_(total_cycles), total_time_(total_time) {}
void Output(const ProfilingStats &cumulative_stats) { return Output(cumulative_stats, &json_); }
@ -151,7 +175,7 @@ class ProfilingStatsToJsonHelper {
}
json json_;
unsigned long long total_cycles_;
uint64_t total_cycles_;
std::chrono::duration<double> total_time_;
};

View File

@ -26,10 +26,16 @@ namespace plan {
* Stores profiling statistics for a single logical operator.
*/
struct ProfilingStats {
static constexpr std::string_view kNumCycles{"num_cycles"};
static constexpr std::string_view kRelativeTime{"relative_time"};
static constexpr std::string_view kAbsoluteTime{"absolute_time"};
static constexpr std::string_view kActualHits{"actual_hits"};
int64_t actual_hits{0};
unsigned long long num_cycles{0};
uint64_t num_cycles{0};
uint64_t key{0};
const char *name{nullptr};
nlohmann::json custom_data;
// TODO: This should use the allocator for query execution
std::vector<ProfilingStats> children;
};

View File

@ -13,6 +13,8 @@
#include <cstdint>
#include <json/json.hpp>
#include "query/v2/context.hpp"
#include "query/v2/plan/profile.hpp"
#include "utils/likely.hpp"
@ -20,6 +22,43 @@
namespace memgraph::query::v2::plan {
class ScopedCustomProfile {
public:
explicit ScopedCustomProfile(const std::string_view custom_data_name, ExecutionContext &context)
: custom_data_name_(custom_data_name), start_time_{utils::ReadTSC()}, context_{&context} {}
ScopedCustomProfile(const ScopedCustomProfile &) = delete;
ScopedCustomProfile(ScopedCustomProfile &&) = delete;
ScopedCustomProfile &operator=(const ScopedCustomProfile &) = delete;
ScopedCustomProfile &operator=(ScopedCustomProfile &&) = delete;
// If an exception is thrown in any of these functions that signals a problem that is much bigger than we could handle
// it here, thus we don't attempt to handle it.
// NOLINTNEXTLINE(bugprone-exception-escape)
~ScopedCustomProfile() {
if (nullptr != context_->stats_root) [[unlikely]] {
auto &custom_data = context_->stats_root->custom_data[custom_data_name_];
if (!custom_data.is_object()) {
custom_data = nlohmann::json::object();
}
const auto elapsed = utils::ReadTSC() - start_time_;
IncreaseCustomData(custom_data, ProfilingStats::kNumCycles, elapsed);
IncreaseCustomData(custom_data, ProfilingStats::kActualHits, 1);
}
}
private:
static void IncreaseCustomData(nlohmann::json &custom_data, const std::string_view key, const uint64_t increment) {
auto &json_data = custom_data[key];
const auto numerical_data = json_data.is_null() ? 0 : json_data.get<uint64_t>();
json_data = numerical_data + increment;
}
std::string_view custom_data_name_;
uint64_t start_time_;
ExecutionContext *context_;
};
/**
* A RAII class used for profiling logical operators. Instances of this class
* update the profiling data stored within the `ExecutionContext` object and build
@ -29,7 +68,7 @@ namespace memgraph::query::v2::plan {
class ScopedProfile {
public:
ScopedProfile(uint64_t key, const char *name, query::v2::ExecutionContext *context) noexcept : context_(context) {
if (UNLIKELY(context_->is_profile_query)) {
if (IsProfiling()) [[unlikely]] {
root_ = context_->stats_root;
// Are we the root logical operator?
@ -60,8 +99,13 @@ class ScopedProfile {
}
}
ScopedProfile(const ScopedProfile &) = delete;
ScopedProfile(ScopedProfile &&) = delete;
ScopedProfile &operator=(const ScopedProfile &) = delete;
ScopedProfile &operator=(ScopedProfile &&) = delete;
~ScopedProfile() noexcept {
if (UNLIKELY(context_->is_profile_query)) {
if (IsProfiling()) [[unlikely]] {
stats_->num_cycles += utils::ReadTSC() - start_time_;
// Restore the old root ("pop")
@ -70,10 +114,12 @@ class ScopedProfile {
}
private:
[[nodiscard]] bool IsProfiling() const { return context_->is_profile_query; }
query::v2::ExecutionContext *context_;
ProfilingStats *root_{nullptr};
ProfilingStats *stats_{nullptr};
unsigned long long start_time_{0};
uint64_t start_time_{0};
};
} // namespace memgraph::query::v2::plan

View File

@ -387,7 +387,6 @@ struct GetPropertiesResponse {
enum class EdgeDirection : uint8_t { OUT = 1, IN = 2, BOTH = 3 };
struct ExpandOneRequest {
// TODO(antaljanosbenjamin): Filtering based on the id of the other end of the edge?
Hlc transaction_id;
std::vector<VertexId> src_vertices;
// return types that type is in this list

View File

@ -171,6 +171,7 @@ class ShardRequestManager : public ShardRequestManagerInterface {
if (hlc_response.fresher_shard_map) {
shards_map_ = hlc_response.fresher_shard_map.value();
SetUpNameIdMappers();
}
}
@ -186,6 +187,7 @@ class ShardRequestManager : public ShardRequestManagerInterface {
if (hlc_response.fresher_shard_map) {
shards_map_ = hlc_response.fresher_shard_map.value();
SetUpNameIdMappers();
}
auto commit_timestamp = hlc_response.new_hlc;
@ -223,14 +225,14 @@ class ShardRequestManager : public ShardRequestManagerInterface {
return shards_map_.GetLabelId(name).value();
}
const std::string &PropertyToName(memgraph::storage::v3::PropertyId prop) const override {
return shards_map_.GetPropertyName(prop);
const std::string &PropertyToName(memgraph::storage::v3::PropertyId id) const override {
return properties_.IdToName(id.AsUint());
}
const std::string &LabelToName(memgraph::storage::v3::LabelId label) const override {
return shards_map_.GetLabelName(label);
const std::string &LabelToName(memgraph::storage::v3::LabelId id) const override {
return labels_.IdToName(id.AsUint());
}
const std::string &EdgeTypeToName(memgraph::storage::v3::EdgeTypeId type) const override {
return shards_map_.GetEdgeTypeName(type);
const std::string &EdgeTypeToName(memgraph::storage::v3::EdgeTypeId id) const override {
return edge_types_.IdToName(id.AsUint());
}
bool IsPrimaryKey(LabelId primary_label, PropertyId property) const override {
@ -358,7 +360,7 @@ class ShardRequestManager : public ShardRequestManagerInterface {
std::vector<VertexAccessor> accessors;
for (auto &response : responses) {
for (auto &result_row : response.results) {
accessors.emplace_back(VertexAccessor(std::move(result_row.vertex), std::move(result_row.props)));
accessors.emplace_back(VertexAccessor(std::move(result_row.vertex), std::move(result_row.props), this));
}
}
return accessors;
@ -697,7 +699,28 @@ class ShardRequestManager : public ShardRequestManagerInterface {
}
}
void SetUpNameIdMappers() {
std::unordered_map<uint64_t, std::string> id_to_name;
for (const auto &[name, id] : shards_map_.labels) {
id_to_name.emplace(id.AsUint(), name);
}
labels_.StoreMapping(std::move(id_to_name));
id_to_name.clear();
for (const auto &[name, id] : shards_map_.properties) {
id_to_name.emplace(id.AsUint(), name);
}
properties_.StoreMapping(std::move(id_to_name));
id_to_name.clear();
for (const auto &[name, id] : shards_map_.edge_types) {
id_to_name.emplace(id.AsUint(), name);
}
edge_types_.StoreMapping(std::move(id_to_name));
}
ShardMap shards_map_;
storage::v3::NameIdMapper properties_;
storage::v3::NameIdMapper edge_types_;
storage::v3::NameIdMapper labels_;
CoordinatorClient coord_cli_;
RsmStorageClientManager<StorageClient> storage_cli_manager_;
memgraph::io::Io<TTransport> io_;

View File

@ -42,7 +42,7 @@ struct Parameters {
* @param position Token position in query of value.
* @param value
*/
void Add(int position, const storage::v3::PropertyValue &value) { storage_.emplace_back(position, value); }
void Add(int position, const storage::v3::PropertyValue &value) { storage_.emplace(position, value); }
/**
* Returns the value found for the given token position.
@ -51,23 +51,11 @@ struct Parameters {
* @return Value for the given token position.
*/
const storage::v3::PropertyValue &AtTokenPosition(int position) const {
auto found = std::find_if(storage_.begin(), storage_.end(), [&](const auto &a) { return a.first == position; });
auto found = storage_.find(position);
MG_ASSERT(found != storage_.end(), "Token position must be present in container");
return found->second;
}
/**
* Returns the position-th stripped value. Asserts that this
* container has at least (position + 1) elements.
*
* @param position Which stripped param is sought.
* @return Token position and value for sought param.
*/
const std::pair<int, storage::v3::PropertyValue> &At(int position) const {
MG_ASSERT(position < static_cast<int>(storage_.size()), "Invalid position");
return storage_[position];
}
/** Returns the number of arguments in this container */
auto size() const { return storage_.size(); }
@ -75,7 +63,7 @@ struct Parameters {
auto end() const { return storage_.end(); }
private:
std::vector<std::pair<int, storage::v3::PropertyValue>> storage_;
std::unordered_map<int, storage::v3::PropertyValue> storage_;
};
struct EvaluationContext {

View File

@ -53,6 +53,10 @@ class NameIdMapper final {
return it->second;
}
const auto &GetIdToNameMap() const { return id_to_name_; }
const auto &GetNameToIdMap() const { return name_to_id_; }
private:
// Necessary for comparison with string_view nad string
// https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0919r1.html

View File

@ -321,7 +321,8 @@ bool VerticesIterable::Iterator::operator==(const Iterator &other) const {
}
Shard::Shard(const LabelId primary_label, const PrimaryKey min_primary_key,
const std::optional<PrimaryKey> max_primary_key, std::vector<SchemaProperty> schema, Config config)
const std::optional<PrimaryKey> max_primary_key, std::vector<SchemaProperty> schema, Config config,
std::unordered_map<uint64_t, std::string> id_to_name)
: primary_label_{primary_label},
min_primary_key_{min_primary_key},
max_primary_key_{max_primary_key},
@ -334,6 +335,7 @@ Shard::Shard(const LabelId primary_label, const PrimaryKey min_primary_key,
epoch_id_{utils::GenerateUUID()},
global_locker_{file_retainer_.AddLocker()} {
CreateSchema(primary_label_, schema);
StoreMapping(std::move(id_to_name));
}
Shard::~Shard() {}

View File

@ -189,7 +189,8 @@ class Shard final {
/// @throw std::system_error
/// @throw std::bad_alloc
explicit Shard(LabelId primary_label, PrimaryKey min_primary_key, std::optional<PrimaryKey> max_primary_key,
std::vector<SchemaProperty> schema, Config config = Config());
std::vector<SchemaProperty> schema, Config config = Config(),
std::unordered_map<uint64_t, std::string> id_to_name = {});
Shard(const Shard &) = delete;
Shard(Shard &&) noexcept = delete;

View File

@ -13,47 +13,50 @@
#include <queue>
#include <set>
#include <unordered_map>
#include <boost/functional/hash.hpp>
#include <boost/uuid/uuid.hpp>
#include <coordinator/coordinator.hpp>
#include <io/address.hpp>
#include <io/message_conversion.hpp>
#include <io/messages.hpp>
#include <io/rsm/raft.hpp>
#include <io/time.hpp>
#include <io/transport.hpp>
#include <query/v2/requests.hpp>
#include <storage/v3/shard.hpp>
#include <storage/v3/shard_rsm.hpp>
#include "coordinator/coordinator.hpp"
#include "coordinator/shard_map.hpp"
#include "io/address.hpp"
#include "io/message_conversion.hpp"
#include "io/messages.hpp"
#include "io/rsm/raft.hpp"
#include "io/time.hpp"
#include "io/transport.hpp"
#include "query/v2/requests.hpp"
#include "storage/v3/config.hpp"
#include "storage/v3/shard.hpp"
#include "storage/v3/shard_rsm.hpp"
#include "storage/v3/shard_worker.hpp"
namespace memgraph::storage::v3 {
using boost::uuids::uuid;
using memgraph::coordinator::CoordinatorWriteRequests;
using memgraph::coordinator::CoordinatorWriteResponses;
using memgraph::coordinator::HeartbeatRequest;
using memgraph::coordinator::HeartbeatResponse;
using memgraph::io::Address;
using memgraph::io::Duration;
using memgraph::io::Message;
using memgraph::io::RequestId;
using memgraph::io::ResponseFuture;
using memgraph::io::Time;
using memgraph::io::messages::CoordinatorMessages;
using memgraph::io::messages::ShardManagerMessages;
using memgraph::io::messages::ShardMessages;
using memgraph::io::rsm::Raft;
using memgraph::io::rsm::WriteRequest;
using memgraph::io::rsm::WriteResponse;
using memgraph::msgs::ReadRequests;
using memgraph::msgs::ReadResponses;
using memgraph::msgs::WriteRequests;
using memgraph::msgs::WriteResponses;
using memgraph::storage::v3::ShardRsm;
using coordinator::CoordinatorWriteRequests;
using coordinator::CoordinatorWriteResponses;
using coordinator::HeartbeatRequest;
using coordinator::HeartbeatResponse;
using io::Address;
using io::Duration;
using io::Message;
using io::RequestId;
using io::ResponseFuture;
using io::Time;
using io::messages::CoordinatorMessages;
using io::messages::ShardManagerMessages;
using io::messages::ShardMessages;
using io::rsm::Raft;
using io::rsm::WriteRequest;
using io::rsm::WriteResponse;
using msgs::ReadRequests;
using msgs::ReadResponses;
using msgs::WriteRequests;
using msgs::WriteResponses;
using storage::v3::ShardRsm;
using ShardManagerOrRsmMessage = std::variant<ShardMessages, ShardManagerMessages>;
using TimeUuidPair = std::pair<Time, uuid>;
@ -77,8 +80,71 @@ static_assert(kMinimumCronInterval < kMaximumCronInterval,
template <typename IoImpl>
class ShardManager {
public:
ShardManager(io::Io<IoImpl> io, Address coordinator_leader, coordinator::ShardMap shard_map)
: io_(io), coordinator_leader_(coordinator_leader), shard_map_{std::move(shard_map)} {}
ShardManager(io::Io<IoImpl> io, size_t shard_worker_threads, Address coordinator_leader)
: io_(io), coordinator_leader_(coordinator_leader) {
MG_ASSERT(shard_worker_threads >= 1);
for (int i = 0; i < shard_worker_threads; i++) {
shard_worker::Queue queue;
shard_worker::ShardWorker worker{io, queue};
auto worker_handle = std::jthread([worker = std::move(worker)]() mutable { worker.Run(); });
workers_.emplace_back(queue);
worker_handles_.emplace_back(std::move(worker_handle));
worker_rsm_counts_.emplace_back(0);
}
}
ShardManager(ShardManager &&) noexcept = default;
ShardManager &operator=(ShardManager &&) noexcept = default;
ShardManager(const ShardManager &) = delete;
ShardManager &operator=(const ShardManager &) = delete;
~ShardManager() {
for (auto worker : workers_) {
worker.Push(shard_worker::ShutDown{});
}
workers_.clear();
// The jthread handes for our shard worker threads will be
// blocked on implicitly when worker_handles_ is destroyed.
}
size_t UuidToWorkerIndex(const uuid &to) {
if (rsm_worker_mapping_.contains(to)) {
return rsm_worker_mapping_.at(to);
}
// We will now create a mapping for this (probably new) shard
// by choosing the worker with the lowest number of existing
// mappings.
size_t min_index = 0;
size_t min_count = worker_rsm_counts_.at(min_index);
for (int i = 0; i < worker_rsm_counts_.size(); i++) {
size_t worker_count = worker_rsm_counts_.at(i);
if (worker_count <= min_count) {
min_count = worker_count;
min_index = i;
}
}
worker_rsm_counts_[min_index]++;
rsm_worker_mapping_.emplace(to, min_index);
return min_index;
}
void SendToWorkerByIndex(size_t worker_index, shard_worker::Message &&message) {
workers_[worker_index].Push(std::forward<shard_worker::Message>(message));
}
void SendToWorkerByUuid(const uuid &to, shard_worker::Message &&message) {
size_t worker_index = UuidToWorkerIndex(to);
SendToWorkerByIndex(worker_index, std::forward<shard_worker::Message>(message));
}
/// Periodic protocol maintenance. Returns the time that Cron should be called again
/// in the future.
@ -86,33 +152,23 @@ class ShardManager {
spdlog::info("running ShardManager::Cron, address {}", io_.GetAddress().ToString());
Time now = io_.Now();
if (now >= next_cron_) {
if (now >= next_reconciliation_) {
Reconciliation();
std::uniform_int_distribution time_distrib(kMinimumCronInterval.count(), kMaximumCronInterval.count());
const auto rand = io_.Rand(time_distrib);
next_cron_ = now + Duration{rand};
next_reconciliation_ = now + Duration{rand};
}
if (!cron_schedule_.empty()) {
const auto &[time, uuid] = cron_schedule_.top();
if (time <= now) {
auto &rsm = rsm_map_.at(uuid);
Time next_for_uuid = rsm.Cron();
cron_schedule_.pop();
cron_schedule_.push(std::make_pair(next_for_uuid, uuid));
const auto &[next_time, _uuid] = cron_schedule_.top();
return std::min(next_cron_, next_time);
}
for (auto &worker : workers_) {
worker.Push(shard_worker::Cron{});
}
return next_cron_;
Time next_worker_cron = now + std::chrono::milliseconds(500);
return std::min(next_worker_cron, next_reconciliation_);
}
/// Returns the Address for our underlying Io implementation
@ -126,18 +182,22 @@ class ShardManager {
MG_ASSERT(address.last_known_port == to.last_known_port);
MG_ASSERT(address.last_known_ip == to.last_known_ip);
auto &rsm = rsm_map_.at(to.unique_id);
rsm.Handle(std::forward<ShardMessages>(sm), request_id, from);
SendToWorkerByUuid(to.unique_id, shard_worker::RouteMessage{
.message = std::move(sm),
.request_id = request_id,
.to = to,
.from = from,
});
}
private:
io::Io<IoImpl> io_;
std::map<uuid, ShardRaft<IoImpl>> rsm_map_;
std::priority_queue<std::pair<Time, uuid>, std::vector<std::pair<Time, uuid>>, std::greater<>> cron_schedule_;
Time next_cron_ = Time::min();
std::vector<shard_worker::Queue> workers_;
std::vector<std::jthread> worker_handles_;
std::vector<size_t> worker_rsm_counts_;
std::unordered_map<uuid, size_t, boost::hash<boost::uuids::uuid>> rsm_worker_mapping_;
Time next_reconciliation_ = Time::min();
Address coordinator_leader_;
coordinator::ShardMap shard_map_;
std::optional<ResponseFuture<WriteResponse<CoordinatorWriteResponses>>> heartbeat_res_;
// TODO(tyler) over time remove items from initialized_but_not_confirmed_rsm_
@ -190,50 +250,22 @@ class ShardManager {
}
void EnsureShardsInitialized(HeartbeatResponse hr) {
for (const auto &shard_to_initialize : hr.shards_to_initialize) {
InitializeRsm(shard_to_initialize);
initialized_but_not_confirmed_rsm_.emplace(shard_to_initialize.uuid);
}
}
for (const auto &to_init : hr.shards_to_initialize) {
initialized_but_not_confirmed_rsm_.emplace(to_init.uuid);
/// Returns true if the RSM was able to be initialized, and false if it was already initialized
void InitializeRsm(coordinator::ShardToInitialize to_init) {
if (rsm_map_.contains(to_init.uuid)) {
// it's not a bug for the coordinator to send us UUIDs that we have
// already created, because there may have been lag that caused
// the coordinator not to hear back from us.
return;
}
auto rsm_io = io_.ForkLocal();
auto io_addr = rsm_io.GetAddress();
io_addr.unique_id = to_init.uuid;
rsm_io.SetAddress(io_addr);
// TODO(tyler) get geers from Coordinator in HeartbeatResponse
std::vector<Address> rsm_peers = {};
std::unique_ptr<Shard> shard =
std::make_unique<Shard>(to_init.label_id, to_init.min_key, to_init.max_key, to_init.schema, to_init.config);
// TODO(jbajic) Should be sync with coordinator and not passed
std::unordered_map<uint64_t, std::string> id_to_name;
const auto map_type_ids = [&id_to_name](const auto &name_to_id_type) {
for (const auto &[name, id] : name_to_id_type) {
id_to_name.insert({id.AsUint(), name});
if (rsm_worker_mapping_.contains(to_init.uuid)) {
// it's not a bug for the coordinator to send us UUIDs that we have
// already created, because there may have been lag that caused
// the coordinator not to hear back from us.
return;
}
};
map_type_ids(shard_map_.edge_types);
map_type_ids(shard_map_.labels);
map_type_ids(shard_map_.properties);
shard->StoreMapping(std::move(id_to_name));
ShardRsm rsm_state{std::move(shard)};
size_t worker_index = UuidToWorkerIndex(to_init.uuid);
ShardRaft<IoImpl> rsm{std::move(rsm_io), rsm_peers, std::move(rsm_state)};
SendToWorkerByIndex(worker_index, to_init);
spdlog::info("SM created a new shard with UUID {}", to_init.uuid);
rsm_map_.emplace(to_init.uuid, std::move(rsm));
rsm_worker_mapping_.emplace(to_init.uuid, worker_index);
}
}
};

View File

@ -17,6 +17,7 @@
#include "parser/opencypher/parser.hpp"
#include "query/v2/requests.hpp"
#include "storage/v2/view.hpp"
#include "storage/v3/bindings/ast/ast.hpp"
#include "storage/v3/bindings/cypher_main_visitor.hpp"
#include "storage/v3/bindings/db_accessor.hpp"
@ -113,6 +114,24 @@ std::optional<std::map<PropertyId, Value>> CollectSpecificPropertiesFromAccessor
return ret;
}
std::optional<std::map<PropertyId, Value>> PrimaryKeysFromAccessor(const VertexAccessor &acc, View view,
const Schemas::Schema *schema) {
std::map<PropertyId, Value> ret;
auto props = acc.Properties(view);
auto maybe_pk = acc.PrimaryKey(view);
if (maybe_pk.HasError()) {
spdlog::debug("Encountered an error while trying to get vertex primary key.");
return std::nullopt;
}
auto &pk = maybe_pk.GetValue();
MG_ASSERT(schema->second.size() == pk.size(), "PrimaryKey size does not match schema!");
for (size_t i{0}; i < schema->second.size(); ++i) {
ret.emplace(schema->second[i].property_id, FromPropertyValueToValue(std::move(pk[i])));
}
return ret;
}
std::optional<std::map<PropertyId, Value>> CollectAllPropertiesFromAccessor(const VertexAccessor &acc, View view,
const Schemas::Schema *schema) {
std::map<PropertyId, Value> ret;
@ -129,17 +148,9 @@ std::optional<std::map<PropertyId, Value>> CollectAllPropertiesFromAccessor(cons
});
properties.clear();
// TODO(antaljanosbenjamin): Once the VertexAccessor::Properties returns also the primary keys, we can get rid of this
// code.
auto maybe_pk = acc.PrimaryKey(view);
if (maybe_pk.HasError()) {
spdlog::debug("Encountered an error while trying to get vertex primary key.");
}
auto &pk = maybe_pk.GetValue();
MG_ASSERT(schema->second.size() == pk.size(), "PrimaryKey size does not match schema!");
for (size_t i{0}; i < schema->second.size(); ++i) {
ret.emplace(schema->second[i].property_id, FromPropertyValueToValue(std::move(pk[i])));
auto pks = PrimaryKeysFromAccessor(acc, view, schema);
if (pks) {
ret.merge(*pks);
}
return ret;
@ -190,7 +201,9 @@ std::optional<msgs::Vertex> FillUpSourceVertex(const std::optional<VertexAccesso
}
std::optional<std::map<PropertyId, Value>> FillUpSourceVertexProperties(const std::optional<VertexAccessor> &v_acc,
const msgs::ExpandOneRequest &req) {
const msgs::ExpandOneRequest &req,
storage::v3::View view,
const Schemas::Schema *schema) {
std::map<PropertyId, Value> src_vertex_properties;
if (!req.src_vertex_properties) {
@ -204,6 +217,10 @@ std::optional<std::map<PropertyId, Value>> FillUpSourceVertexProperties(const st
for (auto &[key, val] : props.GetValue()) {
src_vertex_properties.insert(std::make_pair(key, FromPropertyValueToValue(std::move(val))));
}
auto pks = PrimaryKeysFromAccessor(*v_acc, view, schema);
if (pks) {
src_vertex_properties.merge(*pks);
}
} else if (req.src_vertex_properties.value().empty()) {
// NOOP
@ -264,7 +281,6 @@ std::optional<std::array<std::vector<EdgeAccessor>, 2>> FillUpConnectingEdges(
return std::nullopt;
}
in_edges = maybe_filter_based_on_edge_uniquness(std::move(in_edges_result.GetValue()), msgs::EdgeDirection::IN);
auto out_edges_result = v_acc->OutEdges(View::NEW, edge_types);
if (out_edges_result.HasError()) {
spdlog::debug("Encountered an error while trying to get out-going EdgeAccessors. Transaction id: {}",
@ -303,7 +319,8 @@ bool FillEdges(const std::vector<EdgeAccessor> &edges, msgs::ExpandOneResultRow
std::optional<msgs::ExpandOneResultRow> GetExpandOneResult(
Shard::Accessor &acc, msgs::VertexId src_vertex, const msgs::ExpandOneRequest &req,
const EdgeUniqunessFunction &maybe_filter_based_on_edge_uniquness, const EdgeFiller &edge_filler) {
const EdgeUniqunessFunction &maybe_filter_based_on_edge_uniquness, const EdgeFiller &edge_filler,
const Schemas::Schema *schema) {
/// Fill up source vertex
const auto primary_key = ConvertPropertyVector(std::move(src_vertex.second));
auto v_acc = acc.FindVertex(primary_key, View::NEW);
@ -312,9 +329,9 @@ std::optional<msgs::ExpandOneResultRow> GetExpandOneResult(
if (!source_vertex) {
return std::nullopt;
}
std::optional<std::map<PropertyId, Value>> src_vertex_properties;
src_vertex_properties = FillUpSourceVertexProperties(v_acc, req, storage::v3::View::NEW, schema);
/// Fill up source vertex properties
auto src_vertex_properties = FillUpSourceVertexProperties(v_acc, req);
if (!src_vertex_properties) {
return std::nullopt;
}

View File

@ -0,0 +1,224 @@
// Copyright 2022 Memgraph Ltd.
//
// Use of this software is governed by the Business Source License
// included in the file licenses/BSL.txt; by using this file, you agree to be bound by the terms of the Business Source
// License, and you may not use this file except in compliance with the Business Source License.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0, included in the file
// licenses/APL.txt.
#pragma once
#include <chrono>
#include <deque>
#include <memory>
#include <queue>
#include <variant>
#include <boost/uuid/uuid.hpp>
#include "coordinator/coordinator.hpp"
#include "coordinator/shard_map.hpp"
#include "io/address.hpp"
#include "io/future.hpp"
#include "io/messages.hpp"
#include "io/rsm/raft.hpp"
#include "io/time.hpp"
#include "io/transport.hpp"
#include "query/v2/requests.hpp"
#include "storage/v3/shard_rsm.hpp"
namespace memgraph::storage::v3::shard_worker {
/// Obligations:
/// * ShutDown
/// * Cron
/// * RouteMessage
/// * ShardToInitialize
using boost::uuids::uuid;
using coordinator::ShardToInitialize;
using io::Address;
using io::RequestId;
using io::Time;
using io::messages::ShardMessages;
using io::rsm::Raft;
using msgs::ReadRequests;
using msgs::ReadResponses;
using msgs::WriteRequests;
using msgs::WriteResponses;
using storage::v3::ShardRsm;
template <typename IoImpl>
using ShardRaft = Raft<IoImpl, ShardRsm, WriteRequests, WriteResponses, ReadRequests, ReadResponses>;
struct ShutDown {};
struct Cron {};
struct RouteMessage {
ShardMessages message;
RequestId request_id;
Address to;
Address from;
};
using Message = std::variant<ShutDown, Cron, ShardToInitialize, RouteMessage>;
struct QueueInner {
std::mutex mu{};
std::condition_variable cv;
// TODO(tyler) handle simulator communication std::shared_ptr<std::atomic<int>> blocked;
// TODO(tyler) investigate using a priority queue that prioritizes messages in a way that
// improves overall QoS. For example, maybe we want to schedule raft Append messages
// ahead of Read messages or generally writes before reads for lowering the load on the
// overall system faster etc... When we do this, we need to make sure to avoid
// starvation by sometimes randomizing priorities, rather than following a strict
// prioritization.
std::deque<Message> queue;
};
/// There are two reasons to implement our own Queue instead of using
/// one off-the-shelf:
/// 1. we will need to know in the simulator when all threads are waiting
/// 2. we will want to implement our own priority queue within this for QoS
class Queue {
std::shared_ptr<QueueInner> inner_ = std::make_shared<QueueInner>();
public:
void Push(Message &&message) {
{
MG_ASSERT(inner_.use_count() > 0);
std::unique_lock<std::mutex> lock(inner_->mu);
inner_->queue.emplace_back(std::forward<Message>(message));
} // lock dropped before notifying condition variable
inner_->cv.notify_all();
}
Message Pop() {
MG_ASSERT(inner_.use_count() > 0);
std::unique_lock<std::mutex> lock(inner_->mu);
while (inner_->queue.empty()) {
inner_->cv.wait(lock);
}
Message message = std::move(inner_->queue.front());
inner_->queue.pop_front();
return message;
}
};
/// A ShardWorker owns Raft<ShardRsm> instances. receives messages from the ShardManager.
template <class IoImpl>
class ShardWorker {
io::Io<IoImpl> io_;
Queue queue_;
std::priority_queue<std::pair<Time, uuid>, std::vector<std::pair<Time, uuid>>, std::greater<>> cron_schedule_;
Time next_cron_ = Time::min();
std::map<uuid, ShardRaft<IoImpl>> rsm_map_;
bool Process(ShutDown && /* shut_down */) { return false; }
bool Process(Cron && /* cron */) {
Cron();
return true;
}
bool Process(ShardToInitialize &&shard_to_initialize) {
InitializeRsm(std::forward<ShardToInitialize>(shard_to_initialize));
return true;
}
bool Process(RouteMessage &&route_message) {
auto &rsm = rsm_map_.at(route_message.to.unique_id);
rsm.Handle(std::move(route_message.message), route_message.request_id, route_message.from);
return true;
}
Time Cron() {
spdlog::info("running ShardWorker::Cron, address {}", io_.GetAddress().ToString());
Time now = io_.Now();
while (!cron_schedule_.empty()) {
const auto &[time, uuid] = cron_schedule_.top();
if (time <= now) {
auto &rsm = rsm_map_.at(uuid);
Time next_for_uuid = rsm.Cron();
cron_schedule_.pop();
cron_schedule_.push(std::make_pair(next_for_uuid, uuid));
} else {
return time;
}
}
return now + std::chrono::microseconds(1000);
}
void InitializeRsm(ShardToInitialize to_init) {
if (rsm_map_.contains(to_init.uuid)) {
// it's not a bug for the coordinator to send us UUIDs that we have
// already created, because there may have been lag that caused
// the coordinator not to hear back from us.
return;
}
auto rsm_io = io_.ForkLocal();
auto io_addr = rsm_io.GetAddress();
io_addr.unique_id = to_init.uuid;
rsm_io.SetAddress(io_addr);
// TODO(tyler) get peers from Coordinator in HeartbeatResponse
std::vector<Address> rsm_peers = {};
std::unique_ptr<Shard> shard = std::make_unique<Shard>(to_init.label_id, to_init.min_key, to_init.max_key,
to_init.schema, to_init.config, to_init.id_to_names);
ShardRsm rsm_state{std::move(shard)};
ShardRaft<IoImpl> rsm{std::move(rsm_io), rsm_peers, std::move(rsm_state)};
spdlog::info("SM created a new shard with UUID {}", to_init.uuid);
// perform an initial Cron call for the new RSM
Time next_cron = rsm.Cron();
cron_schedule_.push(std::make_pair(next_cron, to_init.uuid));
rsm_map_.emplace(to_init.uuid, std::move(rsm));
}
public:
ShardWorker(io::Io<IoImpl> io, Queue queue) : io_(io), queue_(queue) {}
ShardWorker(ShardWorker &&) noexcept = default;
ShardWorker &operator=(ShardWorker &&) noexcept = default;
ShardWorker(const ShardWorker &) = delete;
ShardWorker &operator=(const ShardWorker &) = delete;
~ShardWorker() = default;
void Run() {
while (true) {
Message message = queue_.Pop();
const bool should_continue =
std::visit([&](auto &&msg) { return Process(std::forward<decltype(msg)>(msg)); }, std::move(message));
if (!should_continue) {
return;
}
}
}
};
} // namespace memgraph::storage::v3::shard_worker

View File

@ -33,8 +33,9 @@ std::ostream &operator<<(std::ostream &in, const std::vector<T> &vector) {
return in;
}
template <typename K, typename V>
std::ostream &operator<<(std::ostream &in, const std::map<K, V> &map) {
namespace detail {
template <typename T>
std::ostream &MapImpl(std::ostream &in, const T &map) {
in << "{";
bool first = true;
for (const auto &[a, b] : map) {
@ -49,6 +50,17 @@ std::ostream &operator<<(std::ostream &in, const std::map<K, V> &map) {
in << "}";
return in;
}
} // namespace detail
template <typename K, typename V>
std::ostream &operator<<(std::ostream &in, const std::map<K, V> &map) {
return detail::MapImpl(in, map);
}
template <typename K, typename V, typename THash, typename Cmp>
std::ostream &operator<<(std::ostream &in, const std::unordered_map<K, V, THash, Cmp> &map) {
return detail::MapImpl(in, map);
}
template <typename K, typename V>
std::ostream &operator<<(std::ostream &in, const std::unordered_map<K, V> &map) {

View File

@ -18,7 +18,7 @@ extern "C" {
#include "utils/tsc.hpp"
namespace memgraph::utils {
uint64_t ReadTSC() { return rdtsc(); }
uint64_t ReadTSC() noexcept { return rdtsc(); }
std::optional<double> GetTSCFrequency() {
// init is only needed for fetching frequency

View File

@ -18,7 +18,7 @@ namespace memgraph::utils {
// TSC stands for Time-Stamp Counter
uint64_t ReadTSC();
uint64_t ReadTSC() noexcept;
std::optional<double> GetTSCFrequency();

View File

@ -3,3 +3,8 @@ function(distributed_queries_e2e_python_files FILE_NAME)
endfunction()
distributed_queries_e2e_python_files(distributed_queries.py)
distributed_queries_e2e_python_files(unwind_collect.py)
distributed_queries_e2e_python_files(order_by_and_limit.py)
distributed_queries_e2e_python_files(distinct.py)
distributed_queries_e2e_python_files(optional_match.py)
distributed_queries_e2e_python_files(common.py)

View File

@ -0,0 +1,44 @@
# Copyright 2022 Memgraph Ltd.
#
# Use of this software is governed by the Business Source License
# included in the file licenses/BSL.txt; by using this file, you agree to be bound by the terms of the Business Source
# License, and you may not use this file except in compliance with the Business Source License.
#
# As of the Change Date specified in that file, in accordance with
# the Business Source License, use of this software will be governed
# by the Apache License, Version 2.0, included in the file
# licenses/APL.txt.
import typing
import mgclient
import sys
import pytest
import time
@pytest.fixture(autouse=True)
def connection():
connection = connect()
return connection
def connect(**kwargs) -> mgclient.Connection:
connection = mgclient.connect(host="localhost", port=7687, **kwargs)
connection.autocommit = True
return connection
def execute_and_fetch_all(cursor: mgclient.Cursor, query: str, params: dict = {}) -> typing.List[tuple]:
cursor.execute(query, params)
return cursor.fetchall()
def has_n_result_row(cursor: mgclient.Cursor, query: str, n: int):
results = execute_and_fetch_all(cursor, query)
return len(results) == n
def wait_for_shard_manager_to_initialize():
# The ShardManager in memgraph takes some time to initialize
# the shards, thus we cannot just run the queries right away
time.sleep(3)

View File

@ -0,0 +1,38 @@
# Copyright 2022 Memgraph Ltd.
#
# Use of this software is governed by the Business Source License
# included in the file licenses/BSL.txt; by using this file, you agree to be bound by the terms of the Business Source
# License, and you may not use this file except in compliance with the Business Source License.
#
# As of the Change Date specified in that file, in accordance with
# the Business Source License, use of this software will be governed
# by the Apache License, Version 2.0, included in the file
# licenses/APL.txt.
import typing
import mgclient
import sys
import pytest
import time
from common import *
def test_distinct(connection):
wait_for_shard_manager_to_initialize()
cursor = connection.cursor()
assert has_n_result_row(cursor, "CREATE (n :label {property:0})", 0)
assert has_n_result_row(cursor, "CREATE (n :label {property:1})", 0)
assert has_n_result_row(cursor, "MATCH (n), (m) CREATE (n)-[:TO]->(m)", 0)
assert has_n_result_row(cursor, "MATCH (n)-[r]->(m) RETURN r", 4)
results = execute_and_fetch_all(cursor, "MATCH (n)-[r]->(m) RETURN DISTINCT m")
assert len(results) == 2
for i, n in enumerate(results):
n_props = n[0].properties
assert len(n_props) == 1
assert n_props["property"] == i
if __name__ == "__main__":
sys.exit(pytest.main([__file__, "-rA"]))

View File

@ -14,34 +14,7 @@ import mgclient
import sys
import pytest
import time
@pytest.fixture(autouse=True)
def connection():
connection = connect()
return connection
def connect(**kwargs) -> mgclient.Connection:
connection = mgclient.connect(host="localhost", port=7687, **kwargs)
connection.autocommit = True
return connection
def execute_and_fetch_all(cursor: mgclient.Cursor, query: str, params: dict = {}) -> typing.List[tuple]:
cursor.execute(query, params)
return cursor.fetchall()
def has_n_result_row(cursor: mgclient.Cursor, query: str, n: int):
results = execute_and_fetch_all(cursor, query)
return len(results) == n
def wait_for_shard_manager_to_initialize():
# The ShardManager in memgraph takes some time to initialize
# the shards, thus we cannot just run the queries right away
time.sleep(3)
from common import *
def test_vertex_creation_and_scanall(connection):
@ -62,7 +35,7 @@ def test_vertex_creation_and_scanall(connection):
assert len(results) == 9
for (n, r, m) in results:
n_props = n.properties
assert len(n_props) == 0, "n is not expected to have properties, update the test!"
assert len(n_props) == 1, "n is not expected to have properties, update the test!"
assert len(n.labels) == 0, "n is not expected to have labels, update the test!"
assert r.type == "TO"

View File

@ -0,0 +1,37 @@
# Copyright 2022 Memgraph Ltd.
#
# Use of this software is governed by the Business Source License
# included in the file licenses/BSL.txt; by using this file, you agree to be bound by the terms of the Business Source
# License, and you may not use this file except in compliance with the Business Source License.
#
# As of the Change Date specified in that file, in accordance with
# the Business Source License, use of this software will be governed
# by the Apache License, Version 2.0, included in the file
# licenses/APL.txt.
import typing
import mgclient
import sys
import pytest
import time
from common import *
def test_optional_match(connection):
wait_for_shard_manager_to_initialize()
cursor = connection.cursor()
assert has_n_result_row(cursor, "CREATE (n :label {property:0})", 0)
results = execute_and_fetch_all(
cursor, "MATCH (n:label) OPTIONAL MATCH (n:label)-[:TO]->(parent:label) RETURN parent"
)
assert len(results) == 1
assert has_n_result_row(cursor, "CREATE (n :label {property:2})", 0)
assert has_n_result_row(cursor, "MATCH (n), (m) CREATE (n)-[:TO]->(m)", 0)
assert has_n_result_row(cursor, "MATCH (n:label) OPTIONAL MATCH (n)-[r:TO]->(m:label) RETURN r", 4)
if __name__ == "__main__":
sys.exit(pytest.main([__file__, "-rA"]))

View File

@ -0,0 +1,44 @@
# Copyright 2022 Memgraph Ltd.
#
# Use of this software is governed by the Business Source License
# included in the file licenses/BSL.txt; by using this file, you agree to be bound by the terms of the Business Source
# License, and you may not use this file except in compliance with the Business Source License.
#
# As of the Change Date specified in that file, in accordance with
# the Business Source License, use of this software will be governed
# by the Apache License, Version 2.0, included in the file
# licenses/APL.txt.
import typing
import mgclient
import sys
import pytest
import time
from common import *
def test_order_by_and_limit(connection):
wait_for_shard_manager_to_initialize()
cursor = connection.cursor()
assert has_n_result_row(cursor, "CREATE (n :label {property:1})", 0)
assert has_n_result_row(cursor, "CREATE (n :label {property:2})", 0)
assert has_n_result_row(cursor, "CREATE (n :label {property:3})", 0)
assert has_n_result_row(cursor, "CREATE (n :label {property:4})", 0)
results = execute_and_fetch_all(cursor, "MATCH (n) RETURN n ORDER BY n.property DESC")
assert len(results) == 4
i = 4
for n in results:
n_props = n[0].properties
assert len(n_props) == 1
assert n_props["property"] == i
i = i - 1
result = execute_and_fetch_all(cursor, "MATCH (n) RETURN n ORDER BY n.property LIMIT 1")
assert len(result) == 1
assert result[0][0].properties["property"] == 1
if __name__ == "__main__":
sys.exit(pytest.main([__file__, "-rA"]))

View File

@ -0,0 +1,34 @@
# Copyright 2022 Memgraph Ltd.
#
# Use of this software is governed by the Business Source License
# included in the file licenses/BSL.txt; by using this file, you agree to be bound by the terms of the Business Source
# License, and you may not use this file except in compliance with the Business Source License.
#
# As of the Change Date specified in that file, in accordance with
# the Business Source License, use of this software will be governed
# by the Apache License, Version 2.0, included in the file
# licenses/APL.txt.
import typing
import mgclient
import sys
import pytest
import time
from common import *
def test_collect_unwind(connection):
wait_for_shard_manager_to_initialize()
cursor = connection.cursor()
assert has_n_result_row(cursor, "CREATE (n :label {property:1})", 0)
assert has_n_result_row(cursor, "CREATE (n :label {property:2})", 0)
assert has_n_result_row(cursor, "CREATE (n :label {property:3})", 0)
assert has_n_result_row(cursor, "CREATE (n :label {property:4})", 0)
assert has_n_result_row(cursor, "MATCH (n) WITH collect(n) AS result RETURN result", 1)
assert has_n_result_row(cursor, "MATCH (n) WITH collect(n) AS nd UNWIND nd AS result RETURN result", 4)
if __name__ == "__main__":
sys.exit(pytest.main([__file__, "-rA"]))

View File

@ -11,3 +11,23 @@ workloads:
binary: "tests/e2e/pytest_runner.sh"
args: ["distributed_queries/distributed_queries.py"]
<<: *template_cluster
- name: "Distributed unwind collect"
binary: "tests/e2e/pytest_runner.sh"
args: ["distributed_queries/unwind_collect.py"]
<<: *template_cluster
- name: "Distributed order by and limit"
binary: "tests/e2e/pytest_runner.sh"
args: ["distributed_queries/order_by_and_limit.py"]
<<: *template_cluster
- name: "Distributed distinct"
binary: "tests/e2e/pytest_runner.sh"
args: ["distributed_queries/distinct.py"]
<<: *template_cluster
- name: "Distributed optional match"
binary: "tests/e2e/pytest_runner.sh"
args: ["distributed_queries/optional_match.py"]
<<: *template_cluster

View File

@ -12,7 +12,7 @@ PIP_DEPS=(
"neo4j-driver==4.1.1"
"parse==1.18.0"
"parse-type==0.5.2"
"pytest==6.2.3"
"pytest==6.2.5"
"pyyaml==5.4.1"
"six==1.15.0"
)
@ -36,12 +36,12 @@ PYTHON_MINOR=$(python3 -c 'import sys; print(sys.version_info[:][1])')
# NOTE (2021-11-15): PyPi doesn't contain pulsar-client for Python 3.9 so we have to use
# our manually built wheel file. When they update the repository, pulsar-client can be
# added as a regular PIP dependancy
if [ $PYTHON_MINOR -lt 9 ]; then
pip --timeout 1000 install "pulsar-client==2.8.1"
else
pip --timeout 1000 install https://s3-eu-west-1.amazonaws.com/deps.memgraph.io/pulsar_client-2.8.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl
fi
#if [ $PYTHON_MINOR -lt 9 ]; then
# pip --timeout 1000 install "pulsar-client==2.8.1"
#else
# pip --timeout 1000 install https://s3-eu-west-1.amazonaws.com/deps.memgraph.io/pulsar_client-2.8.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl
#fi
#
for pkg in "${PIP_DEPS[@]}"; do
pip --timeout 1000 install "$pkg"
done

View File

@ -18,6 +18,7 @@
#include <gtest/gtest.h>
#include <rapidcheck.h>
#include <rapidcheck/gtest.h>
#include <spdlog/cfg/env.h>
#include "generated_operations.hpp"
#include "io/simulator/simulator_config.hpp"
@ -35,6 +36,8 @@ using storage::v3::kMaximumCronInterval;
RC_GTEST_PROP(RandomClusterConfig, HappyPath, (ClusterConfig cluster_config, NonEmptyOpVec ops)) {
// TODO(tyler) set abort_time to something more restrictive than Time::max()
spdlog::cfg::load_env_levels();
SimulatorConfig sim_config{
.drop_percent = 0,
.perform_timeouts = false,

View File

@ -81,7 +81,7 @@ MachineManager<SimulatorTransport> MkMm(Simulator &simulator, std::vector<Addres
Coordinator coordinator{shard_map};
return MachineManager{io, config, coordinator, shard_map};
return MachineManager{io, config, coordinator};
}
void RunMachine(MachineManager<SimulatorTransport> mm) { mm.Run(); }
@ -194,6 +194,22 @@ void ExecuteOp(msgs::ShardRequestManager<SimulatorTransport> &shard_request_mana
}
}
/// This struct exists as a way of detaching
/// a thread if something causes an uncaught
/// exception - because that thread would not
/// receive a ShutDown message otherwise, and
/// would cause the test to hang forever.
struct DetachIfDropped {
std::jthread &handle;
bool detach = true;
~DetachIfDropped() {
if (detach && handle.joinable()) {
handle.detach();
}
}
};
void RunClusterSimulation(const SimulatorConfig &sim_config, const ClusterConfig &cluster_config,
const std::vector<Op> &ops) {
spdlog::info("========================== NEW SIMULATION ==========================");
@ -217,9 +233,7 @@ void RunClusterSimulation(const SimulatorConfig &sim_config, const ClusterConfig
auto mm_thread_1 = std::jthread(RunMachine, std::move(mm_1));
// Need to detach this thread so that the destructor does not
// block before we can propagate assertion failures.
mm_thread_1.detach();
auto detach_on_error = DetachIfDropped{.handle = mm_thread_1};
// TODO(tyler) clarify addresses of coordinator etc... as it's a mess
@ -236,6 +250,11 @@ void RunClusterSimulation(const SimulatorConfig &sim_config, const ClusterConfig
std::visit([&](auto &o) { ExecuteOp(shard_request_manager, correctness_model, o); }, op.inner);
}
// We have now completed our workload without failing any assertions, so we can
// disable detaching the worker thread, which will cause the mm_thread_1 jthread
// to be joined when this function returns.
detach_on_error.detach = false;
simulator.ShutDown();
SimulatorStats stats = simulator.Stats();

View File

@ -278,49 +278,6 @@ target_link_libraries(${test_prefix}utils_temporal mg-utils)
add_unit_test(utils_histogram.cpp)
target_link_libraries(${test_prefix}utils_histogram mg-utils)
# Test mg-storage-v2
add_unit_test(commit_log_v2.cpp)
target_link_libraries(${test_prefix}commit_log_v2 gflags mg-utils mg-storage-v2)
add_unit_test(property_value_v2.cpp)
target_link_libraries(${test_prefix}property_value_v2 mg-storage-v2 mg-utils)
add_unit_test(storage_v2.cpp)
target_link_libraries(${test_prefix}storage_v2 mg-storage-v2 storage_test_utils)
add_unit_test(storage_v2_constraints.cpp)
target_link_libraries(${test_prefix}storage_v2_constraints mg-storage-v2)
add_unit_test(storage_v2_decoder_encoder.cpp)
target_link_libraries(${test_prefix}storage_v2_decoder_encoder mg-storage-v2)
add_unit_test(storage_v2_durability.cpp)
target_link_libraries(${test_prefix}storage_v2_durability mg-storage-v2)
add_unit_test(storage_v2_edge.cpp)
target_link_libraries(${test_prefix}storage_v2_edge mg-storage-v2)
add_unit_test(storage_v2_gc.cpp)
target_link_libraries(${test_prefix}storage_v2_gc mg-storage-v2)
add_unit_test(storage_v2_indices.cpp)
target_link_libraries(${test_prefix}storage_v2_indices mg-storage-v2 mg-utils)
add_unit_test(storage_v2_name_id_mapper.cpp)
target_link_libraries(${test_prefix}storage_v2_name_id_mapper mg-storage-v2)
add_unit_test(storage_v2_property_store.cpp)
target_link_libraries(${test_prefix}storage_v2_property_store mg-storage-v2 fmt)
add_unit_test(storage_v2_wal_file.cpp)
target_link_libraries(${test_prefix}storage_v2_wal_file mg-storage-v2 fmt)
add_unit_test(storage_v2_replication.cpp)
target_link_libraries(${test_prefix}storage_v2_replication mg-storage-v2 fmt)
add_unit_test(storage_v2_isolation_level.cpp)
target_link_libraries(${test_prefix}storage_v2_isolation_level mg-storage-v2)
# Test mg-storage-v3
add_library(storage_v3_test_utils storage_v3_test_utils.cpp)
target_link_libraries(storage_v3_test_utils mg-storage-v3)
@ -442,3 +399,7 @@ target_link_libraries(${test_prefix}pretty_print_ast_to_original_expression_test
# Tests for mg-coordinator
add_unit_test(coordinator_shard_map.cpp)
target_link_libraries(${test_prefix}coordinator_shard_map mg-coordinator)
# Tests for many shards, many creates, scan
add_unit_test(high_density_shard_create_scan.cpp)
target_link_libraries(${test_prefix}high_density_shard_create_scan mg-io mg-coordinator mg-storage-v3 mg-query-v2)

View File

@ -1,81 +0,0 @@
// Copyright 2022 Memgraph Ltd.
//
// Use of this software is governed by the Business Source License
// included in the file licenses/BSL.txt; by using this file, you agree to be bound by the terms of the Business Source
// License, and you may not use this file except in compliance with the Business Source License.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0, included in the file
// licenses/APL.txt.
#include "storage/v2/commit_log.hpp"
#include "gtest/gtest.h"
namespace {
inline constexpr size_t ids_per_block = 8192 * 64;
} // namespace
TEST(CommitLog, Simple) {
memgraph::storage::CommitLog log;
EXPECT_EQ(log.OldestActive(), 0);
log.MarkFinished(1);
EXPECT_EQ(log.OldestActive(), 0);
log.MarkFinished(0);
EXPECT_EQ(log.OldestActive(), 2);
}
TEST(CommitLog, Fields) {
memgraph::storage::CommitLog log;
for (uint64_t i = 0; i < 64; ++i) {
log.MarkFinished(i);
EXPECT_EQ(log.OldestActive(), i + 1);
}
for (uint64_t i = 128; i < 192; ++i) {
log.MarkFinished(i);
EXPECT_EQ(log.OldestActive(), 64);
}
for (uint64_t i = 64; i < 128; ++i) {
log.MarkFinished(i);
EXPECT_EQ(log.OldestActive(), i < 127 ? i + 1 : 192);
}
}
TEST(CommitLog, Blocks) {
memgraph::storage::CommitLog log;
for (uint64_t i = 0; i < ids_per_block; ++i) {
log.MarkFinished(i);
EXPECT_EQ(log.OldestActive(), i + 1);
}
for (uint64_t i = ids_per_block * 2; i < ids_per_block * 3; ++i) {
log.MarkFinished(i);
EXPECT_EQ(log.OldestActive(), ids_per_block);
}
for (uint64_t i = ids_per_block; i < ids_per_block; ++i) {
log.MarkFinished(i);
EXPECT_EQ(log.OldestActive(), i < ids_per_block - 1 ? i + 1 : ids_per_block * 3);
}
}
TEST(CommitLog, TrackAfterInitialId) {
const auto check_marking_ids = [](auto *log, auto current_oldest_active) {
ASSERT_EQ(log->OldestActive(), current_oldest_active);
log->MarkFinished(current_oldest_active);
++current_oldest_active;
ASSERT_EQ(log->OldestActive(), current_oldest_active);
};
for (uint64_t i = 0; i < 2 * ids_per_block; ++i) {
memgraph::storage::CommitLog log{i};
check_marking_ids(&log, i);
}
}

View File

@ -0,0 +1,304 @@
// Copyright 2022 Memgraph Ltd.
//
// Use of this software is governed by the Business Source License
// included in the file licenses/BSL.txt; by using this file, you agree to be bound by the terms of the Business Source
// License, and you may not use this file except in compliance with the Business Source License.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0, included in the file
// licenses/APL.txt.
#include <chrono>
#include <iostream>
#include <limits>
#include <memory>
#include <set>
#include <thread>
#include <gtest/gtest.h>
#include "coordinator/coordinator_client.hpp"
#include "coordinator/coordinator_rsm.hpp"
#include "coordinator/shard_map.hpp"
#include "io/address.hpp"
#include "io/local_transport/local_system.hpp"
#include "io/local_transport/local_transport.hpp"
#include "io/simulator/simulator.hpp"
#include "io/simulator/simulator_config.hpp"
#include "io/simulator/simulator_transport.hpp"
#include "machine_manager/machine_config.hpp"
#include "machine_manager/machine_manager.hpp"
#include "query/v2/requests.hpp"
#include "query/v2/shard_request_manager.hpp"
#include "utils/variant_helpers.hpp"
namespace memgraph::tests::simulation {
using coordinator::Coordinator;
using coordinator::CoordinatorClient;
using coordinator::CoordinatorReadRequests;
using coordinator::CoordinatorWriteRequests;
using coordinator::CoordinatorWriteResponses;
using coordinator::GetShardMapRequest;
using coordinator::GetShardMapResponse;
using coordinator::Hlc;
using coordinator::HlcResponse;
using coordinator::Shard;
using coordinator::ShardMap;
using io::Address;
using io::Io;
using io::local_transport::LocalSystem;
using io::local_transport::LocalTransport;
using io::rsm::RsmClient;
using machine_manager::MachineConfig;
using machine_manager::MachineManager;
using msgs::ReadRequests;
using msgs::ReadResponses;
using msgs::WriteRequests;
using msgs::WriteResponses;
using storage::v3::LabelId;
using storage::v3::SchemaProperty;
using CompoundKey = std::pair<int, int>;
using ShardClient = RsmClient<LocalTransport, WriteRequests, WriteResponses, ReadRequests, ReadResponses>;
struct CreateVertex {
int first;
int second;
friend std::ostream &operator<<(std::ostream &in, const CreateVertex &add) {
in << "CreateVertex { first: " << add.first << ", second: " << add.second << " }";
return in;
}
};
struct ScanAll {
friend std::ostream &operator<<(std::ostream &in, const ScanAll &get) {
in << "ScanAll {}";
return in;
}
};
MachineManager<LocalTransport> MkMm(LocalSystem &local_system, std::vector<Address> coordinator_addresses, Address addr,
ShardMap shard_map, size_t shard_worker_threads) {
MachineConfig config{
.coordinator_addresses = std::move(coordinator_addresses),
.is_storage = true,
.is_coordinator = true,
.listen_ip = addr.last_known_ip,
.listen_port = addr.last_known_port,
.shard_worker_threads = shard_worker_threads,
};
Io<LocalTransport> io = local_system.Register(addr);
Coordinator coordinator{shard_map};
return MachineManager{io, config, std::move(coordinator)};
}
void RunMachine(MachineManager<LocalTransport> mm) { mm.Run(); }
void WaitForShardsToInitialize(CoordinatorClient<LocalTransport> &coordinator_client) {
// Call coordinator client's read method for GetShardMap and keep
// reading it until the shard map contains proper replicas for
// each shard in the label space.
while (true) {
GetShardMapRequest req{};
CoordinatorReadRequests read_req = req;
auto read_res = coordinator_client.SendReadRequest(read_req);
if (read_res.HasError()) {
// timed out
continue;
}
auto response_result = read_res.GetValue();
auto response = std::get<GetShardMapResponse>(response_result);
auto shard_map = response.shard_map;
if (shard_map.ClusterInitialized()) {
spdlog::info("cluster stabilized - beginning workload");
return;
}
}
}
ShardMap TestShardMap(int shards, int replication_factor, int gap_between_shards) {
ShardMap sm{};
const auto label_name = std::string("test_label");
// register new properties
const std::vector<std::string> property_names = {"property_1", "property_2"};
const auto properties = sm.AllocatePropertyIds(property_names);
const auto property_id_1 = properties.at("property_1");
const auto property_id_2 = properties.at("property_2");
const auto type_1 = memgraph::common::SchemaType::INT;
const auto type_2 = memgraph::common::SchemaType::INT;
// register new label space
std::vector<SchemaProperty> schema = {
SchemaProperty{.property_id = property_id_1, .type = type_1},
SchemaProperty{.property_id = property_id_2, .type = type_2},
};
std::optional<LabelId> label_id = sm.InitializeNewLabel(label_name, schema, replication_factor, sm.shard_map_version);
MG_ASSERT(label_id.has_value());
// split the shard at N split points
for (int64_t i = 1; i < shards; ++i) {
const auto key1 = memgraph::storage::v3::PropertyValue(i * gap_between_shards);
const auto key2 = memgraph::storage::v3::PropertyValue(0);
const auto split_point = {key1, key2};
const bool split_success = sm.SplitShard(sm.shard_map_version, label_id.value(), split_point);
MG_ASSERT(split_success);
}
return sm;
}
void ExecuteOp(msgs::ShardRequestManager<LocalTransport> &shard_request_manager,
std::set<CompoundKey> &correctness_model, CreateVertex create_vertex) {
const auto key1 = memgraph::storage::v3::PropertyValue(create_vertex.first);
const auto key2 = memgraph::storage::v3::PropertyValue(create_vertex.second);
std::vector<msgs::Value> primary_key = {msgs::Value(int64_t(create_vertex.first)),
msgs::Value(int64_t(create_vertex.second))};
if (correctness_model.contains(std::make_pair(create_vertex.first, create_vertex.second))) {
// TODO(tyler) remove this early-return when we have properly handled setting non-unique vertexes
return;
}
msgs::ExecutionState<msgs::CreateVerticesRequest> state;
auto label_id = shard_request_manager.NameToLabel("test_label");
msgs::NewVertex nv{.primary_key = primary_key};
nv.label_ids.push_back({label_id});
std::vector<msgs::NewVertex> new_vertices;
new_vertices.push_back(std::move(nv));
auto result = shard_request_manager.Request(state, std::move(new_vertices));
MG_ASSERT(result.size() == 1);
MG_ASSERT(result[0].success);
correctness_model.emplace(std::make_pair(create_vertex.first, create_vertex.second));
}
void ExecuteOp(msgs::ShardRequestManager<LocalTransport> &shard_request_manager,
std::set<CompoundKey> &correctness_model, ScanAll scan_all) {
msgs::ExecutionState<msgs::ScanVerticesRequest> request{.label = "test_label"};
auto results = shard_request_manager.Request(request);
MG_ASSERT(results.size() == correctness_model.size());
for (const auto &vertex_accessor : results) {
const auto properties = vertex_accessor.Properties();
const auto primary_key = vertex_accessor.Id().second;
const CompoundKey model_key = std::make_pair(primary_key[0].int_v, primary_key[1].int_v);
MG_ASSERT(correctness_model.contains(model_key));
}
}
void RunWorkload(int shards, int replication_factor, int create_ops, int scan_ops, int shard_worker_threads,
int gap_between_shards) {
spdlog::info("======================== NEW TEST ========================");
spdlog::info("shards: ", shards);
spdlog::info("replication factor: ", replication_factor);
spdlog::info("create ops: ", create_ops);
spdlog::info("scan all ops: ", scan_ops);
spdlog::info("shard worker threads: ", shard_worker_threads);
spdlog::info("gap between shards: ", gap_between_shards);
LocalSystem local_system;
auto cli_addr = Address::TestAddress(1);
auto machine_1_addr = cli_addr.ForkUniqueAddress();
Io<LocalTransport> cli_io = local_system.Register(cli_addr);
Io<LocalTransport> cli_io_2 = local_system.Register(Address::TestAddress(2));
auto coordinator_addresses = std::vector{
machine_1_addr,
};
auto time_before_shard_map_creation = cli_io_2.Now();
ShardMap initialization_sm = TestShardMap(shards, replication_factor, gap_between_shards);
auto time_after_shard_map_creation = cli_io_2.Now();
auto mm_1 = MkMm(local_system, coordinator_addresses, machine_1_addr, initialization_sm, shard_worker_threads);
Address coordinator_address = mm_1.CoordinatorAddress();
auto mm_thread_1 = std::jthread(RunMachine, std::move(mm_1));
CoordinatorClient<LocalTransport> coordinator_client(cli_io, coordinator_address, {coordinator_address});
auto time_before_shard_stabilization = cli_io_2.Now();
WaitForShardsToInitialize(coordinator_client);
auto time_after_shard_stabilization = cli_io_2.Now();
msgs::ShardRequestManager<LocalTransport> shard_request_manager(std::move(coordinator_client), std::move(cli_io));
shard_request_manager.StartTransaction();
auto correctness_model = std::set<CompoundKey>{};
auto time_before_creates = cli_io_2.Now();
for (int i = 0; i < create_ops; i++) {
ExecuteOp(shard_request_manager, correctness_model, CreateVertex{.first = i, .second = i});
}
auto time_after_creates = cli_io_2.Now();
for (int i = 0; i < scan_ops; i++) {
ExecuteOp(shard_request_manager, correctness_model, ScanAll{});
}
auto time_after_scan = cli_io_2.Now();
local_system.ShutDown();
auto latencies = cli_io_2.ResponseLatencies();
spdlog::info("response latencies: \n{}", latencies.SummaryTable());
spdlog::info("serial time break-down: (μs)");
spdlog::info("{: >20}: {: >10}", "split shard map",
(time_after_shard_map_creation - time_before_shard_map_creation).count());
spdlog::info("{: >20}: {: >10}", "shard stabilization",
(time_after_shard_stabilization - time_before_shard_stabilization).count());
spdlog::info("{: >20}: {: >10}", "create nodes", (time_after_creates - time_before_creates).count());
spdlog::info("{: >20}: {: >10}", "scan nodes", (time_after_scan - time_after_creates).count());
std::cout << fmt::format("{} {} {}\n", shards, shard_worker_threads, (time_after_scan - time_after_creates).count());
}
TEST(MachineManager, ManyShards) {
auto shards_attempts = {1, 64};
auto shard_worker_thread_attempts = {1, 32};
auto replication_factor = 1;
auto create_ops = 128;
auto scan_ops = 1;
std::cout << "splits threads scan_all_microseconds\n";
for (const auto shards : shards_attempts) {
auto gap_between_shards = create_ops / shards;
for (const auto shard_worker_threads : shard_worker_thread_attempts) {
RunWorkload(shards, replication_factor, create_ops, scan_ops, shard_worker_threads, gap_between_shards);
}
}
}
} // namespace memgraph::tests::simulation

View File

@ -185,7 +185,7 @@ MachineManager<LocalTransport> MkMm(LocalSystem &local_system, std::vector<Addre
Coordinator coordinator{shard_map};
return MachineManager{io, config, coordinator, shard_map};
return MachineManager{io, config, coordinator};
}
void RunMachine(MachineManager<LocalTransport> mm) { mm.Run(); }

View File

@ -1,814 +0,0 @@
// Copyright 2022 Memgraph Ltd.
//
// Use of this software is governed by the Business Source License
// included in the file licenses/BSL.txt; by using this file, you agree to be bound by the terms of the Business Source
// License, and you may not use this file except in compliance with the Business Source License.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0, included in the file
// licenses/APL.txt.
#include <gtest/gtest.h>
#include <sstream>
#include "storage/v2/property_value.hpp"
#include "storage/v2/temporal.hpp"
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST(PropertyValue, Null) {
memgraph::storage::PropertyValue pv;
ASSERT_EQ(pv.type(), memgraph::storage::PropertyValue::Type::Null);
ASSERT_TRUE(pv.IsNull());
ASSERT_FALSE(pv.IsBool());
ASSERT_FALSE(pv.IsInt());
ASSERT_FALSE(pv.IsDouble());
ASSERT_FALSE(pv.IsString());
ASSERT_FALSE(pv.IsList());
ASSERT_FALSE(pv.IsMap());
ASSERT_THROW(pv.ValueBool(), memgraph::storage::PropertyValueException);
ASSERT_THROW(pv.ValueInt(), memgraph::storage::PropertyValueException);
ASSERT_THROW(pv.ValueDouble(), memgraph::storage::PropertyValueException);
ASSERT_THROW(pv.ValueString(), memgraph::storage::PropertyValueException);
ASSERT_THROW(pv.ValueList(), memgraph::storage::PropertyValueException);
ASSERT_THROW(pv.ValueMap(), memgraph::storage::PropertyValueException);
const auto &cpv = pv;
ASSERT_THROW(cpv.ValueBool(), memgraph::storage::PropertyValueException);
ASSERT_THROW(cpv.ValueInt(), memgraph::storage::PropertyValueException);
ASSERT_THROW(cpv.ValueDouble(), memgraph::storage::PropertyValueException);
ASSERT_THROW(cpv.ValueString(), memgraph::storage::PropertyValueException);
ASSERT_THROW(cpv.ValueList(), memgraph::storage::PropertyValueException);
ASSERT_THROW(cpv.ValueMap(), memgraph::storage::PropertyValueException);
{
std::stringstream ss;
ss << pv.type();
ASSERT_EQ(ss.str(), "null");
}
{
std::stringstream ss;
ss << pv;
ASSERT_EQ(ss.str(), "null");
}
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST(PropertyValue, Bool) {
memgraph::storage::PropertyValue pv(false);
ASSERT_EQ(pv.type(), memgraph::storage::PropertyValue::Type::Bool);
ASSERT_FALSE(pv.IsNull());
ASSERT_TRUE(pv.IsBool());
ASSERT_FALSE(pv.IsInt());
ASSERT_FALSE(pv.IsDouble());
ASSERT_FALSE(pv.IsString());
ASSERT_FALSE(pv.IsList());
ASSERT_FALSE(pv.IsMap());
ASSERT_EQ(pv.ValueBool(), false);
ASSERT_THROW(pv.ValueInt(), memgraph::storage::PropertyValueException);
ASSERT_THROW(pv.ValueDouble(), memgraph::storage::PropertyValueException);
ASSERT_THROW(pv.ValueString(), memgraph::storage::PropertyValueException);
ASSERT_THROW(pv.ValueList(), memgraph::storage::PropertyValueException);
ASSERT_THROW(pv.ValueMap(), memgraph::storage::PropertyValueException);
const auto &cpv = pv;
ASSERT_EQ(cpv.ValueBool(), false);
ASSERT_THROW(cpv.ValueInt(), memgraph::storage::PropertyValueException);
ASSERT_THROW(cpv.ValueDouble(), memgraph::storage::PropertyValueException);
ASSERT_THROW(cpv.ValueString(), memgraph::storage::PropertyValueException);
ASSERT_THROW(cpv.ValueList(), memgraph::storage::PropertyValueException);
ASSERT_THROW(cpv.ValueMap(), memgraph::storage::PropertyValueException);
{
std::stringstream ss;
ss << pv.type();
ASSERT_EQ(ss.str(), "bool");
}
{
std::stringstream ss;
ss << pv;
ASSERT_EQ(ss.str(), "false");
}
{
memgraph::storage::PropertyValue pvtrue(true);
std::stringstream ss;
ss << pvtrue;
ASSERT_EQ(ss.str(), "true");
}
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST(PropertyValue, Int) {
memgraph::storage::PropertyValue pv(123L);
ASSERT_EQ(pv.type(), memgraph::storage::PropertyValue::Type::Int);
ASSERT_FALSE(pv.IsNull());
ASSERT_FALSE(pv.IsBool());
ASSERT_TRUE(pv.IsInt());
ASSERT_FALSE(pv.IsDouble());
ASSERT_FALSE(pv.IsString());
ASSERT_FALSE(pv.IsList());
ASSERT_FALSE(pv.IsMap());
ASSERT_THROW(pv.ValueBool(), memgraph::storage::PropertyValueException);
ASSERT_EQ(pv.ValueInt(), 123L);
ASSERT_THROW(pv.ValueDouble(), memgraph::storage::PropertyValueException);
ASSERT_THROW(pv.ValueString(), memgraph::storage::PropertyValueException);
ASSERT_THROW(pv.ValueList(), memgraph::storage::PropertyValueException);
ASSERT_THROW(pv.ValueMap(), memgraph::storage::PropertyValueException);
const auto &cpv = pv;
ASSERT_THROW(cpv.ValueBool(), memgraph::storage::PropertyValueException);
ASSERT_EQ(cpv.ValueInt(), 123L);
ASSERT_THROW(cpv.ValueDouble(), memgraph::storage::PropertyValueException);
ASSERT_THROW(cpv.ValueString(), memgraph::storage::PropertyValueException);
ASSERT_THROW(cpv.ValueList(), memgraph::storage::PropertyValueException);
ASSERT_THROW(cpv.ValueMap(), memgraph::storage::PropertyValueException);
{
std::stringstream ss;
ss << pv.type();
ASSERT_EQ(ss.str(), "int");
}
{
std::stringstream ss;
ss << pv;
ASSERT_EQ(ss.str(), "123");
}
{
memgraph::storage::PropertyValue pvint(123);
ASSERT_EQ(pvint.type(), memgraph::storage::PropertyValue::Type::Int);
}
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST(PropertyValue, Double) {
memgraph::storage::PropertyValue pv(123.5);
ASSERT_EQ(pv.type(), memgraph::storage::PropertyValue::Type::Double);
ASSERT_FALSE(pv.IsNull());
ASSERT_FALSE(pv.IsBool());
ASSERT_FALSE(pv.IsInt());
ASSERT_TRUE(pv.IsDouble());
ASSERT_FALSE(pv.IsString());
ASSERT_FALSE(pv.IsList());
ASSERT_FALSE(pv.IsMap());
ASSERT_THROW(pv.ValueBool(), memgraph::storage::PropertyValueException);
ASSERT_THROW(pv.ValueInt(), memgraph::storage::PropertyValueException);
ASSERT_EQ(pv.ValueDouble(), 123.5);
ASSERT_THROW(pv.ValueString(), memgraph::storage::PropertyValueException);
ASSERT_THROW(pv.ValueList(), memgraph::storage::PropertyValueException);
ASSERT_THROW(pv.ValueMap(), memgraph::storage::PropertyValueException);
const auto &cpv = pv;
ASSERT_THROW(cpv.ValueBool(), memgraph::storage::PropertyValueException);
ASSERT_THROW(cpv.ValueInt(), memgraph::storage::PropertyValueException);
ASSERT_EQ(cpv.ValueDouble(), 123.5);
ASSERT_THROW(cpv.ValueString(), memgraph::storage::PropertyValueException);
ASSERT_THROW(cpv.ValueList(), memgraph::storage::PropertyValueException);
ASSERT_THROW(cpv.ValueMap(), memgraph::storage::PropertyValueException);
{
std::stringstream ss;
ss << pv.type();
ASSERT_EQ(ss.str(), "double");
}
{
std::stringstream ss;
ss << pv;
ASSERT_EQ(ss.str(), "123.5");
}
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST(PropertyValue, StringCopy) {
std::string str("nandare");
memgraph::storage::PropertyValue pv(str);
ASSERT_EQ(str, "nandare");
ASSERT_EQ(pv.type(), memgraph::storage::PropertyValue::Type::String);
ASSERT_FALSE(pv.IsNull());
ASSERT_FALSE(pv.IsBool());
ASSERT_FALSE(pv.IsInt());
ASSERT_FALSE(pv.IsDouble());
ASSERT_TRUE(pv.IsString());
ASSERT_FALSE(pv.IsList());
ASSERT_FALSE(pv.IsMap());
ASSERT_THROW(pv.ValueBool(), memgraph::storage::PropertyValueException);
ASSERT_THROW(pv.ValueInt(), memgraph::storage::PropertyValueException);
ASSERT_THROW(pv.ValueDouble(), memgraph::storage::PropertyValueException);
ASSERT_EQ(pv.ValueString(), "nandare");
ASSERT_THROW(pv.ValueList(), memgraph::storage::PropertyValueException);
ASSERT_THROW(pv.ValueMap(), memgraph::storage::PropertyValueException);
const auto &cpv = pv;
ASSERT_THROW(cpv.ValueBool(), memgraph::storage::PropertyValueException);
ASSERT_THROW(cpv.ValueInt(), memgraph::storage::PropertyValueException);
ASSERT_THROW(cpv.ValueDouble(), memgraph::storage::PropertyValueException);
ASSERT_EQ(cpv.ValueString(), "nandare");
ASSERT_THROW(cpv.ValueList(), memgraph::storage::PropertyValueException);
ASSERT_THROW(cpv.ValueMap(), memgraph::storage::PropertyValueException);
{
std::stringstream ss;
ss << pv.type();
ASSERT_EQ(ss.str(), "string");
}
{
std::stringstream ss;
ss << pv;
ASSERT_EQ(ss.str(), "nandare");
}
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST(PropertyValue, StringMove) {
std::string str("nandare");
memgraph::storage::PropertyValue pv(std::move(str));
ASSERT_EQ(str, "");
ASSERT_EQ(pv.type(), memgraph::storage::PropertyValue::Type::String);
ASSERT_FALSE(pv.IsNull());
ASSERT_FALSE(pv.IsBool());
ASSERT_FALSE(pv.IsInt());
ASSERT_FALSE(pv.IsDouble());
ASSERT_TRUE(pv.IsString());
ASSERT_FALSE(pv.IsList());
ASSERT_FALSE(pv.IsMap());
ASSERT_THROW(pv.ValueBool(), memgraph::storage::PropertyValueException);
ASSERT_THROW(pv.ValueInt(), memgraph::storage::PropertyValueException);
ASSERT_THROW(pv.ValueDouble(), memgraph::storage::PropertyValueException);
ASSERT_EQ(pv.ValueString(), "nandare");
ASSERT_THROW(pv.ValueList(), memgraph::storage::PropertyValueException);
ASSERT_THROW(pv.ValueMap(), memgraph::storage::PropertyValueException);
const auto &cpv = pv;
ASSERT_THROW(cpv.ValueBool(), memgraph::storage::PropertyValueException);
ASSERT_THROW(cpv.ValueInt(), memgraph::storage::PropertyValueException);
ASSERT_THROW(cpv.ValueDouble(), memgraph::storage::PropertyValueException);
ASSERT_EQ(cpv.ValueString(), "nandare");
ASSERT_THROW(cpv.ValueList(), memgraph::storage::PropertyValueException);
ASSERT_THROW(cpv.ValueMap(), memgraph::storage::PropertyValueException);
{
std::stringstream ss;
ss << pv.type();
ASSERT_EQ(ss.str(), "string");
}
{
std::stringstream ss;
ss << pv;
ASSERT_EQ(ss.str(), "nandare");
}
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST(PropertyValue, ListCopy) {
std::vector<memgraph::storage::PropertyValue> vec{memgraph::storage::PropertyValue("nandare"),
memgraph::storage::PropertyValue(123)};
memgraph::storage::PropertyValue pv(vec);
ASSERT_EQ(vec.size(), 2);
ASSERT_EQ(vec[0].ValueString(), "nandare");
ASSERT_EQ(vec[1].ValueInt(), 123);
ASSERT_EQ(pv.type(), memgraph::storage::PropertyValue::Type::List);
ASSERT_FALSE(pv.IsNull());
ASSERT_FALSE(pv.IsBool());
ASSERT_FALSE(pv.IsInt());
ASSERT_FALSE(pv.IsDouble());
ASSERT_FALSE(pv.IsString());
ASSERT_TRUE(pv.IsList());
ASSERT_FALSE(pv.IsMap());
ASSERT_THROW(pv.ValueBool(), memgraph::storage::PropertyValueException);
ASSERT_THROW(pv.ValueInt(), memgraph::storage::PropertyValueException);
ASSERT_THROW(pv.ValueDouble(), memgraph::storage::PropertyValueException);
ASSERT_THROW(pv.ValueString(), memgraph::storage::PropertyValueException);
{
const auto &ret = pv.ValueList();
ASSERT_EQ(ret.size(), 2);
ASSERT_EQ(ret[0].ValueString(), "nandare");
ASSERT_EQ(ret[1].ValueInt(), 123);
}
ASSERT_THROW(pv.ValueMap(), memgraph::storage::PropertyValueException);
const auto &cpv = pv;
ASSERT_THROW(cpv.ValueBool(), memgraph::storage::PropertyValueException);
ASSERT_THROW(cpv.ValueInt(), memgraph::storage::PropertyValueException);
ASSERT_THROW(cpv.ValueDouble(), memgraph::storage::PropertyValueException);
ASSERT_THROW(cpv.ValueString(), memgraph::storage::PropertyValueException);
{
const auto &ret = cpv.ValueList();
ASSERT_EQ(ret.size(), 2);
ASSERT_EQ(ret[0].ValueString(), "nandare");
ASSERT_EQ(ret[1].ValueInt(), 123);
}
ASSERT_THROW(cpv.ValueMap(), memgraph::storage::PropertyValueException);
{
std::stringstream ss;
ss << pv.type();
ASSERT_EQ(ss.str(), "list");
}
{
std::stringstream ss;
ss << pv;
ASSERT_EQ(ss.str(), "[nandare, 123]");
}
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST(PropertyValue, ListMove) {
std::vector<memgraph::storage::PropertyValue> vec{memgraph::storage::PropertyValue("nandare"),
memgraph::storage::PropertyValue(123)};
memgraph::storage::PropertyValue pv(std::move(vec));
ASSERT_EQ(vec.size(), 0);
ASSERT_EQ(pv.type(), memgraph::storage::PropertyValue::Type::List);
ASSERT_FALSE(pv.IsNull());
ASSERT_FALSE(pv.IsBool());
ASSERT_FALSE(pv.IsInt());
ASSERT_FALSE(pv.IsDouble());
ASSERT_FALSE(pv.IsString());
ASSERT_TRUE(pv.IsList());
ASSERT_FALSE(pv.IsMap());
ASSERT_THROW(pv.ValueBool(), memgraph::storage::PropertyValueException);
ASSERT_THROW(pv.ValueInt(), memgraph::storage::PropertyValueException);
ASSERT_THROW(pv.ValueDouble(), memgraph::storage::PropertyValueException);
ASSERT_THROW(pv.ValueString(), memgraph::storage::PropertyValueException);
{
const auto &ret = pv.ValueList();
ASSERT_EQ(ret.size(), 2);
ASSERT_EQ(ret[0].ValueString(), "nandare");
ASSERT_EQ(ret[1].ValueInt(), 123);
}
ASSERT_THROW(pv.ValueMap(), memgraph::storage::PropertyValueException);
const auto &cpv = pv;
ASSERT_THROW(cpv.ValueBool(), memgraph::storage::PropertyValueException);
ASSERT_THROW(cpv.ValueInt(), memgraph::storage::PropertyValueException);
ASSERT_THROW(cpv.ValueDouble(), memgraph::storage::PropertyValueException);
ASSERT_THROW(cpv.ValueString(), memgraph::storage::PropertyValueException);
{
const auto &ret = cpv.ValueList();
ASSERT_EQ(ret.size(), 2);
ASSERT_EQ(ret[0].ValueString(), "nandare");
ASSERT_EQ(ret[1].ValueInt(), 123);
}
ASSERT_THROW(cpv.ValueMap(), memgraph::storage::PropertyValueException);
{
std::stringstream ss;
ss << pv.type();
ASSERT_EQ(ss.str(), "list");
}
{
std::stringstream ss;
ss << pv;
ASSERT_EQ(ss.str(), "[nandare, 123]");
}
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST(PropertyValue, MapCopy) {
std::map<std::string, memgraph::storage::PropertyValue> map{{"nandare", memgraph::storage::PropertyValue(123)}};
memgraph::storage::PropertyValue pv(map);
ASSERT_EQ(map.size(), 1);
ASSERT_EQ(map.at("nandare").ValueInt(), 123);
ASSERT_EQ(pv.type(), memgraph::storage::PropertyValue::Type::Map);
ASSERT_FALSE(pv.IsNull());
ASSERT_FALSE(pv.IsBool());
ASSERT_FALSE(pv.IsInt());
ASSERT_FALSE(pv.IsDouble());
ASSERT_FALSE(pv.IsString());
ASSERT_FALSE(pv.IsList());
ASSERT_TRUE(pv.IsMap());
ASSERT_THROW(pv.ValueBool(), memgraph::storage::PropertyValueException);
ASSERT_THROW(pv.ValueInt(), memgraph::storage::PropertyValueException);
ASSERT_THROW(pv.ValueDouble(), memgraph::storage::PropertyValueException);
ASSERT_THROW(pv.ValueString(), memgraph::storage::PropertyValueException);
ASSERT_THROW(pv.ValueList(), memgraph::storage::PropertyValueException);
{
const auto &ret = pv.ValueMap();
ASSERT_EQ(ret.size(), 1);
ASSERT_EQ(ret.at("nandare").ValueInt(), 123);
}
const auto &cpv = pv;
ASSERT_THROW(cpv.ValueBool(), memgraph::storage::PropertyValueException);
ASSERT_THROW(cpv.ValueInt(), memgraph::storage::PropertyValueException);
ASSERT_THROW(cpv.ValueDouble(), memgraph::storage::PropertyValueException);
ASSERT_THROW(cpv.ValueString(), memgraph::storage::PropertyValueException);
ASSERT_THROW(cpv.ValueList(), memgraph::storage::PropertyValueException);
{
const auto &ret = cpv.ValueMap();
ASSERT_EQ(ret.size(), 1);
ASSERT_EQ(ret.at("nandare").ValueInt(), 123);
}
{
std::stringstream ss;
ss << pv.type();
ASSERT_EQ(ss.str(), "map");
}
{
std::stringstream ss;
ss << pv;
ASSERT_EQ(ss.str(), "{nandare: 123}");
}
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST(PropertyValue, MapMove) {
std::map<std::string, memgraph::storage::PropertyValue> map{{"nandare", memgraph::storage::PropertyValue(123)}};
memgraph::storage::PropertyValue pv(std::move(map));
ASSERT_EQ(map.size(), 0);
ASSERT_EQ(pv.type(), memgraph::storage::PropertyValue::Type::Map);
ASSERT_FALSE(pv.IsNull());
ASSERT_FALSE(pv.IsBool());
ASSERT_FALSE(pv.IsInt());
ASSERT_FALSE(pv.IsDouble());
ASSERT_FALSE(pv.IsString());
ASSERT_FALSE(pv.IsList());
ASSERT_TRUE(pv.IsMap());
ASSERT_THROW(pv.ValueBool(), memgraph::storage::PropertyValueException);
ASSERT_THROW(pv.ValueInt(), memgraph::storage::PropertyValueException);
ASSERT_THROW(pv.ValueDouble(), memgraph::storage::PropertyValueException);
ASSERT_THROW(pv.ValueString(), memgraph::storage::PropertyValueException);
ASSERT_THROW(pv.ValueList(), memgraph::storage::PropertyValueException);
{
const auto &ret = pv.ValueMap();
ASSERT_EQ(ret.size(), 1);
ASSERT_EQ(ret.at("nandare").ValueInt(), 123);
}
const auto &cpv = pv;
ASSERT_THROW(cpv.ValueBool(), memgraph::storage::PropertyValueException);
ASSERT_THROW(cpv.ValueInt(), memgraph::storage::PropertyValueException);
ASSERT_THROW(cpv.ValueDouble(), memgraph::storage::PropertyValueException);
ASSERT_THROW(cpv.ValueString(), memgraph::storage::PropertyValueException);
ASSERT_THROW(cpv.ValueList(), memgraph::storage::PropertyValueException);
{
const auto &ret = cpv.ValueMap();
ASSERT_EQ(ret.size(), 1);
ASSERT_EQ(ret.at("nandare").ValueInt(), 123);
}
{
std::stringstream ss;
ss << pv.type();
ASSERT_EQ(ss.str(), "map");
}
{
std::stringstream ss;
ss << pv;
ASSERT_EQ(ss.str(), "{nandare: 123}");
}
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST(PropertyValue, CopyConstructor) {
std::vector<memgraph::storage::PropertyValue> vec{memgraph::storage::PropertyValue(true),
memgraph::storage::PropertyValue(123)};
std::map<std::string, memgraph::storage::PropertyValue> map{{"nandare", memgraph::storage::PropertyValue(false)}};
std::vector<memgraph::storage::PropertyValue> data{
memgraph::storage::PropertyValue(),
memgraph::storage::PropertyValue(true),
memgraph::storage::PropertyValue(123),
memgraph::storage::PropertyValue(123.5),
memgraph::storage::PropertyValue("nandare"),
memgraph::storage::PropertyValue(vec),
memgraph::storage::PropertyValue(map),
memgraph::storage::PropertyValue(memgraph::storage::TemporalData(memgraph::storage::TemporalType::Date, 23))};
for (const auto &item : data) {
memgraph::storage::PropertyValue pv(item);
ASSERT_EQ(pv.type(), item.type());
switch (item.type()) {
case memgraph::storage::PropertyValue::Type::Null:
ASSERT_TRUE(pv.IsNull());
break;
case memgraph::storage::PropertyValue::Type::Bool:
ASSERT_EQ(pv.ValueBool(), item.ValueBool());
break;
case memgraph::storage::PropertyValue::Type::Int:
ASSERT_EQ(pv.ValueInt(), item.ValueInt());
break;
case memgraph::storage::PropertyValue::Type::Double:
ASSERT_EQ(pv.ValueDouble(), item.ValueDouble());
break;
case memgraph::storage::PropertyValue::Type::String:
ASSERT_EQ(pv.ValueString(), item.ValueString());
break;
case memgraph::storage::PropertyValue::Type::List:
ASSERT_EQ(pv.ValueList(), item.ValueList());
break;
case memgraph::storage::PropertyValue::Type::Map:
ASSERT_EQ(pv.ValueMap(), item.ValueMap());
break;
case memgraph::storage::PropertyValue::Type::TemporalData:
ASSERT_EQ(pv.ValueTemporalData(), item.ValueTemporalData());
}
}
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST(PropertyValue, MoveConstructor) {
std::vector<memgraph::storage::PropertyValue> vec{memgraph::storage::PropertyValue(true),
memgraph::storage::PropertyValue(123)};
std::map<std::string, memgraph::storage::PropertyValue> map{{"nandare", memgraph::storage::PropertyValue(false)}};
std::vector<memgraph::storage::PropertyValue> data{
memgraph::storage::PropertyValue(),
memgraph::storage::PropertyValue(true),
memgraph::storage::PropertyValue(123),
memgraph::storage::PropertyValue(123.5),
memgraph::storage::PropertyValue("nandare"),
memgraph::storage::PropertyValue(vec),
memgraph::storage::PropertyValue(map),
memgraph::storage::PropertyValue(memgraph::storage::TemporalData(memgraph::storage::TemporalType::Date, 23))};
for (auto &item : data) {
memgraph::storage::PropertyValue copy(item);
memgraph::storage::PropertyValue pv(std::move(item));
ASSERT_EQ(item.type(), memgraph::storage::PropertyValue::Type::Null);
ASSERT_EQ(pv.type(), copy.type());
switch (copy.type()) {
case memgraph::storage::PropertyValue::Type::Null:
ASSERT_TRUE(pv.IsNull());
break;
case memgraph::storage::PropertyValue::Type::Bool:
ASSERT_EQ(pv.ValueBool(), copy.ValueBool());
break;
case memgraph::storage::PropertyValue::Type::Int:
ASSERT_EQ(pv.ValueInt(), copy.ValueInt());
break;
case memgraph::storage::PropertyValue::Type::Double:
ASSERT_EQ(pv.ValueDouble(), copy.ValueDouble());
break;
case memgraph::storage::PropertyValue::Type::String:
ASSERT_EQ(pv.ValueString(), copy.ValueString());
break;
case memgraph::storage::PropertyValue::Type::List:
ASSERT_EQ(pv.ValueList(), copy.ValueList());
break;
case memgraph::storage::PropertyValue::Type::Map:
ASSERT_EQ(pv.ValueMap(), copy.ValueMap());
break;
case memgraph::storage::PropertyValue::Type::TemporalData:
ASSERT_EQ(pv.ValueTemporalData(), copy.ValueTemporalData());
break;
}
}
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST(PropertyValue, CopyAssignment) {
std::vector<memgraph::storage::PropertyValue> vec{memgraph::storage::PropertyValue(true),
memgraph::storage::PropertyValue(123)};
std::map<std::string, memgraph::storage::PropertyValue> map{{"nandare", memgraph::storage::PropertyValue(false)}};
std::vector<memgraph::storage::PropertyValue> data{
memgraph::storage::PropertyValue(),
memgraph::storage::PropertyValue(true),
memgraph::storage::PropertyValue(123),
memgraph::storage::PropertyValue(123.5),
memgraph::storage::PropertyValue("nandare"),
memgraph::storage::PropertyValue(vec),
memgraph::storage::PropertyValue(map),
memgraph::storage::PropertyValue(memgraph::storage::TemporalData(memgraph::storage::TemporalType::Date, 23))};
for (const auto &item : data) {
memgraph::storage::PropertyValue pv(123);
pv = item;
ASSERT_EQ(pv.type(), item.type());
switch (item.type()) {
case memgraph::storage::PropertyValue::Type::Null:
ASSERT_TRUE(pv.IsNull());
break;
case memgraph::storage::PropertyValue::Type::Bool:
ASSERT_EQ(pv.ValueBool(), item.ValueBool());
break;
case memgraph::storage::PropertyValue::Type::Int:
ASSERT_EQ(pv.ValueInt(), item.ValueInt());
break;
case memgraph::storage::PropertyValue::Type::Double:
ASSERT_EQ(pv.ValueDouble(), item.ValueDouble());
break;
case memgraph::storage::PropertyValue::Type::String:
ASSERT_EQ(pv.ValueString(), item.ValueString());
break;
case memgraph::storage::PropertyValue::Type::List:
ASSERT_EQ(pv.ValueList(), item.ValueList());
break;
case memgraph::storage::PropertyValue::Type::Map:
ASSERT_EQ(pv.ValueMap(), item.ValueMap());
break;
case memgraph::storage::PropertyValue::Type::TemporalData:
ASSERT_EQ(pv.ValueTemporalData(), item.ValueTemporalData());
break;
}
}
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST(PropertyValue, MoveAssignment) {
std::vector<memgraph::storage::PropertyValue> vec{memgraph::storage::PropertyValue(true),
memgraph::storage::PropertyValue(123)};
std::map<std::string, memgraph::storage::PropertyValue> map{{"nandare", memgraph::storage::PropertyValue(false)}};
std::vector<memgraph::storage::PropertyValue> data{
memgraph::storage::PropertyValue(),
memgraph::storage::PropertyValue(true),
memgraph::storage::PropertyValue(123),
memgraph::storage::PropertyValue(123.5),
memgraph::storage::PropertyValue("nandare"),
memgraph::storage::PropertyValue(vec),
memgraph::storage::PropertyValue(map),
memgraph::storage::PropertyValue(memgraph::storage::TemporalData(memgraph::storage::TemporalType::Date, 23))};
for (auto &item : data) {
memgraph::storage::PropertyValue copy(item);
memgraph::storage::PropertyValue pv(123);
pv = std::move(item);
ASSERT_EQ(item.type(), memgraph::storage::PropertyValue::Type::Null);
ASSERT_EQ(pv.type(), copy.type());
switch (copy.type()) {
case memgraph::storage::PropertyValue::Type::Null:
ASSERT_TRUE(pv.IsNull());
break;
case memgraph::storage::PropertyValue::Type::Bool:
ASSERT_EQ(pv.ValueBool(), copy.ValueBool());
break;
case memgraph::storage::PropertyValue::Type::Int:
ASSERT_EQ(pv.ValueInt(), copy.ValueInt());
break;
case memgraph::storage::PropertyValue::Type::Double:
ASSERT_EQ(pv.ValueDouble(), copy.ValueDouble());
break;
case memgraph::storage::PropertyValue::Type::String:
ASSERT_EQ(pv.ValueString(), copy.ValueString());
break;
case memgraph::storage::PropertyValue::Type::List:
ASSERT_EQ(pv.ValueList(), copy.ValueList());
break;
case memgraph::storage::PropertyValue::Type::Map:
ASSERT_EQ(pv.ValueMap(), copy.ValueMap());
break;
case memgraph::storage::PropertyValue::Type::TemporalData:
ASSERT_EQ(pv.ValueTemporalData(), copy.ValueTemporalData());
break;
}
}
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST(PropertyValue, CopyAssignmentSelf) {
memgraph::storage::PropertyValue pv("nandare");
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wself-assign-overloaded"
pv = pv;
#pragma clang diagnostic pop
ASSERT_EQ(pv.type(), memgraph::storage::PropertyValue::Type::String);
ASSERT_EQ(pv.ValueString(), "nandare");
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST(PropertyValue, MoveAssignmentSelf) {
memgraph::storage::PropertyValue pv("nandare");
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wself-move"
pv = std::move(pv);
#pragma clang diagnostic pop
ASSERT_EQ(pv.type(), memgraph::storage::PropertyValue::Type::String);
ASSERT_EQ(pv.ValueString(), "nandare");
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST(PropertyValue, Equal) {
std::vector<memgraph::storage::PropertyValue> vec{memgraph::storage::PropertyValue(true),
memgraph::storage::PropertyValue(123)};
std::map<std::string, memgraph::storage::PropertyValue> map{{"nandare", memgraph::storage::PropertyValue(false)}};
std::vector<memgraph::storage::PropertyValue> data{
memgraph::storage::PropertyValue(), memgraph::storage::PropertyValue(true),
memgraph::storage::PropertyValue(123), memgraph::storage::PropertyValue(123.5),
memgraph::storage::PropertyValue("nandare"), memgraph::storage::PropertyValue(vec),
memgraph::storage::PropertyValue(map)};
for (const auto &item1 : data) {
for (const auto &item2 : data) {
if (item1.type() == item2.type()) {
ASSERT_TRUE(item1 == item2);
} else {
ASSERT_FALSE(item1 == item2);
}
}
}
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST(PropertyValue, Less) {
std::vector<memgraph::storage::PropertyValue> vec{memgraph::storage::PropertyValue(true),
memgraph::storage::PropertyValue(123)};
std::map<std::string, memgraph::storage::PropertyValue> map{{"nandare", memgraph::storage::PropertyValue(false)}};
std::vector<memgraph::storage::PropertyValue> data{
memgraph::storage::PropertyValue(), memgraph::storage::PropertyValue(true),
memgraph::storage::PropertyValue(123), memgraph::storage::PropertyValue(123.5),
memgraph::storage::PropertyValue("nandare"), memgraph::storage::PropertyValue(vec),
memgraph::storage::PropertyValue(map)};
for (size_t i = 0; i < data.size(); ++i) {
for (size_t j = 0; j < data.size(); ++j) {
auto item1 = data[i];
auto item2 = data[j];
if (i < j) {
ASSERT_TRUE(item1 < item2);
} else {
ASSERT_FALSE(item1 < item2);
}
}
}
}
TEST(PropertyValue, NumeralTypesComparison) {
auto v_int = memgraph::storage::PropertyValue(2);
auto v_double = memgraph::storage::PropertyValue(2.0);
ASSERT_TRUE(v_int.IsInt());
ASSERT_TRUE(v_double.IsDouble());
ASSERT_TRUE(v_int == v_double);
ASSERT_FALSE(v_int < v_double);
ASSERT_FALSE(v_double < v_int);
}
TEST(PropertyValue, NestedNumeralTypesComparison) {
auto v1 = memgraph::storage::PropertyValue(
std::vector<memgraph::storage::PropertyValue>{memgraph::storage::PropertyValue(1)});
auto v2 = memgraph::storage::PropertyValue(
std::vector<memgraph::storage::PropertyValue>{memgraph::storage::PropertyValue(1.5)});
auto v3 = memgraph::storage::PropertyValue(
std::vector<memgraph::storage::PropertyValue>{memgraph::storage::PropertyValue(2)});
auto v1alt = memgraph::storage::PropertyValue(
std::vector<memgraph::storage::PropertyValue>{memgraph::storage::PropertyValue(1.0)});
auto v3alt = memgraph::storage::PropertyValue(
std::vector<memgraph::storage::PropertyValue>{memgraph::storage::PropertyValue(2.0)});
ASSERT_TRUE(v1 == v1alt);
ASSERT_TRUE(v3 == v3alt);
ASSERT_FALSE(v1 == v2);
ASSERT_FALSE(v2 == v1);
ASSERT_FALSE(v2 == v3);
ASSERT_FALSE(v3 == v2);
ASSERT_FALSE(v1 == v3);
ASSERT_FALSE(v3 == v1);
ASSERT_TRUE(v1 < v2);
ASSERT_TRUE(v2 < v3);
ASSERT_TRUE(v1 < v3);
ASSERT_FALSE(v2 < v1);
ASSERT_FALSE(v3 < v2);
ASSERT_FALSE(v3 < v1);
ASSERT_TRUE(v1alt < v2);
ASSERT_TRUE(v2 < v3alt);
ASSERT_TRUE(v1alt < v3alt);
ASSERT_FALSE(v2 < v1alt);
ASSERT_FALSE(v3alt < v2);
ASSERT_FALSE(v3 < v1alt);
}

File diff suppressed because it is too large Load Diff

View File

@ -1,973 +0,0 @@
// Copyright 2022 Memgraph Ltd.
//
// Use of this software is governed by the Business Source License
// included in the file licenses/BSL.txt; by using this file, you agree to be bound by the terms of the Business Source
// License, and you may not use this file except in compliance with the Business Source License.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0, included in the file
// licenses/APL.txt.
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "storage/v2/storage.hpp"
// NOLINTNEXTLINE(google-build-using-namespace)
using namespace memgraph::storage;
using testing::UnorderedElementsAre;
// NOLINTNEXTLINE(cppcoreguidelines-macro-usage)
#define ASSERT_NO_ERROR(result) ASSERT_FALSE((result).HasError())
class ConstraintsTest : public testing::Test {
protected:
ConstraintsTest()
: prop1(storage.NameToProperty("prop1")),
prop2(storage.NameToProperty("prop2")),
label1(storage.NameToLabel("label1")),
label2(storage.NameToLabel("label2")) {}
Storage storage;
PropertyId prop1;
PropertyId prop2;
LabelId label1;
LabelId label2;
};
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_F(ConstraintsTest, ExistenceConstraintsCreateAndDrop) {
EXPECT_EQ(storage.ListAllConstraints().existence.size(), 0);
{
auto res = storage.CreateExistenceConstraint(label1, prop1);
EXPECT_TRUE(res.HasValue() && res.GetValue());
}
EXPECT_THAT(storage.ListAllConstraints().existence, UnorderedElementsAre(std::make_pair(label1, prop1)));
{
auto res = storage.CreateExistenceConstraint(label1, prop1);
EXPECT_TRUE(res.HasValue() && !res.GetValue());
}
EXPECT_THAT(storage.ListAllConstraints().existence, UnorderedElementsAre(std::make_pair(label1, prop1)));
{
auto res = storage.CreateExistenceConstraint(label2, prop1);
EXPECT_TRUE(res.HasValue() && res.GetValue());
}
EXPECT_THAT(storage.ListAllConstraints().existence,
UnorderedElementsAre(std::make_pair(label1, prop1), std::make_pair(label2, prop1)));
EXPECT_TRUE(storage.DropExistenceConstraint(label1, prop1));
EXPECT_FALSE(storage.DropExistenceConstraint(label1, prop1));
EXPECT_THAT(storage.ListAllConstraints().existence, UnorderedElementsAre(std::make_pair(label2, prop1)));
EXPECT_TRUE(storage.DropExistenceConstraint(label2, prop1));
EXPECT_FALSE(storage.DropExistenceConstraint(label2, prop2));
EXPECT_EQ(storage.ListAllConstraints().existence.size(), 0);
{
auto res = storage.CreateExistenceConstraint(label2, prop1);
EXPECT_TRUE(res.HasValue() && res.GetValue());
}
EXPECT_THAT(storage.ListAllConstraints().existence, UnorderedElementsAre(std::make_pair(label2, prop1)));
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_F(ConstraintsTest, ExistenceConstraintsCreateFailure1) {
{
auto acc = storage.Access();
auto vertex = acc.CreateVertex();
ASSERT_NO_ERROR(vertex.AddLabel(label1));
ASSERT_NO_ERROR(acc.Commit());
}
{
auto res = storage.CreateExistenceConstraint(label1, prop1);
ASSERT_TRUE(res.HasError());
EXPECT_EQ(res.GetError(),
(ConstraintViolation{ConstraintViolation::Type::EXISTENCE, label1, std::set<PropertyId>{prop1}}));
}
{
auto acc = storage.Access();
for (auto vertex : acc.Vertices(View::OLD)) {
ASSERT_NO_ERROR(acc.DeleteVertex(&vertex));
}
ASSERT_NO_ERROR(acc.Commit());
}
{
auto res = storage.CreateExistenceConstraint(label1, prop1);
EXPECT_TRUE(res.HasValue() && res.GetValue());
}
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_F(ConstraintsTest, ExistenceConstraintsCreateFailure2) {
{
auto acc = storage.Access();
auto vertex = acc.CreateVertex();
ASSERT_NO_ERROR(vertex.AddLabel(label1));
ASSERT_NO_ERROR(acc.Commit());
}
{
auto res = storage.CreateExistenceConstraint(label1, prop1);
ASSERT_TRUE(res.HasError());
EXPECT_EQ(res.GetError(),
(ConstraintViolation{ConstraintViolation::Type::EXISTENCE, label1, std::set<PropertyId>{prop1}}));
}
{
auto acc = storage.Access();
for (auto vertex : acc.Vertices(View::OLD)) {
ASSERT_NO_ERROR(vertex.SetProperty(prop1, PropertyValue(1)));
}
ASSERT_NO_ERROR(acc.Commit());
}
{
auto res = storage.CreateExistenceConstraint(label1, prop1);
EXPECT_TRUE(res.HasValue() && res.GetValue());
}
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_F(ConstraintsTest, ExistenceConstraintsViolationOnCommit) {
{
auto res = storage.CreateExistenceConstraint(label1, prop1);
ASSERT_TRUE(res.HasValue() && res.GetValue());
}
{
auto acc = storage.Access();
auto vertex = acc.CreateVertex();
ASSERT_NO_ERROR(vertex.AddLabel(label1));
auto res = acc.Commit();
ASSERT_TRUE(res.HasError());
EXPECT_EQ(res.GetError(),
(ConstraintViolation{ConstraintViolation::Type::EXISTENCE, label1, std::set<PropertyId>{prop1}}));
}
{
auto acc = storage.Access();
auto vertex = acc.CreateVertex();
ASSERT_NO_ERROR(vertex.AddLabel(label1));
ASSERT_NO_ERROR(vertex.SetProperty(prop1, PropertyValue(1)));
ASSERT_NO_ERROR(acc.Commit());
}
{
auto acc = storage.Access();
for (auto vertex : acc.Vertices(View::OLD)) {
ASSERT_NO_ERROR(vertex.SetProperty(prop1, PropertyValue()));
}
auto res = acc.Commit();
ASSERT_TRUE(res.HasError());
EXPECT_EQ(res.GetError(),
(ConstraintViolation{ConstraintViolation::Type::EXISTENCE, label1, std::set<PropertyId>{prop1}}));
}
{
auto acc = storage.Access();
for (auto vertex : acc.Vertices(View::OLD)) {
ASSERT_NO_ERROR(vertex.SetProperty(prop1, PropertyValue()));
}
for (auto vertex : acc.Vertices(View::OLD)) {
ASSERT_NO_ERROR(acc.DeleteVertex(&vertex));
}
ASSERT_NO_ERROR(acc.Commit());
}
ASSERT_TRUE(storage.DropExistenceConstraint(label1, prop1));
{
auto acc = storage.Access();
auto vertex = acc.CreateVertex();
ASSERT_NO_ERROR(vertex.AddLabel(label1));
ASSERT_NO_ERROR(acc.Commit());
}
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_F(ConstraintsTest, UniqueConstraintsCreateAndDropAndList) {
EXPECT_EQ(storage.ListAllConstraints().unique.size(), 0);
{
auto res = storage.CreateUniqueConstraint(label1, {prop1});
EXPECT_TRUE(res.HasValue());
EXPECT_EQ(res.GetValue(), UniqueConstraints::CreationStatus::SUCCESS);
}
EXPECT_THAT(storage.ListAllConstraints().unique,
UnorderedElementsAre(std::make_pair(label1, std::set<PropertyId>{prop1})));
{
auto res = storage.CreateUniqueConstraint(label1, {prop1});
EXPECT_TRUE(res.HasValue());
EXPECT_EQ(res.GetValue(), UniqueConstraints::CreationStatus::ALREADY_EXISTS);
}
EXPECT_THAT(storage.ListAllConstraints().unique,
UnorderedElementsAre(std::make_pair(label1, std::set<PropertyId>{prop1})));
{
auto res = storage.CreateUniqueConstraint(label2, {prop1});
EXPECT_TRUE(res.HasValue() && res.GetValue() == UniqueConstraints::CreationStatus::SUCCESS);
ASSERT_EQ(res.GetValue(), UniqueConstraints::CreationStatus::SUCCESS);
}
EXPECT_THAT(storage.ListAllConstraints().unique,
UnorderedElementsAre(std::make_pair(label1, std::set<PropertyId>{prop1}),
std::make_pair(label2, std::set<PropertyId>{prop1})));
EXPECT_EQ(storage.DropUniqueConstraint(label1, {prop1}), UniqueConstraints::DeletionStatus::SUCCESS);
EXPECT_EQ(storage.DropUniqueConstraint(label1, {prop1}), UniqueConstraints::DeletionStatus::NOT_FOUND);
EXPECT_THAT(storage.ListAllConstraints().unique,
UnorderedElementsAre(std::make_pair(label2, std::set<PropertyId>{prop1})));
EXPECT_EQ(storage.DropUniqueConstraint(label2, {prop1}), UniqueConstraints::DeletionStatus::SUCCESS);
EXPECT_EQ(storage.DropUniqueConstraint(label2, {prop2}), UniqueConstraints::DeletionStatus::NOT_FOUND);
EXPECT_EQ(storage.ListAllConstraints().unique.size(), 0);
{
auto res = storage.CreateUniqueConstraint(label2, {prop1});
EXPECT_TRUE(res.HasValue());
EXPECT_EQ(res.GetValue(), UniqueConstraints::CreationStatus::SUCCESS);
}
EXPECT_THAT(storage.ListAllConstraints().unique,
UnorderedElementsAre(std::make_pair(label2, std::set<PropertyId>{prop1})));
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_F(ConstraintsTest, UniqueConstraintsCreateFailure1) {
{
auto acc = storage.Access();
for (int i = 0; i < 2; ++i) {
auto vertex1 = acc.CreateVertex();
ASSERT_NO_ERROR(vertex1.AddLabel(label1));
ASSERT_NO_ERROR(vertex1.SetProperty(prop1, PropertyValue(1)));
}
ASSERT_NO_ERROR(acc.Commit());
}
{
auto res = storage.CreateUniqueConstraint(label1, {prop1});
ASSERT_TRUE(res.HasError());
EXPECT_EQ(res.GetError(),
(ConstraintViolation{ConstraintViolation::Type::UNIQUE, label1, std::set<PropertyId>{prop1}}));
}
{
auto acc = storage.Access();
for (auto vertex : acc.Vertices(View::OLD)) {
ASSERT_NO_ERROR(acc.DeleteVertex(&vertex));
}
ASSERT_NO_ERROR(acc.Commit());
}
{
auto res = storage.CreateUniqueConstraint(label1, {prop1});
ASSERT_TRUE(res.HasValue());
ASSERT_EQ(res.GetValue(), UniqueConstraints::CreationStatus::SUCCESS);
}
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_F(ConstraintsTest, UniqueConstraintsCreateFailure2) {
{
auto acc = storage.Access();
for (int i = 0; i < 2; ++i) {
auto vertex = acc.CreateVertex();
ASSERT_NO_ERROR(vertex.AddLabel(label1));
ASSERT_NO_ERROR(vertex.SetProperty(prop1, PropertyValue(1)));
}
ASSERT_NO_ERROR(acc.Commit());
}
{
auto res = storage.CreateUniqueConstraint(label1, {prop1});
ASSERT_TRUE(res.HasError());
EXPECT_EQ(res.GetError(),
(ConstraintViolation{ConstraintViolation::Type::UNIQUE, label1, std::set<PropertyId>{prop1}}));
}
{
auto acc = storage.Access();
int value = 0;
for (auto vertex : acc.Vertices(View::OLD)) {
ASSERT_NO_ERROR(vertex.SetProperty(prop1, PropertyValue(value)));
++value;
}
ASSERT_NO_ERROR(acc.Commit());
}
{
auto res = storage.CreateUniqueConstraint(label1, {prop1});
ASSERT_TRUE(res.HasValue());
ASSERT_EQ(res.GetValue(), UniqueConstraints::CreationStatus::SUCCESS);
}
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_F(ConstraintsTest, UniqueConstraintsNoViolation1) {
Gid gid1;
Gid gid2;
{
auto acc = storage.Access();
auto vertex1 = acc.CreateVertex();
auto vertex2 = acc.CreateVertex();
gid1 = vertex1.Gid();
gid2 = vertex2.Gid();
ASSERT_NO_ERROR(vertex1.AddLabel(label1));
ASSERT_NO_ERROR(vertex1.SetProperty(prop1, PropertyValue(1)));
ASSERT_NO_ERROR(acc.Commit());
}
{
auto res = storage.CreateUniqueConstraint(label1, {prop1, prop2});
ASSERT_TRUE(res.HasValue());
ASSERT_EQ(res.GetValue(), UniqueConstraints::CreationStatus::SUCCESS);
}
{
auto acc = storage.Access();
auto vertex1 = acc.FindVertex(gid1, View::OLD);
auto vertex2 = acc.FindVertex(gid2, View::OLD);
ASSERT_NO_ERROR(vertex1->SetProperty(prop2, PropertyValue(2)));
ASSERT_NO_ERROR(vertex2->AddLabel(label1));
ASSERT_NO_ERROR(vertex2->SetProperty(prop1, PropertyValue(1)));
ASSERT_NO_ERROR(vertex2->SetProperty(prop2, PropertyValue(3)));
ASSERT_NO_ERROR(acc.Commit());
}
{
auto acc = storage.Access();
auto vertex1 = acc.FindVertex(gid1, View::OLD);
auto vertex2 = acc.FindVertex(gid2, View::OLD);
ASSERT_NO_ERROR(vertex1->SetProperty(prop1, PropertyValue(2)));
ASSERT_NO_ERROR(vertex2->SetProperty(prop1, PropertyValue(1)));
ASSERT_NO_ERROR(acc.Commit());
}
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_F(ConstraintsTest, UniqueConstraintsNoViolation2) {
{
auto res = storage.CreateUniqueConstraint(label1, {prop1});
ASSERT_TRUE(res.HasValue());
ASSERT_EQ(res.GetValue(), UniqueConstraints::CreationStatus::SUCCESS);
}
{
// tx1: B---SP(v1, 1)---SP(v1, 2)---OK--
// tx2: -B---SP(v2, 2)---SP(v2, 1)---OK-
auto acc1 = storage.Access();
auto acc2 = storage.Access();
auto vertex1 = acc1.CreateVertex();
auto vertex2 = acc2.CreateVertex();
ASSERT_NO_ERROR(vertex1.AddLabel(label1));
ASSERT_NO_ERROR(vertex1.SetProperty(prop1, PropertyValue(1)));
ASSERT_NO_ERROR(vertex2.AddLabel(label1));
ASSERT_NO_ERROR(vertex2.SetProperty(prop1, PropertyValue(2)));
ASSERT_NO_ERROR(vertex1.SetProperty(prop1, PropertyValue(2)));
ASSERT_NO_ERROR(vertex2.SetProperty(prop1, PropertyValue(1)));
ASSERT_NO_ERROR(acc1.Commit());
ASSERT_NO_ERROR(acc2.Commit());
}
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_F(ConstraintsTest, UniqueConstraintsNoViolation3) {
{
auto res = storage.CreateUniqueConstraint(label1, {prop1});
ASSERT_TRUE(res.HasValue());
ASSERT_EQ(res.GetValue(), UniqueConstraints::CreationStatus::SUCCESS);
}
{
// tx1: B---SP(v1, 1)---OK----------------------
// tx2: --------------------B---SP(v1, 2)---OK--
// tx3: ---------------------B---SP(v2, 1)---OK-
auto acc1 = storage.Access();
auto vertex1 = acc1.CreateVertex();
auto gid = vertex1.Gid();
ASSERT_NO_ERROR(vertex1.AddLabel(label1));
ASSERT_NO_ERROR(vertex1.SetProperty(prop1, PropertyValue(1)));
ASSERT_NO_ERROR(acc1.Commit());
auto acc2 = storage.Access();
auto acc3 = storage.Access();
auto vertex2 = acc2.FindVertex(gid, View::NEW); // vertex1 == vertex2
auto vertex3 = acc3.CreateVertex();
ASSERT_NO_ERROR(vertex2->SetProperty(prop1, PropertyValue(2)));
ASSERT_NO_ERROR(vertex3.AddLabel(label1));
ASSERT_NO_ERROR(vertex3.SetProperty(prop1, PropertyValue(1)));
ASSERT_NO_ERROR(acc2.Commit());
ASSERT_NO_ERROR(acc3.Commit());
}
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_F(ConstraintsTest, UniqueConstraintsNoViolation4) {
{
auto res = storage.CreateUniqueConstraint(label1, {prop1});
ASSERT_TRUE(res.HasValue());
ASSERT_EQ(res.GetValue(), UniqueConstraints::CreationStatus::SUCCESS);
}
{
// tx1: B---SP(v1, 1)---OK-----------------------
// tx2: --------------------B---SP(v2, 1)-----OK-
// tx3: ---------------------B---SP(v1, 2)---OK--
auto acc1 = storage.Access();
auto vertex1 = acc1.CreateVertex();
auto gid = vertex1.Gid();
ASSERT_NO_ERROR(vertex1.AddLabel(label1));
ASSERT_NO_ERROR(vertex1.SetProperty(prop1, PropertyValue(1)));
ASSERT_NO_ERROR(acc1.Commit());
auto acc2 = storage.Access();
auto acc3 = storage.Access();
auto vertex2 = acc2.CreateVertex();
auto vertex3 = acc3.FindVertex(gid, View::NEW);
ASSERT_NO_ERROR(vertex2.AddLabel(label1));
ASSERT_NO_ERROR(vertex2.SetProperty(prop1, PropertyValue(1)));
ASSERT_NO_ERROR(vertex3->SetProperty(prop1, PropertyValue(2)));
ASSERT_NO_ERROR(acc3.Commit());
ASSERT_NO_ERROR(acc2.Commit());
}
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_F(ConstraintsTest, UniqueConstraintsViolationOnCommit1) {
{
auto res = storage.CreateUniqueConstraint(label1, {prop1});
ASSERT_TRUE(res.HasValue());
ASSERT_EQ(res.GetValue(), UniqueConstraints::CreationStatus::SUCCESS);
}
{
auto acc = storage.Access();
auto vertex1 = acc.CreateVertex();
auto vertex2 = acc.CreateVertex();
ASSERT_NO_ERROR(vertex1.AddLabel(label1));
ASSERT_NO_ERROR(vertex1.SetProperty(prop1, PropertyValue(1)));
ASSERT_NO_ERROR(vertex2.AddLabel(label1));
ASSERT_NO_ERROR(vertex2.SetProperty(prop1, PropertyValue(1)));
auto res = acc.Commit();
ASSERT_TRUE(res.HasError());
EXPECT_EQ(res.GetError(),
(ConstraintViolation{ConstraintViolation::Type::UNIQUE, label1, std::set<PropertyId>{prop1}}));
}
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_F(ConstraintsTest, UniqueConstraintsViolationOnCommit2) {
{
auto res = storage.CreateUniqueConstraint(label1, {prop1});
ASSERT_TRUE(res.HasValue());
ASSERT_EQ(res.GetValue(), UniqueConstraints::CreationStatus::SUCCESS);
}
{
// tx1: B---SP(v1, 1)---SP(v2, 2)---OK-----------------------
// tx2: -------------------------------B---SP(v1, 3)---OK----
// tx3: --------------------------------B---SP(v2, 3)---FAIL-
auto acc1 = storage.Access();
auto vertex1 = acc1.CreateVertex();
auto vertex2 = acc1.CreateVertex();
auto gid1 = vertex1.Gid();
auto gid2 = vertex2.Gid();
ASSERT_NO_ERROR(vertex1.AddLabel(label1));
ASSERT_NO_ERROR(vertex1.SetProperty(prop1, PropertyValue(1)));
ASSERT_NO_ERROR(vertex2.AddLabel(label1));
ASSERT_NO_ERROR(vertex2.SetProperty(prop1, PropertyValue(2)));
ASSERT_NO_ERROR(acc1.Commit());
auto acc2 = storage.Access();
auto acc3 = storage.Access();
auto vertex3 = acc2.FindVertex(gid1, View::NEW); // vertex3 == vertex1
auto vertex4 = acc3.FindVertex(gid2, View::NEW); // vertex4 == vertex2
ASSERT_NO_ERROR(vertex3->SetProperty(prop1, PropertyValue(3)));
ASSERT_NO_ERROR(vertex4->SetProperty(prop1, PropertyValue(3)));
ASSERT_NO_ERROR(acc2.Commit());
auto res = acc3.Commit();
ASSERT_TRUE(res.HasError());
EXPECT_EQ(res.GetError(),
(ConstraintViolation{ConstraintViolation::Type::UNIQUE, label1, std::set<PropertyId>{prop1}}));
}
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_F(ConstraintsTest, UniqueConstraintsViolationOnCommit3) {
{
auto res = storage.CreateUniqueConstraint(label1, {prop1});
ASSERT_TRUE(res.HasValue());
ASSERT_EQ(res.GetValue(), UniqueConstraints::CreationStatus::SUCCESS);
}
{
// tx1: B---SP(v1, 1)---SP(v2, 2)---OK-----------------------
// tx2: -------------------------------B---SP(v1, 2)---FAIL--
// tx3: --------------------------------B---SP(v2, 1)---FAIL-
auto acc1 = storage.Access();
auto vertex1 = acc1.CreateVertex();
auto vertex2 = acc1.CreateVertex();
auto gid1 = vertex1.Gid();
auto gid2 = vertex2.Gid();
ASSERT_NO_ERROR(vertex1.AddLabel(label1));
ASSERT_NO_ERROR(vertex1.SetProperty(prop1, PropertyValue(1)));
ASSERT_NO_ERROR(vertex2.AddLabel(label1));
ASSERT_NO_ERROR(vertex2.SetProperty(prop1, PropertyValue(2)));
ASSERT_NO_ERROR(acc1.Commit());
auto acc2 = storage.Access();
auto acc3 = storage.Access();
auto vertex3 = acc2.FindVertex(gid1, View::OLD); // vertex3 == vertex1
auto vertex4 = acc3.FindVertex(gid2, View::OLD); // vertex4 == vertex2
// Setting `prop2` shouldn't affect the remaining code.
ASSERT_NO_ERROR(vertex3->SetProperty(prop2, PropertyValue(3)));
ASSERT_NO_ERROR(vertex4->SetProperty(prop2, PropertyValue(3)));
ASSERT_NO_ERROR(vertex3->SetProperty(prop1, PropertyValue(2)));
ASSERT_NO_ERROR(vertex4->SetProperty(prop1, PropertyValue(1)));
auto res = acc2.Commit();
ASSERT_TRUE(res.HasError());
EXPECT_EQ(res.GetError(),
(ConstraintViolation{ConstraintViolation::Type::UNIQUE, label1, std::set<PropertyId>{prop1}}));
res = acc3.Commit();
ASSERT_TRUE(res.HasError());
EXPECT_EQ(res.GetError(),
(ConstraintViolation{ConstraintViolation::Type::UNIQUE, label1, std::set<PropertyId>{prop1}}));
}
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_F(ConstraintsTest, UniqueConstraintsLabelAlteration) {
{
auto res = storage.CreateUniqueConstraint(label1, {prop1});
ASSERT_TRUE(res.HasValue());
ASSERT_EQ(res.GetValue(), UniqueConstraints::CreationStatus::SUCCESS);
}
Gid gid1;
Gid gid2;
{
// B---AL(v2)---SP(v1, 1)---SP(v2, 1)---OK
auto acc = storage.Access();
auto vertex1 = acc.CreateVertex();
auto vertex2 = acc.CreateVertex();
gid1 = vertex1.Gid();
gid2 = vertex2.Gid();
ASSERT_NO_ERROR(vertex1.AddLabel(label2));
ASSERT_NO_ERROR(vertex1.SetProperty(prop1, PropertyValue(1)));
ASSERT_NO_ERROR(vertex2.AddLabel(label1));
ASSERT_NO_ERROR(vertex2.SetProperty(prop1, PropertyValue(1)));
ASSERT_NO_ERROR(acc.Commit());
}
{
// tx1: B---AL(v1)-----OK-
// tx2: -B---RL(v2)---OK--
auto acc1 = storage.Access();
auto acc2 = storage.Access();
auto vertex1 = acc1.FindVertex(gid1, View::OLD);
auto vertex2 = acc2.FindVertex(gid2, View::OLD);
ASSERT_NO_ERROR(vertex1->AddLabel(label1));
ASSERT_NO_ERROR(vertex2->RemoveLabel(label1));
// Reapplying labels shouldn't affect the remaining code.
ASSERT_NO_ERROR(vertex1->RemoveLabel(label1));
ASSERT_NO_ERROR(vertex2->AddLabel(label1));
ASSERT_NO_ERROR(vertex1->AddLabel(label1));
ASSERT_NO_ERROR(vertex2->RemoveLabel(label1));
ASSERT_NO_ERROR(vertex1->RemoveLabel(label2));
// Commit the second transaction.
ASSERT_NO_ERROR(acc2.Commit());
// Reapplying labels after first commit shouldn't affect the remaining code.
ASSERT_NO_ERROR(vertex1->RemoveLabel(label1));
ASSERT_NO_ERROR(vertex1->AddLabel(label1));
// Commit the first transaction.
ASSERT_NO_ERROR(acc1.Commit());
}
{
// B---AL(v2)---FAIL
auto acc = storage.Access();
auto vertex2 = acc.FindVertex(gid2, View::OLD);
ASSERT_NO_ERROR(vertex2->AddLabel(label1));
auto res = acc.Commit();
ASSERT_TRUE(res.HasError());
EXPECT_EQ(res.GetError(), (ConstraintViolation{ConstraintViolation::Type::UNIQUE, label1, std::set{prop1}}));
}
{
// B---RL(v1)---OK
auto acc = storage.Access();
auto vertex1 = acc.FindVertex(gid1, View::OLD);
ASSERT_NO_ERROR(vertex1->RemoveLabel(label1));
ASSERT_NO_ERROR(acc.Commit());
}
{
// tx1: B---AL(v1)-----FAIL
// tx2: -B---AL(v2)---OK---
auto acc1 = storage.Access();
auto acc2 = storage.Access();
auto vertex1 = acc1.FindVertex(gid1, View::OLD);
auto vertex2 = acc2.FindVertex(gid2, View::OLD);
ASSERT_NO_ERROR(vertex1->AddLabel(label1));
ASSERT_NO_ERROR(vertex2->AddLabel(label1));
// Reapply everything.
ASSERT_NO_ERROR(vertex1->RemoveLabel(label1));
ASSERT_NO_ERROR(vertex2->RemoveLabel(label1));
ASSERT_NO_ERROR(vertex1->AddLabel(label1));
ASSERT_NO_ERROR(vertex2->AddLabel(label1));
ASSERT_NO_ERROR(acc2.Commit());
auto res = acc1.Commit();
ASSERT_TRUE(res.HasError());
EXPECT_EQ(res.GetError(), (ConstraintViolation{ConstraintViolation::Type::UNIQUE, label1, std::set{prop1}}));
}
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_F(ConstraintsTest, UniqueConstraintsPropertySetSize) {
{
// This should fail since unique constraint cannot be created for an empty
// property set.
auto res = storage.CreateUniqueConstraint(label1, {});
ASSERT_TRUE(res.HasValue());
ASSERT_EQ(res.GetValue(), UniqueConstraints::CreationStatus::EMPTY_PROPERTIES);
}
// Removing a constraint with empty property set should also fail.
ASSERT_EQ(storage.DropUniqueConstraint(label1, {}), UniqueConstraints::DeletionStatus::EMPTY_PROPERTIES);
// Create a set of 33 properties.
std::set<PropertyId> properties;
for (int i = 1; i <= 33; ++i) {
properties.insert(storage.NameToProperty("prop" + std::to_string(i)));
}
{
// This should fail since list of properties exceeds the maximum number of
// properties, which is 32.
auto res = storage.CreateUniqueConstraint(label1, properties);
ASSERT_TRUE(res.HasValue());
ASSERT_EQ(res.GetValue(), UniqueConstraints::CreationStatus::PROPERTIES_SIZE_LIMIT_EXCEEDED);
}
// An attempt to delete constraint with too large property set should fail.
ASSERT_EQ(storage.DropUniqueConstraint(label1, properties),
UniqueConstraints::DeletionStatus::PROPERTIES_SIZE_LIMIT_EXCEEDED);
// Remove one property from the set.
properties.erase(properties.begin());
{
// Creating a constraint for 32 properties should succeed.
auto res = storage.CreateUniqueConstraint(label1, properties);
ASSERT_TRUE(res.HasValue());
ASSERT_EQ(res.GetValue(), UniqueConstraints::CreationStatus::SUCCESS);
}
EXPECT_THAT(storage.ListAllConstraints().unique, UnorderedElementsAre(std::make_pair(label1, properties)));
// Removing a constraint with 32 properties should succeed.
ASSERT_EQ(storage.DropUniqueConstraint(label1, properties), UniqueConstraints::DeletionStatus::SUCCESS);
ASSERT_TRUE(storage.ListAllConstraints().unique.empty());
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_F(ConstraintsTest, UniqueConstraintsMultipleProperties) {
{
auto res = storage.CreateUniqueConstraint(label1, {prop1, prop2});
ASSERT_TRUE(res.HasValue());
ASSERT_EQ(res.GetValue(), UniqueConstraints::CreationStatus::SUCCESS);
}
{
// An attempt to create an existing unique constraint.
auto res = storage.CreateUniqueConstraint(label1, {prop2, prop1});
ASSERT_TRUE(res.HasValue());
ASSERT_EQ(res.GetValue(), UniqueConstraints::CreationStatus::ALREADY_EXISTS);
}
Gid gid1;
Gid gid2;
{
auto acc = storage.Access();
auto vertex1 = acc.CreateVertex();
auto vertex2 = acc.CreateVertex();
gid1 = vertex1.Gid();
gid2 = vertex2.Gid();
ASSERT_NO_ERROR(vertex1.AddLabel(label1));
ASSERT_NO_ERROR(vertex1.SetProperty(prop1, PropertyValue(1)));
ASSERT_NO_ERROR(vertex1.SetProperty(prop2, PropertyValue(2)));
ASSERT_NO_ERROR(vertex2.AddLabel(label1));
ASSERT_NO_ERROR(vertex2.SetProperty(prop1, PropertyValue(1)));
ASSERT_NO_ERROR(vertex2.SetProperty(prop2, PropertyValue(3)));
ASSERT_NO_ERROR(acc.Commit());
}
// Try to change property of the second vertex so it becomes the same as the
// first vertex. It should fail.
{
auto acc = storage.Access();
auto vertex2 = acc.FindVertex(gid2, View::OLD);
ASSERT_NO_ERROR(vertex2->SetProperty(prop2, PropertyValue(2)));
auto res = acc.Commit();
ASSERT_TRUE(res.HasError());
EXPECT_EQ(res.GetError(),
(ConstraintViolation{ConstraintViolation::Type::UNIQUE, label1, std::set<PropertyId>{prop1, prop2}}));
}
// Then change the second property of both vertex to null. Property values of
// both vertices should now be equal. However, this operation should succeed
// since null value is treated as non-existing property.
{
auto acc = storage.Access();
auto vertex1 = acc.FindVertex(gid1, View::OLD);
auto vertex2 = acc.FindVertex(gid2, View::OLD);
ASSERT_NO_ERROR(vertex1->SetProperty(prop2, PropertyValue()));
ASSERT_NO_ERROR(vertex2->SetProperty(prop2, PropertyValue()));
ASSERT_NO_ERROR(acc.Commit());
}
}
TEST_F(ConstraintsTest, UniqueConstraintsInsertAbortInsert) {
{
auto res = storage.CreateUniqueConstraint(label1, {prop1, prop2});
ASSERT_TRUE(res.HasValue());
ASSERT_EQ(res.GetValue(), UniqueConstraints::CreationStatus::SUCCESS);
}
{
auto acc = storage.Access();
auto vertex = acc.CreateVertex();
ASSERT_NO_ERROR(vertex.AddLabel(label1));
ASSERT_NO_ERROR(vertex.SetProperty(prop1, PropertyValue(1)));
ASSERT_NO_ERROR(vertex.SetProperty(prop2, PropertyValue(2)));
acc.Abort();
}
{
auto acc = storage.Access();
auto vertex = acc.CreateVertex();
ASSERT_NO_ERROR(vertex.AddLabel(label1));
ASSERT_NO_ERROR(vertex.SetProperty(prop2, PropertyValue(2)));
ASSERT_NO_ERROR(vertex.SetProperty(prop1, PropertyValue(1)));
ASSERT_NO_ERROR(acc.Commit());
}
}
TEST_F(ConstraintsTest, UniqueConstraintsInsertRemoveInsert) {
{
auto res = storage.CreateUniqueConstraint(label1, {prop1, prop2});
ASSERT_TRUE(res.HasValue());
ASSERT_EQ(res.GetValue(), UniqueConstraints::CreationStatus::SUCCESS);
}
Gid gid;
{
auto acc = storage.Access();
auto vertex = acc.CreateVertex();
gid = vertex.Gid();
ASSERT_NO_ERROR(vertex.AddLabel(label1));
ASSERT_NO_ERROR(vertex.SetProperty(prop1, PropertyValue(1)));
ASSERT_NO_ERROR(vertex.SetProperty(prop2, PropertyValue(2)));
ASSERT_NO_ERROR(acc.Commit());
}
{
auto acc = storage.Access();
auto vertex = acc.FindVertex(gid, View::OLD);
ASSERT_NO_ERROR(acc.DeleteVertex(&*vertex));
ASSERT_NO_ERROR(acc.Commit());
}
{
auto acc = storage.Access();
auto vertex = acc.CreateVertex();
ASSERT_NO_ERROR(vertex.AddLabel(label1));
ASSERT_NO_ERROR(vertex.SetProperty(prop1, PropertyValue(1)));
ASSERT_NO_ERROR(vertex.SetProperty(prop2, PropertyValue(2)));
ASSERT_NO_ERROR(acc.Commit());
}
}
TEST_F(ConstraintsTest, UniqueConstraintsInsertRemoveAbortInsert) {
{
auto res = storage.CreateUniqueConstraint(label1, {prop1, prop2});
ASSERT_TRUE(res.HasValue());
ASSERT_EQ(res.GetValue(), UniqueConstraints::CreationStatus::SUCCESS);
}
Gid gid;
{
auto acc = storage.Access();
auto vertex = acc.CreateVertex();
gid = vertex.Gid();
ASSERT_NO_ERROR(vertex.AddLabel(label1));
ASSERT_NO_ERROR(vertex.SetProperty(prop1, PropertyValue(2)));
ASSERT_NO_ERROR(vertex.SetProperty(prop2, PropertyValue(1)));
ASSERT_NO_ERROR(acc.Commit());
}
{
auto acc = storage.Access();
auto vertex = acc.FindVertex(gid, View::OLD);
ASSERT_NO_ERROR(acc.DeleteVertex(&*vertex));
acc.Abort();
}
{
auto acc = storage.Access();
auto vertex = acc.CreateVertex();
ASSERT_NO_ERROR(vertex.AddLabel(label1));
ASSERT_NO_ERROR(vertex.SetProperty(prop2, PropertyValue(1)));
ASSERT_NO_ERROR(vertex.SetProperty(prop1, PropertyValue(2)));
auto res = acc.Commit();
ASSERT_TRUE(res.HasError());
EXPECT_EQ(res.GetError(), (ConstraintViolation{ConstraintViolation::Type::UNIQUE, label1, std::set{prop1, prop2}}));
}
}
TEST_F(ConstraintsTest, UniqueConstraintsDeleteVertexSetProperty) {
{
auto res = storage.CreateUniqueConstraint(label1, {prop1});
ASSERT_TRUE(res.HasValue());
ASSERT_EQ(res.GetValue(), UniqueConstraints::CreationStatus::SUCCESS);
}
Gid gid1;
Gid gid2;
{
auto acc = storage.Access();
auto vertex1 = acc.CreateVertex();
auto vertex2 = acc.CreateVertex();
gid1 = vertex1.Gid();
gid2 = vertex2.Gid();
ASSERT_NO_ERROR(vertex1.AddLabel(label1));
ASSERT_NO_ERROR(vertex2.AddLabel(label1));
ASSERT_NO_ERROR(vertex1.SetProperty(prop1, PropertyValue(1)));
ASSERT_NO_ERROR(vertex2.SetProperty(prop1, PropertyValue(2)));
ASSERT_NO_ERROR(acc.Commit());
}
{
auto acc1 = storage.Access();
auto acc2 = storage.Access();
auto vertex1 = acc1.FindVertex(gid1, View::OLD);
auto vertex2 = acc2.FindVertex(gid2, View::OLD);
ASSERT_NO_ERROR(acc2.DeleteVertex(&*vertex2));
ASSERT_NO_ERROR(vertex1->SetProperty(prop1, PropertyValue(2)));
auto res = acc1.Commit();
ASSERT_TRUE(res.HasError());
EXPECT_EQ(res.GetError(), (ConstraintViolation{ConstraintViolation::Type::UNIQUE, label1, std::set{prop1}}));
ASSERT_NO_ERROR(acc2.Commit());
}
}
TEST_F(ConstraintsTest, UniqueConstraintsInsertDropInsert) {
{
auto res = storage.CreateUniqueConstraint(label1, {prop1, prop2});
ASSERT_TRUE(res.HasValue());
ASSERT_EQ(res.GetValue(), UniqueConstraints::CreationStatus::SUCCESS);
}
{
auto acc = storage.Access();
auto vertex = acc.CreateVertex();
ASSERT_NO_ERROR(vertex.AddLabel(label1));
ASSERT_NO_ERROR(vertex.SetProperty(prop1, PropertyValue(1)));
ASSERT_NO_ERROR(vertex.SetProperty(prop2, PropertyValue(2)));
ASSERT_NO_ERROR(acc.Commit());
}
ASSERT_EQ(storage.DropUniqueConstraint(label1, {prop2, prop1}), UniqueConstraints::DeletionStatus::SUCCESS);
{
auto acc = storage.Access();
auto vertex = acc.CreateVertex();
ASSERT_NO_ERROR(vertex.AddLabel(label1));
ASSERT_NO_ERROR(vertex.SetProperty(prop2, PropertyValue(2)));
ASSERT_NO_ERROR(vertex.SetProperty(prop1, PropertyValue(1)));
ASSERT_NO_ERROR(acc.Commit());
}
}
TEST_F(ConstraintsTest, UniqueConstraintsComparePropertyValues) {
// Purpose of this test is to make sure that extracted property values
// are correctly compared.
{
auto res = storage.CreateUniqueConstraint(label1, {prop1, prop2});
ASSERT_TRUE(res.HasValue());
ASSERT_EQ(res.GetValue(), UniqueConstraints::CreationStatus::SUCCESS);
}
{
auto acc = storage.Access();
auto vertex = acc.CreateVertex();
ASSERT_NO_ERROR(vertex.AddLabel(label1));
ASSERT_NO_ERROR(vertex.SetProperty(prop1, PropertyValue(2)));
ASSERT_NO_ERROR(vertex.SetProperty(prop2, PropertyValue(1)));
ASSERT_NO_ERROR(acc.Commit());
}
{
auto acc = storage.Access();
auto vertex = acc.CreateVertex();
ASSERT_NO_ERROR(vertex.AddLabel(label1));
ASSERT_NO_ERROR(vertex.SetProperty(prop1, PropertyValue(1)));
ASSERT_NO_ERROR(vertex.SetProperty(prop2, PropertyValue(2)));
ASSERT_NO_ERROR(acc.Commit());
}
{
auto acc = storage.Access();
auto vertex = acc.CreateVertex();
ASSERT_NO_ERROR(vertex.AddLabel(label1));
ASSERT_NO_ERROR(vertex.SetProperty(prop2, PropertyValue(0)));
ASSERT_NO_ERROR(vertex.SetProperty(prop1, PropertyValue(3)));
ASSERT_NO_ERROR(acc.Commit());
}
}

View File

@ -1,461 +0,0 @@
// Copyright 2022 Memgraph Ltd.
//
// Use of this software is governed by the Business Source License
// included in the file licenses/BSL.txt; by using this file, you agree to be bound by the terms of the Business Source
// License, and you may not use this file except in compliance with the Business Source License.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0, included in the file
// licenses/APL.txt.
#include <gtest/gtest.h>
#include <filesystem>
#include <limits>
#include "storage/v2/durability/serialization.hpp"
#include "storage/v2/property_value.hpp"
#include "storage/v2/temporal.hpp"
static const std::string kTestMagic{"MGtest"};
static const uint64_t kTestVersion{1};
class DecoderEncoderTest : public ::testing::Test {
public:
void SetUp() override { Clear(); }
void TearDown() override { Clear(); }
std::filesystem::path storage_file{std::filesystem::temp_directory_path() /
"MG_test_unit_storage_v2_decoder_encoder.bin"};
std::filesystem::path alternate_file{std::filesystem::temp_directory_path() /
"MG_test_unit_storage_v2_decoder_encoder_alternate.bin"};
private:
void Clear() {
if (std::filesystem::exists(storage_file)) {
std::filesystem::remove(storage_file);
}
if (std::filesystem::exists(alternate_file)) {
std::filesystem::remove(alternate_file);
}
}
};
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_F(DecoderEncoderTest, ReadMarker) {
{
memgraph::storage::durability::Encoder encoder;
encoder.Initialize(storage_file, kTestMagic, kTestVersion);
for (const auto &item : memgraph::storage::durability::kMarkersAll) {
encoder.WriteMarker(item);
}
{
uint8_t invalid = 1;
encoder.Write(&invalid, sizeof(invalid));
}
encoder.Finalize();
}
{
memgraph::storage::durability::Decoder decoder;
auto version = decoder.Initialize(storage_file, kTestMagic);
ASSERT_TRUE(version);
ASSERT_EQ(*version, kTestVersion);
for (const auto &item : memgraph::storage::durability::kMarkersAll) {
auto decoded = decoder.ReadMarker();
ASSERT_TRUE(decoded);
ASSERT_EQ(*decoded, item);
}
ASSERT_FALSE(decoder.ReadMarker());
ASSERT_FALSE(decoder.ReadMarker());
auto pos = decoder.GetPosition();
ASSERT_TRUE(pos);
ASSERT_EQ(pos, decoder.GetSize());
}
}
// NOLINTNEXTLINE(cppcoreguidelines-macro-usage)
#define GENERATE_READ_TEST(name, type, ...) \
TEST_F(DecoderEncoderTest, Read##name) { \
std::vector<type> dataset{__VA_ARGS__}; \
{ \
memgraph::storage::durability::Encoder encoder; \
encoder.Initialize(storage_file, kTestMagic, kTestVersion); \
for (const auto &item : dataset) { \
encoder.Write##name(item); \
} \
{ \
uint8_t invalid = 1; \
encoder.Write(&invalid, sizeof(invalid)); \
} \
encoder.Finalize(); \
} \
{ \
memgraph::storage::durability::Decoder decoder; \
auto version = decoder.Initialize(storage_file, kTestMagic); \
ASSERT_TRUE(version); \
ASSERT_EQ(*version, kTestVersion); \
for (const auto &item : dataset) { \
auto decoded = decoder.Read##name(); \
ASSERT_TRUE(decoded); \
ASSERT_EQ(*decoded, item); \
} \
ASSERT_FALSE(decoder.Read##name()); \
ASSERT_FALSE(decoder.Read##name()); \
auto pos = decoder.GetPosition(); \
ASSERT_TRUE(pos); \
ASSERT_EQ(pos, decoder.GetSize()); \
} \
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
GENERATE_READ_TEST(Bool, bool, false, true);
// NOLINTNEXTLINE(hicpp-special-member-functions)
GENERATE_READ_TEST(Uint, uint64_t, 0, 1, 1000, 123123123, std::numeric_limits<uint64_t>::max());
// NOLINTNEXTLINE(hicpp-special-member-functions)
GENERATE_READ_TEST(Double, double, 1.123, 3.1415926535, 0, -505.505, std::numeric_limits<double>::infinity(),
-std::numeric_limits<double>::infinity());
// NOLINTNEXTLINE(hicpp-special-member-functions)
GENERATE_READ_TEST(String, std::string, "hello", "world", "nandare", "haihaihai", std::string(),
std::string(100000, 'a'));
// NOLINTNEXTLINE(hicpp-special-member-functions)
GENERATE_READ_TEST(
PropertyValue, memgraph::storage::PropertyValue, memgraph::storage::PropertyValue(),
memgraph::storage::PropertyValue(false), memgraph::storage::PropertyValue(true),
memgraph::storage::PropertyValue(123L), memgraph::storage::PropertyValue(123.5),
memgraph::storage::PropertyValue("nandare"),
memgraph::storage::PropertyValue(std::vector<memgraph::storage::PropertyValue>{
memgraph::storage::PropertyValue("nandare"), memgraph::storage::PropertyValue(123L)}),
memgraph::storage::PropertyValue(std::map<std::string, memgraph::storage::PropertyValue>{
{"nandare", memgraph::storage::PropertyValue(123)}}),
memgraph::storage::PropertyValue(memgraph::storage::TemporalData(memgraph::storage::TemporalType::Date, 23)));
// NOLINTNEXTLINE(cppcoreguidelines-macro-usage)
#define GENERATE_SKIP_TEST(name, type, ...) \
TEST_F(DecoderEncoderTest, Skip##name) { \
std::vector<type> dataset{__VA_ARGS__}; \
{ \
memgraph::storage::durability::Encoder encoder; \
encoder.Initialize(storage_file, kTestMagic, kTestVersion); \
for (const auto &item : dataset) { \
encoder.Write##name(item); \
} \
{ \
uint8_t invalid = 1; \
encoder.Write(&invalid, sizeof(invalid)); \
} \
encoder.Finalize(); \
} \
{ \
memgraph::storage::durability::Decoder decoder; \
auto version = decoder.Initialize(storage_file, kTestMagic); \
ASSERT_TRUE(version); \
ASSERT_EQ(*version, kTestVersion); \
for (auto it = dataset.begin(); it != dataset.end(); ++it) { \
ASSERT_TRUE(decoder.Skip##name()); \
} \
ASSERT_FALSE(decoder.Skip##name()); \
ASSERT_FALSE(decoder.Skip##name()); \
auto pos = decoder.GetPosition(); \
ASSERT_TRUE(pos); \
ASSERT_EQ(pos, decoder.GetSize()); \
} \
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
GENERATE_SKIP_TEST(String, std::string, "hello", "world", "nandare", "haihaihai", std::string(500000, 'a'));
// NOLINTNEXTLINE(hicpp-special-member-functions)
GENERATE_SKIP_TEST(
PropertyValue, memgraph::storage::PropertyValue, memgraph::storage::PropertyValue(),
memgraph::storage::PropertyValue(false), memgraph::storage::PropertyValue(true),
memgraph::storage::PropertyValue(123L), memgraph::storage::PropertyValue(123.5),
memgraph::storage::PropertyValue("nandare"),
memgraph::storage::PropertyValue(std::vector<memgraph::storage::PropertyValue>{
memgraph::storage::PropertyValue("nandare"), memgraph::storage::PropertyValue(123L)}),
memgraph::storage::PropertyValue(std::map<std::string, memgraph::storage::PropertyValue>{
{"nandare", memgraph::storage::PropertyValue(123)}}),
memgraph::storage::PropertyValue(memgraph::storage::TemporalData(memgraph::storage::TemporalType::Date, 23)));
// NOLINTNEXTLINE(cppcoreguidelines-macro-usage)
#define GENERATE_PARTIAL_READ_TEST(name, value) \
TEST_F(DecoderEncoderTest, PartialRead##name) { \
{ \
memgraph::storage::durability::Encoder encoder; \
encoder.Initialize(storage_file, kTestMagic, kTestVersion); \
encoder.Write##name(value); \
encoder.Finalize(); \
} \
{ \
memgraph::utils::InputFile ifile; \
memgraph::utils::OutputFile ofile; \
ASSERT_TRUE(ifile.Open(storage_file)); \
ofile.Open(alternate_file, memgraph::utils::OutputFile::Mode::OVERWRITE_EXISTING); \
auto size = ifile.GetSize(); \
for (size_t i = 0; i <= size; ++i) { \
if (i != 0) { \
uint8_t byte; \
ASSERT_TRUE(ifile.Read(&byte, sizeof(byte))); \
ofile.Write(&byte, sizeof(byte)); \
ofile.Sync(); \
} \
memgraph::storage::durability::Decoder decoder; \
auto version = decoder.Initialize(alternate_file, kTestMagic); \
if (i < kTestMagic.size() + sizeof(kTestVersion)) { \
ASSERT_FALSE(version); \
} else { \
ASSERT_TRUE(version); \
ASSERT_EQ(*version, kTestVersion); \
} \
if (i != size) { \
ASSERT_FALSE(decoder.Read##name()); \
} else { \
auto decoded = decoder.Read##name(); \
ASSERT_TRUE(decoded); \
ASSERT_EQ(*decoded, value); \
} \
} \
} \
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
GENERATE_PARTIAL_READ_TEST(Marker, memgraph::storage::durability::Marker::SECTION_VERTEX);
// NOLINTNEXTLINE(hicpp-special-member-functions)
GENERATE_PARTIAL_READ_TEST(Bool, false);
// NOLINTNEXTLINE(hicpp-special-member-functions)
GENERATE_PARTIAL_READ_TEST(Uint, 123123123);
// NOLINTNEXTLINE(hicpp-special-member-functions)
GENERATE_PARTIAL_READ_TEST(Double, 3.1415926535);
// NOLINTNEXTLINE(hicpp-special-member-functions)
GENERATE_PARTIAL_READ_TEST(String, "nandare");
// NOLINTNEXTLINE(hicpp-special-member-functions)
GENERATE_PARTIAL_READ_TEST(
PropertyValue,
memgraph::storage::PropertyValue(std::vector<memgraph::storage::PropertyValue>{
memgraph::storage::PropertyValue(), memgraph::storage::PropertyValue(true),
memgraph::storage::PropertyValue(123L), memgraph::storage::PropertyValue(123.5),
memgraph::storage::PropertyValue("nandare"),
memgraph::storage::PropertyValue{
std::map<std::string, memgraph::storage::PropertyValue>{{"haihai", memgraph::storage::PropertyValue()}}},
memgraph::storage::PropertyValue(memgraph::storage::TemporalData(memgraph::storage::TemporalType::Date, 23))}));
// NOLINTNEXTLINE(cppcoreguidelines-macro-usage)
#define GENERATE_PARTIAL_SKIP_TEST(name, value) \
TEST_F(DecoderEncoderTest, PartialSkip##name) { \
{ \
memgraph::storage::durability::Encoder encoder; \
encoder.Initialize(storage_file, kTestMagic, kTestVersion); \
encoder.Write##name(value); \
encoder.Finalize(); \
} \
{ \
memgraph::utils::InputFile ifile; \
memgraph::utils::OutputFile ofile; \
ASSERT_TRUE(ifile.Open(storage_file)); \
ofile.Open(alternate_file, memgraph::utils::OutputFile::Mode::OVERWRITE_EXISTING); \
auto size = ifile.GetSize(); \
for (size_t i = 0; i <= size; ++i) { \
if (i != 0) { \
uint8_t byte; \
ASSERT_TRUE(ifile.Read(&byte, sizeof(byte))); \
ofile.Write(&byte, sizeof(byte)); \
ofile.Sync(); \
} \
memgraph::storage::durability::Decoder decoder; \
auto version = decoder.Initialize(alternate_file, kTestMagic); \
if (i < kTestMagic.size() + sizeof(kTestVersion)) { \
ASSERT_FALSE(version); \
} else { \
ASSERT_TRUE(version); \
ASSERT_EQ(*version, kTestVersion); \
} \
if (i != size) { \
ASSERT_FALSE(decoder.Skip##name()); \
} else { \
ASSERT_TRUE(decoder.Skip##name()); \
} \
} \
} \
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
GENERATE_PARTIAL_SKIP_TEST(String, "nandare");
// NOLINTNEXTLINE(hicpp-special-member-functions)
GENERATE_PARTIAL_SKIP_TEST(
PropertyValue,
memgraph::storage::PropertyValue(std::vector<memgraph::storage::PropertyValue>{
memgraph::storage::PropertyValue(), memgraph::storage::PropertyValue(true),
memgraph::storage::PropertyValue(123L), memgraph::storage::PropertyValue(123.5),
memgraph::storage::PropertyValue("nandare"),
memgraph::storage::PropertyValue{
std::map<std::string, memgraph::storage::PropertyValue>{{"haihai", memgraph::storage::PropertyValue()}}},
memgraph::storage::PropertyValue(memgraph::storage::TemporalData(memgraph::storage::TemporalType::Date, 23))}));
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_F(DecoderEncoderTest, PropertyValueInvalidMarker) {
{
memgraph::storage::durability::Encoder encoder;
encoder.Initialize(storage_file, kTestMagic, kTestVersion);
encoder.WritePropertyValue(memgraph::storage::PropertyValue(123L));
encoder.Finalize();
}
{
memgraph::utils::OutputFile file;
file.Open(storage_file, memgraph::utils::OutputFile::Mode::OVERWRITE_EXISTING);
for (auto marker : memgraph::storage::durability::kMarkersAll) {
bool valid_marker;
switch (marker) {
case memgraph::storage::durability::Marker::TYPE_NULL:
case memgraph::storage::durability::Marker::TYPE_BOOL:
case memgraph::storage::durability::Marker::TYPE_INT:
case memgraph::storage::durability::Marker::TYPE_DOUBLE:
case memgraph::storage::durability::Marker::TYPE_STRING:
case memgraph::storage::durability::Marker::TYPE_LIST:
case memgraph::storage::durability::Marker::TYPE_MAP:
case memgraph::storage::durability::Marker::TYPE_TEMPORAL_DATA:
case memgraph::storage::durability::Marker::TYPE_PROPERTY_VALUE:
valid_marker = true;
break;
case memgraph::storage::durability::Marker::SECTION_VERTEX:
case memgraph::storage::durability::Marker::SECTION_EDGE:
case memgraph::storage::durability::Marker::SECTION_MAPPER:
case memgraph::storage::durability::Marker::SECTION_METADATA:
case memgraph::storage::durability::Marker::SECTION_INDICES:
case memgraph::storage::durability::Marker::SECTION_CONSTRAINTS:
case memgraph::storage::durability::Marker::SECTION_DELTA:
case memgraph::storage::durability::Marker::SECTION_EPOCH_HISTORY:
case memgraph::storage::durability::Marker::SECTION_OFFSETS:
case memgraph::storage::durability::Marker::DELTA_VERTEX_CREATE:
case memgraph::storage::durability::Marker::DELTA_VERTEX_DELETE:
case memgraph::storage::durability::Marker::DELTA_VERTEX_ADD_LABEL:
case memgraph::storage::durability::Marker::DELTA_VERTEX_REMOVE_LABEL:
case memgraph::storage::durability::Marker::DELTA_VERTEX_SET_PROPERTY:
case memgraph::storage::durability::Marker::DELTA_EDGE_CREATE:
case memgraph::storage::durability::Marker::DELTA_EDGE_DELETE:
case memgraph::storage::durability::Marker::DELTA_EDGE_SET_PROPERTY:
case memgraph::storage::durability::Marker::DELTA_TRANSACTION_END:
case memgraph::storage::durability::Marker::DELTA_LABEL_INDEX_CREATE:
case memgraph::storage::durability::Marker::DELTA_LABEL_INDEX_DROP:
case memgraph::storage::durability::Marker::DELTA_LABEL_PROPERTY_INDEX_CREATE:
case memgraph::storage::durability::Marker::DELTA_LABEL_PROPERTY_INDEX_DROP:
case memgraph::storage::durability::Marker::DELTA_EXISTENCE_CONSTRAINT_CREATE:
case memgraph::storage::durability::Marker::DELTA_EXISTENCE_CONSTRAINT_DROP:
case memgraph::storage::durability::Marker::DELTA_UNIQUE_CONSTRAINT_CREATE:
case memgraph::storage::durability::Marker::DELTA_UNIQUE_CONSTRAINT_DROP:
case memgraph::storage::durability::Marker::VALUE_FALSE:
case memgraph::storage::durability::Marker::VALUE_TRUE:
valid_marker = false;
break;
}
// We only run this test with invalid markers.
if (valid_marker) continue;
{
file.SetPosition(memgraph::utils::OutputFile::Position::RELATIVE_TO_END,
-(sizeof(uint64_t) + sizeof(memgraph::storage::durability::Marker)));
auto byte = static_cast<uint8_t>(marker);
file.Write(&byte, sizeof(byte));
file.Sync();
}
{
memgraph::storage::durability::Decoder decoder;
auto version = decoder.Initialize(storage_file, kTestMagic);
ASSERT_TRUE(version);
ASSERT_EQ(*version, kTestVersion);
ASSERT_FALSE(decoder.SkipPropertyValue());
}
{
memgraph::storage::durability::Decoder decoder;
auto version = decoder.Initialize(storage_file, kTestMagic);
ASSERT_TRUE(version);
ASSERT_EQ(*version, kTestVersion);
ASSERT_FALSE(decoder.ReadPropertyValue());
}
}
{
{
file.SetPosition(memgraph::utils::OutputFile::Position::RELATIVE_TO_END,
-(sizeof(uint64_t) + sizeof(memgraph::storage::durability::Marker)));
uint8_t byte = 1;
file.Write(&byte, sizeof(byte));
file.Sync();
}
{
memgraph::storage::durability::Decoder decoder;
auto version = decoder.Initialize(storage_file, kTestMagic);
ASSERT_TRUE(version);
ASSERT_EQ(*version, kTestVersion);
ASSERT_FALSE(decoder.SkipPropertyValue());
}
{
memgraph::storage::durability::Decoder decoder;
auto version = decoder.Initialize(storage_file, kTestMagic);
ASSERT_TRUE(version);
ASSERT_EQ(*version, kTestVersion);
ASSERT_FALSE(decoder.ReadPropertyValue());
}
}
}
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_F(DecoderEncoderTest, DecoderPosition) {
{
memgraph::storage::durability::Encoder encoder;
encoder.Initialize(storage_file, kTestMagic, kTestVersion);
encoder.WriteBool(true);
encoder.Finalize();
}
{
memgraph::storage::durability::Decoder decoder;
auto version = decoder.Initialize(storage_file, kTestMagic);
ASSERT_TRUE(version);
ASSERT_EQ(*version, kTestVersion);
for (int i = 0; i < 10; ++i) {
ASSERT_TRUE(decoder.SetPosition(kTestMagic.size() + sizeof(kTestVersion)));
auto decoded = decoder.ReadBool();
ASSERT_TRUE(decoded);
ASSERT_TRUE(*decoded);
auto pos = decoder.GetPosition();
ASSERT_TRUE(pos);
ASSERT_EQ(pos, decoder.GetSize());
}
}
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_F(DecoderEncoderTest, EncoderPosition) {
{
memgraph::storage::durability::Encoder encoder;
encoder.Initialize(storage_file, kTestMagic, kTestVersion);
encoder.WriteBool(false);
encoder.SetPosition(kTestMagic.size() + sizeof(kTestVersion));
ASSERT_EQ(encoder.GetPosition(), kTestMagic.size() + sizeof(kTestVersion));
encoder.WriteBool(true);
encoder.Finalize();
}
{
memgraph::storage::durability::Decoder decoder;
auto version = decoder.Initialize(storage_file, kTestMagic);
ASSERT_TRUE(version);
ASSERT_EQ(*version, kTestVersion);
auto decoded = decoder.ReadBool();
ASSERT_TRUE(decoded);
ASSERT_TRUE(*decoded);
auto pos = decoder.GetPosition();
ASSERT_TRUE(pos);
ASSERT_EQ(pos, decoder.GetSize());
}
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,200 +0,0 @@
// Copyright 2022 Memgraph Ltd.
//
// Use of this software is governed by the Business Source License
// included in the file licenses/BSL.txt; by using this file, you agree to be bound by the terms of the Business Source
// License, and you may not use this file except in compliance with the Business Source License.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0, included in the file
// licenses/APL.txt.
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "storage/v2/storage.hpp"
using testing::UnorderedElementsAre;
// TODO: The point of these is not to test GC fully, these are just simple
// sanity checks. These will be superseded by a more sophisticated stress test
// which will verify that GC is working properly in a multithreaded environment.
// A simple test trying to get GC to run while a transaction is still alive and
// then verify that GC didn't delete anything it shouldn't have.
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST(StorageV2Gc, Sanity) {
memgraph::storage::Storage storage(memgraph::storage::Config{
.gc = {.type = memgraph::storage::Config::Gc::Type::PERIODIC, .interval = std::chrono::milliseconds(100)}});
std::vector<memgraph::storage::Gid> vertices;
{
auto acc = storage.Access();
// Create some vertices, but delete some of them immediately.
for (uint64_t i = 0; i < 1000; ++i) {
auto vertex = acc.CreateVertex();
vertices.push_back(vertex.Gid());
}
acc.AdvanceCommand();
for (uint64_t i = 0; i < 1000; ++i) {
auto vertex = acc.FindVertex(vertices[i], memgraph::storage::View::OLD);
ASSERT_TRUE(vertex.has_value());
if (i % 5 == 0) {
EXPECT_FALSE(acc.DeleteVertex(&vertex.value()).HasError());
}
}
// Wait for GC.
std::this_thread::sleep_for(std::chrono::milliseconds(300));
for (uint64_t i = 0; i < 1000; ++i) {
auto vertex_old = acc.FindVertex(vertices[i], memgraph::storage::View::OLD);
auto vertex_new = acc.FindVertex(vertices[i], memgraph::storage::View::NEW);
EXPECT_TRUE(vertex_old.has_value());
EXPECT_EQ(vertex_new.has_value(), i % 5 != 0);
}
ASSERT_FALSE(acc.Commit().HasError());
}
// Verify existing vertices and add labels to some of them.
{
auto acc = storage.Access();
for (uint64_t i = 0; i < 1000; ++i) {
auto vertex = acc.FindVertex(vertices[i], memgraph::storage::View::OLD);
EXPECT_EQ(vertex.has_value(), i % 5 != 0);
if (vertex.has_value()) {
EXPECT_FALSE(vertex->AddLabel(memgraph::storage::LabelId::FromUint(3 * i)).HasError());
EXPECT_FALSE(vertex->AddLabel(memgraph::storage::LabelId::FromUint(3 * i + 1)).HasError());
EXPECT_FALSE(vertex->AddLabel(memgraph::storage::LabelId::FromUint(3 * i + 2)).HasError());
}
}
// Wait for GC.
std::this_thread::sleep_for(std::chrono::milliseconds(300));
// Verify labels.
for (uint64_t i = 0; i < 1000; ++i) {
auto vertex = acc.FindVertex(vertices[i], memgraph::storage::View::NEW);
EXPECT_EQ(vertex.has_value(), i % 5 != 0);
if (vertex.has_value()) {
auto labels_old = vertex->Labels(memgraph::storage::View::OLD);
EXPECT_TRUE(labels_old.HasValue());
EXPECT_TRUE(labels_old->empty());
auto labels_new = vertex->Labels(memgraph::storage::View::NEW);
EXPECT_TRUE(labels_new.HasValue());
EXPECT_THAT(labels_new.GetValue(), UnorderedElementsAre(memgraph::storage::LabelId::FromUint(3 * i),
memgraph::storage::LabelId::FromUint(3 * i + 1),
memgraph::storage::LabelId::FromUint(3 * i + 2)));
}
}
ASSERT_FALSE(acc.Commit().HasError());
}
// Add and remove some edges.
{
auto acc = storage.Access();
for (uint64_t i = 0; i < 1000; ++i) {
auto from_vertex = acc.FindVertex(vertices[i], memgraph::storage::View::OLD);
auto to_vertex = acc.FindVertex(vertices[(i + 1) % 1000], memgraph::storage::View::OLD);
EXPECT_EQ(from_vertex.has_value(), i % 5 != 0);
EXPECT_EQ(to_vertex.has_value(), (i + 1) % 5 != 0);
if (from_vertex.has_value() && to_vertex.has_value()) {
EXPECT_FALSE(
acc.CreateEdge(&from_vertex.value(), &to_vertex.value(), memgraph::storage::EdgeTypeId::FromUint(i))
.HasError());
}
}
// Detach delete some vertices.
for (uint64_t i = 0; i < 1000; ++i) {
auto vertex = acc.FindVertex(vertices[i], memgraph::storage::View::NEW);
EXPECT_EQ(vertex.has_value(), i % 5 != 0);
if (vertex.has_value()) {
if (i % 3 == 0) {
EXPECT_FALSE(acc.DetachDeleteVertex(&vertex.value()).HasError());
}
}
}
// Wait for GC.
std::this_thread::sleep_for(std::chrono::milliseconds(300));
// Vertify edges.
for (uint64_t i = 0; i < 1000; ++i) {
auto vertex = acc.FindVertex(vertices[i], memgraph::storage::View::NEW);
EXPECT_EQ(vertex.has_value(), i % 5 != 0 && i % 3 != 0);
if (vertex.has_value()) {
auto out_edges = vertex->OutEdges(memgraph::storage::View::NEW);
if (i % 5 != 4 && i % 3 != 2) {
EXPECT_EQ(out_edges.GetValue().size(), 1);
EXPECT_EQ(*vertex->OutDegree(memgraph::storage::View::NEW), 1);
EXPECT_EQ(out_edges.GetValue().at(0).EdgeType().AsUint(), i);
} else {
EXPECT_TRUE(out_edges->empty());
}
auto in_edges = vertex->InEdges(memgraph::storage::View::NEW);
if (i % 5 != 1 && i % 3 != 1) {
EXPECT_EQ(in_edges.GetValue().size(), 1);
EXPECT_EQ(*vertex->InDegree(memgraph::storage::View::NEW), 1);
EXPECT_EQ(in_edges.GetValue().at(0).EdgeType().AsUint(), (i + 999) % 1000);
} else {
EXPECT_TRUE(in_edges->empty());
}
}
}
ASSERT_FALSE(acc.Commit().HasError());
}
}
// A simple sanity check for index GC:
// 1. Start transaction 0, create some vertices, add a label to them and
// commit.
// 2. Start transaction 1.
// 3. Start transaction 2, remove the labels and commit;
// 4. Wait for GC. GC shouldn't remove the vertices from index because
// transaction 1 can still see them with that label.
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST(StorageV2Gc, Indices) {
memgraph::storage::Storage storage(memgraph::storage::Config{
.gc = {.type = memgraph::storage::Config::Gc::Type::PERIODIC, .interval = std::chrono::milliseconds(100)}});
ASSERT_TRUE(storage.CreateIndex(storage.NameToLabel("label")));
{
auto acc0 = storage.Access();
for (uint64_t i = 0; i < 1000; ++i) {
auto vertex = acc0.CreateVertex();
ASSERT_TRUE(*vertex.AddLabel(acc0.NameToLabel("label")));
}
ASSERT_FALSE(acc0.Commit().HasError());
}
{
auto acc1 = storage.Access();
auto acc2 = storage.Access();
for (auto vertex : acc2.Vertices(memgraph::storage::View::OLD)) {
ASSERT_TRUE(*vertex.RemoveLabel(acc2.NameToLabel("label")));
}
ASSERT_FALSE(acc2.Commit().HasError());
// Wait for GC.
std::this_thread::sleep_for(std::chrono::milliseconds(300));
std::set<memgraph::storage::Gid> gids;
for (auto vertex : acc1.Vertices(acc1.NameToLabel("label"), memgraph::storage::View::OLD)) {
gids.insert(vertex.Gid());
}
EXPECT_EQ(gids.size(), 1000);
}
}

View File

@ -1,832 +0,0 @@
// Copyright 2022 Memgraph Ltd.
//
// Use of this software is governed by the Business Source License
// included in the file licenses/BSL.txt; by using this file, you agree to be bound by the terms of the Business Source
// License, and you may not use this file except in compliance with the Business Source License.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0, included in the file
// licenses/APL.txt.
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "storage/v2/property_value.hpp"
#include "storage/v2/storage.hpp"
#include "storage/v2/temporal.hpp"
// NOLINTNEXTLINE(google-build-using-namespace)
using namespace memgraph::storage;
using testing::IsEmpty;
using testing::UnorderedElementsAre;
// NOLINTNEXTLINE(cppcoreguidelines-macro-usage)
#define ASSERT_NO_ERROR(result) ASSERT_FALSE((result).HasError())
class IndexTest : public testing::Test {
protected:
void SetUp() override {
auto acc = storage.Access();
prop_id = acc.NameToProperty("id");
prop_val = acc.NameToProperty("val");
label1 = acc.NameToLabel("label1");
label2 = acc.NameToLabel("label2");
vertex_id = 0;
}
Storage storage;
PropertyId prop_id;
PropertyId prop_val;
LabelId label1;
LabelId label2;
VertexAccessor CreateVertex(Storage::Accessor *accessor) {
VertexAccessor vertex = accessor->CreateVertex();
MG_ASSERT(!vertex.SetProperty(prop_id, PropertyValue(vertex_id++)).HasError());
return vertex;
}
template <class TIterable>
std::vector<int64_t> GetIds(TIterable iterable, View view = View::OLD) {
std::vector<int64_t> ret;
for (auto vertex : iterable) {
ret.push_back(vertex.GetProperty(prop_id, view)->ValueInt());
}
return ret;
}
private:
int vertex_id;
};
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_F(IndexTest, LabelIndexCreate) {
{
auto acc = storage.Access();
EXPECT_FALSE(acc.LabelIndexExists(label1));
}
EXPECT_EQ(storage.ListAllIndices().label.size(), 0);
{
auto acc = storage.Access();
for (int i = 0; i < 10; ++i) {
auto vertex = CreateVertex(&acc);
ASSERT_NO_ERROR(vertex.AddLabel(i % 2 ? label1 : label2));
}
ASSERT_NO_ERROR(acc.Commit());
}
EXPECT_TRUE(storage.CreateIndex(label1));
{
auto acc = storage.Access();
EXPECT_THAT(GetIds(acc.Vertices(label1, View::OLD), View::OLD), UnorderedElementsAre(1, 3, 5, 7, 9));
EXPECT_THAT(GetIds(acc.Vertices(label1, View::NEW), View::NEW), UnorderedElementsAre(1, 3, 5, 7, 9));
}
{
auto acc = storage.Access();
for (int i = 10; i < 20; ++i) {
auto vertex = CreateVertex(&acc);
ASSERT_NO_ERROR(vertex.AddLabel(i % 2 ? label1 : label2));
}
EXPECT_THAT(GetIds(acc.Vertices(label1, View::OLD), View::OLD), UnorderedElementsAre(1, 3, 5, 7, 9));
EXPECT_THAT(GetIds(acc.Vertices(label1, View::NEW), View::NEW),
UnorderedElementsAre(1, 3, 5, 7, 9, 11, 13, 15, 17, 19));
acc.AdvanceCommand();
EXPECT_THAT(GetIds(acc.Vertices(label1, View::OLD), View::NEW),
UnorderedElementsAre(1, 3, 5, 7, 9, 11, 13, 15, 17, 19));
EXPECT_THAT(GetIds(acc.Vertices(label1, View::NEW), View::NEW),
UnorderedElementsAre(1, 3, 5, 7, 9, 11, 13, 15, 17, 19));
acc.Abort();
}
{
auto acc = storage.Access();
for (int i = 10; i < 20; ++i) {
auto vertex = CreateVertex(&acc);
ASSERT_NO_ERROR(vertex.AddLabel(i % 2 ? label1 : label2));
}
EXPECT_THAT(GetIds(acc.Vertices(label1, View::OLD), View::OLD), UnorderedElementsAre(1, 3, 5, 7, 9));
EXPECT_THAT(GetIds(acc.Vertices(label1, View::NEW), View::NEW),
UnorderedElementsAre(1, 3, 5, 7, 9, 21, 23, 25, 27, 29));
acc.AdvanceCommand();
EXPECT_THAT(GetIds(acc.Vertices(label1, View::OLD), View::NEW),
UnorderedElementsAre(1, 3, 5, 7, 9, 21, 23, 25, 27, 29));
EXPECT_THAT(GetIds(acc.Vertices(label1, View::NEW), View::NEW),
UnorderedElementsAre(1, 3, 5, 7, 9, 21, 23, 25, 27, 29));
ASSERT_NO_ERROR(acc.Commit());
}
{
auto acc = storage.Access();
EXPECT_THAT(GetIds(acc.Vertices(label1, View::OLD), View::OLD),
UnorderedElementsAre(1, 3, 5, 7, 9, 21, 23, 25, 27, 29));
EXPECT_THAT(GetIds(acc.Vertices(label1, View::NEW), View::NEW),
UnorderedElementsAre(1, 3, 5, 7, 9, 21, 23, 25, 27, 29));
acc.AdvanceCommand();
EXPECT_THAT(GetIds(acc.Vertices(label1, View::OLD), View::NEW),
UnorderedElementsAre(1, 3, 5, 7, 9, 21, 23, 25, 27, 29));
EXPECT_THAT(GetIds(acc.Vertices(label1, View::NEW), View::NEW),
UnorderedElementsAre(1, 3, 5, 7, 9, 21, 23, 25, 27, 29));
ASSERT_NO_ERROR(acc.Commit());
}
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_F(IndexTest, LabelIndexDrop) {
{
auto acc = storage.Access();
EXPECT_FALSE(acc.LabelIndexExists(label1));
}
EXPECT_EQ(storage.ListAllIndices().label.size(), 0);
{
auto acc = storage.Access();
for (int i = 0; i < 10; ++i) {
auto vertex = CreateVertex(&acc);
ASSERT_NO_ERROR(vertex.AddLabel(i % 2 ? label1 : label2));
}
ASSERT_NO_ERROR(acc.Commit());
}
EXPECT_TRUE(storage.CreateIndex(label1));
{
auto acc = storage.Access();
EXPECT_THAT(GetIds(acc.Vertices(label1, View::OLD), View::OLD), UnorderedElementsAre(1, 3, 5, 7, 9));
EXPECT_THAT(GetIds(acc.Vertices(label1, View::NEW), View::NEW), UnorderedElementsAre(1, 3, 5, 7, 9));
}
EXPECT_TRUE(storage.DropIndex(label1));
{
auto acc = storage.Access();
EXPECT_FALSE(acc.LabelIndexExists(label1));
}
EXPECT_EQ(storage.ListAllIndices().label.size(), 0);
EXPECT_FALSE(storage.DropIndex(label1));
{
auto acc = storage.Access();
EXPECT_FALSE(acc.LabelIndexExists(label1));
}
EXPECT_EQ(storage.ListAllIndices().label.size(), 0);
{
auto acc = storage.Access();
for (int i = 10; i < 20; ++i) {
auto vertex = CreateVertex(&acc);
ASSERT_NO_ERROR(vertex.AddLabel(i % 2 ? label1 : label2));
}
ASSERT_NO_ERROR(acc.Commit());
}
EXPECT_TRUE(storage.CreateIndex(label1));
{
auto acc = storage.Access();
EXPECT_TRUE(acc.LabelIndexExists(label1));
}
EXPECT_THAT(storage.ListAllIndices().label, UnorderedElementsAre(label1));
{
auto acc = storage.Access();
EXPECT_THAT(GetIds(acc.Vertices(label1, View::OLD), View::OLD),
UnorderedElementsAre(1, 3, 5, 7, 9, 11, 13, 15, 17, 19));
EXPECT_THAT(GetIds(acc.Vertices(label1, View::NEW), View::NEW),
UnorderedElementsAre(1, 3, 5, 7, 9, 11, 13, 15, 17, 19));
acc.AdvanceCommand();
EXPECT_THAT(GetIds(acc.Vertices(label1, View::OLD), View::NEW),
UnorderedElementsAre(1, 3, 5, 7, 9, 11, 13, 15, 17, 19));
EXPECT_THAT(GetIds(acc.Vertices(label1, View::NEW), View::NEW),
UnorderedElementsAre(1, 3, 5, 7, 9, 11, 13, 15, 17, 19));
}
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_F(IndexTest, LabelIndexBasic) {
// The following steps are performed and index correctness is validated after
// each step:
// 1. Create 10 vertices numbered from 0 to 9.
// 2. Add Label1 to odd numbered, and Label2 to even numbered vertices.
// 3. Remove Label1 from odd numbered vertices, and add it to even numbered
// vertices.
// 4. Delete even numbered vertices.
EXPECT_TRUE(storage.CreateIndex(label1));
EXPECT_TRUE(storage.CreateIndex(label2));
auto acc = storage.Access();
EXPECT_THAT(storage.ListAllIndices().label, UnorderedElementsAre(label1, label2));
EXPECT_THAT(GetIds(acc.Vertices(label1, View::OLD), View::OLD), IsEmpty());
EXPECT_THAT(GetIds(acc.Vertices(label2, View::OLD), View::OLD), IsEmpty());
EXPECT_THAT(GetIds(acc.Vertices(label1, View::NEW), View::NEW), IsEmpty());
EXPECT_THAT(GetIds(acc.Vertices(label2, View::NEW), View::NEW), IsEmpty());
for (int i = 0; i < 10; ++i) {
auto vertex = CreateVertex(&acc);
ASSERT_NO_ERROR(vertex.AddLabel(i % 2 ? label1 : label2));
}
EXPECT_THAT(GetIds(acc.Vertices(label1, View::OLD), View::OLD), IsEmpty());
EXPECT_THAT(GetIds(acc.Vertices(label2, View::OLD), View::OLD), IsEmpty());
EXPECT_THAT(GetIds(acc.Vertices(label1, View::NEW), View::NEW), UnorderedElementsAre(1, 3, 5, 7, 9));
EXPECT_THAT(GetIds(acc.Vertices(label2, View::NEW), View::NEW), UnorderedElementsAre(0, 2, 4, 6, 8));
acc.AdvanceCommand();
EXPECT_THAT(GetIds(acc.Vertices(label1, View::OLD), View::OLD), UnorderedElementsAre(1, 3, 5, 7, 9));
EXPECT_THAT(GetIds(acc.Vertices(label2, View::OLD), View::OLD), UnorderedElementsAre(0, 2, 4, 6, 8));
EXPECT_THAT(GetIds(acc.Vertices(label1, View::NEW), View::NEW), UnorderedElementsAre(1, 3, 5, 7, 9));
EXPECT_THAT(GetIds(acc.Vertices(label2, View::NEW), View::NEW), UnorderedElementsAre(0, 2, 4, 6, 8));
for (auto vertex : acc.Vertices(View::OLD)) {
int64_t id = vertex.GetProperty(prop_id, View::OLD)->ValueInt();
if (id % 2) {
ASSERT_NO_ERROR(vertex.RemoveLabel(label1));
} else {
ASSERT_NO_ERROR(vertex.AddLabel(label1));
}
}
EXPECT_THAT(GetIds(acc.Vertices(label1, View::OLD), View::OLD), UnorderedElementsAre(1, 3, 5, 7, 9));
EXPECT_THAT(GetIds(acc.Vertices(label2, View::OLD), View::OLD), UnorderedElementsAre(0, 2, 4, 6, 8));
EXPECT_THAT(GetIds(acc.Vertices(label1, View::NEW), View::NEW), UnorderedElementsAre(0, 2, 4, 6, 8));
EXPECT_THAT(GetIds(acc.Vertices(label2, View::NEW), View::NEW), UnorderedElementsAre(0, 2, 4, 6, 8));
for (auto vertex : acc.Vertices(View::OLD)) {
int64_t id = vertex.GetProperty(prop_id, View::OLD)->ValueInt();
if (id % 2 == 0) {
ASSERT_NO_ERROR(acc.DeleteVertex(&vertex));
}
}
EXPECT_THAT(GetIds(acc.Vertices(label1, View::OLD), View::OLD), UnorderedElementsAre(1, 3, 5, 7, 9));
EXPECT_THAT(GetIds(acc.Vertices(label2, View::OLD), View::OLD), UnorderedElementsAre(0, 2, 4, 6, 8));
EXPECT_THAT(GetIds(acc.Vertices(label1, View::NEW), View::NEW), IsEmpty());
EXPECT_THAT(GetIds(acc.Vertices(label2, View::NEW), View::NEW), IsEmpty());
acc.AdvanceCommand();
EXPECT_THAT(GetIds(acc.Vertices(label1, View::OLD), View::OLD), IsEmpty());
EXPECT_THAT(GetIds(acc.Vertices(label2, View::OLD), View::OLD), IsEmpty());
EXPECT_THAT(GetIds(acc.Vertices(label1, View::NEW), View::NEW), IsEmpty());
EXPECT_THAT(GetIds(acc.Vertices(label2, View::NEW), View::NEW), IsEmpty());
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_F(IndexTest, LabelIndexDuplicateVersions) {
// By removing labels and adding them again we create duplicate entries for
// the same vertex in the index (they only differ by the timestamp). This test
// checks that duplicates are properly filtered out.
EXPECT_TRUE(storage.CreateIndex(label1));
EXPECT_TRUE(storage.CreateIndex(label2));
{
auto acc = storage.Access();
for (int i = 0; i < 5; ++i) {
auto vertex = CreateVertex(&acc);
ASSERT_NO_ERROR(vertex.AddLabel(label1));
}
EXPECT_THAT(GetIds(acc.Vertices(label1, View::NEW), View::NEW), UnorderedElementsAre(0, 1, 2, 3, 4));
ASSERT_NO_ERROR(acc.Commit());
}
{
auto acc = storage.Access();
EXPECT_THAT(GetIds(acc.Vertices(label1, View::OLD), View::OLD), UnorderedElementsAre(0, 1, 2, 3, 4));
for (auto vertex : acc.Vertices(View::OLD)) {
ASSERT_NO_ERROR(vertex.RemoveLabel(label1));
}
EXPECT_THAT(GetIds(acc.Vertices(label1, View::OLD), View::OLD), UnorderedElementsAre(0, 1, 2, 3, 4));
EXPECT_THAT(GetIds(acc.Vertices(label1, View::NEW), View::NEW), IsEmpty());
for (auto vertex : acc.Vertices(View::OLD)) {
ASSERT_NO_ERROR(vertex.AddLabel(label1));
}
EXPECT_THAT(GetIds(acc.Vertices(label1, View::OLD), View::OLD), UnorderedElementsAre(0, 1, 2, 3, 4));
EXPECT_THAT(GetIds(acc.Vertices(label1, View::NEW), View::NEW), UnorderedElementsAre(0, 1, 2, 3, 4));
}
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_F(IndexTest, LabelIndexTransactionalIsolation) {
// Check that transactions only see entries they are supposed to see.
EXPECT_TRUE(storage.CreateIndex(label1));
EXPECT_TRUE(storage.CreateIndex(label2));
auto acc_before = storage.Access();
auto acc = storage.Access();
auto acc_after = storage.Access();
for (int i = 0; i < 5; ++i) {
auto vertex = CreateVertex(&acc);
ASSERT_NO_ERROR(vertex.AddLabel(label1));
}
EXPECT_THAT(GetIds(acc.Vertices(label1, View::NEW), View::NEW), UnorderedElementsAre(0, 1, 2, 3, 4));
EXPECT_THAT(GetIds(acc_before.Vertices(label1, View::NEW), View::NEW), IsEmpty());
EXPECT_THAT(GetIds(acc_after.Vertices(label1, View::NEW), View::NEW), IsEmpty());
ASSERT_NO_ERROR(acc.Commit());
auto acc_after_commit = storage.Access();
EXPECT_THAT(GetIds(acc_before.Vertices(label1, View::NEW), View::NEW), IsEmpty());
EXPECT_THAT(GetIds(acc_after.Vertices(label1, View::NEW), View::NEW), IsEmpty());
EXPECT_THAT(GetIds(acc_after_commit.Vertices(label1, View::NEW), View::NEW), UnorderedElementsAre(0, 1, 2, 3, 4));
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_F(IndexTest, LabelIndexCountEstimate) {
EXPECT_TRUE(storage.CreateIndex(label1));
EXPECT_TRUE(storage.CreateIndex(label2));
auto acc = storage.Access();
for (int i = 0; i < 20; ++i) {
auto vertex = CreateVertex(&acc);
ASSERT_NO_ERROR(vertex.AddLabel(i % 3 ? label1 : label2));
}
EXPECT_EQ(acc.ApproximateVertexCount(label1), 13);
EXPECT_EQ(acc.ApproximateVertexCount(label2), 7);
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_F(IndexTest, LabelPropertyIndexCreateAndDrop) {
EXPECT_EQ(storage.ListAllIndices().label_property.size(), 0);
EXPECT_TRUE(storage.CreateIndex(label1, prop_id));
{
auto acc = storage.Access();
EXPECT_TRUE(acc.LabelPropertyIndexExists(label1, prop_id));
}
EXPECT_THAT(storage.ListAllIndices().label_property, UnorderedElementsAre(std::make_pair(label1, prop_id)));
{
auto acc = storage.Access();
EXPECT_FALSE(acc.LabelPropertyIndexExists(label2, prop_id));
}
EXPECT_FALSE(storage.CreateIndex(label1, prop_id));
EXPECT_THAT(storage.ListAllIndices().label_property, UnorderedElementsAre(std::make_pair(label1, prop_id)));
EXPECT_TRUE(storage.CreateIndex(label2, prop_id));
{
auto acc = storage.Access();
EXPECT_TRUE(acc.LabelPropertyIndexExists(label2, prop_id));
}
EXPECT_THAT(storage.ListAllIndices().label_property,
UnorderedElementsAre(std::make_pair(label1, prop_id), std::make_pair(label2, prop_id)));
EXPECT_TRUE(storage.DropIndex(label1, prop_id));
{
auto acc = storage.Access();
EXPECT_FALSE(acc.LabelPropertyIndexExists(label1, prop_id));
}
EXPECT_THAT(storage.ListAllIndices().label_property, UnorderedElementsAre(std::make_pair(label2, prop_id)));
EXPECT_FALSE(storage.DropIndex(label1, prop_id));
EXPECT_TRUE(storage.DropIndex(label2, prop_id));
{
auto acc = storage.Access();
EXPECT_FALSE(acc.LabelPropertyIndexExists(label2, prop_id));
}
EXPECT_EQ(storage.ListAllIndices().label_property.size(), 0);
}
// The following three tests are almost an exact copy-paste of the corresponding
// label index tests. We request all vertices with given label and property from
// the index, without range filtering. Range filtering is tested in a separate
// test.
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_F(IndexTest, LabelPropertyIndexBasic) {
storage.CreateIndex(label1, prop_val);
storage.CreateIndex(label2, prop_val);
auto acc = storage.Access();
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, View::OLD), View::OLD), IsEmpty());
for (int i = 0; i < 10; ++i) {
auto vertex = CreateVertex(&acc);
ASSERT_NO_ERROR(vertex.AddLabel(i % 2 ? label1 : label2));
ASSERT_NO_ERROR(vertex.SetProperty(prop_val, PropertyValue(i)));
}
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, View::OLD), View::OLD), IsEmpty());
EXPECT_THAT(GetIds(acc.Vertices(label2, prop_val, View::OLD), View::OLD), IsEmpty());
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, View::NEW), View::NEW), UnorderedElementsAre(1, 3, 5, 7, 9));
EXPECT_THAT(GetIds(acc.Vertices(label2, prop_val, View::NEW), View::NEW), UnorderedElementsAre(0, 2, 4, 6, 8));
acc.AdvanceCommand();
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, View::OLD), View::OLD), UnorderedElementsAre(1, 3, 5, 7, 9));
EXPECT_THAT(GetIds(acc.Vertices(label2, prop_val, View::OLD), View::OLD), UnorderedElementsAre(0, 2, 4, 6, 8));
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, View::NEW), View::NEW), UnorderedElementsAre(1, 3, 5, 7, 9));
EXPECT_THAT(GetIds(acc.Vertices(label2, prop_val, View::NEW), View::NEW), UnorderedElementsAre(0, 2, 4, 6, 8));
for (auto vertex : acc.Vertices(View::OLD)) {
int64_t id = vertex.GetProperty(prop_id, View::OLD)->ValueInt();
if (id % 2) {
ASSERT_NO_ERROR(vertex.SetProperty(prop_val, PropertyValue()));
} else {
ASSERT_NO_ERROR(vertex.AddLabel(label1));
}
}
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, View::OLD), View::OLD), UnorderedElementsAre(1, 3, 5, 7, 9));
EXPECT_THAT(GetIds(acc.Vertices(label2, prop_val, View::OLD), View::OLD), UnorderedElementsAre(0, 2, 4, 6, 8));
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, View::NEW), View::NEW), UnorderedElementsAre(0, 2, 4, 6, 8));
EXPECT_THAT(GetIds(acc.Vertices(label2, prop_val, View::NEW), View::NEW), UnorderedElementsAre(0, 2, 4, 6, 8));
for (auto vertex : acc.Vertices(View::OLD)) {
int64_t id = vertex.GetProperty(prop_id, View::OLD)->ValueInt();
if (id % 2 == 0) {
ASSERT_NO_ERROR(acc.DeleteVertex(&vertex));
}
}
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, View::OLD), View::OLD), UnorderedElementsAre(1, 3, 5, 7, 9));
EXPECT_THAT(GetIds(acc.Vertices(label2, prop_val, View::OLD), View::OLD), UnorderedElementsAre(0, 2, 4, 6, 8));
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, View::NEW), View::NEW), IsEmpty());
EXPECT_THAT(GetIds(acc.Vertices(label2, prop_val, View::NEW), View::NEW), IsEmpty());
acc.AdvanceCommand();
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, View::OLD), View::OLD), IsEmpty());
EXPECT_THAT(GetIds(acc.Vertices(label2, prop_val, View::OLD), View::OLD), IsEmpty());
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, View::NEW), View::NEW), IsEmpty());
EXPECT_THAT(GetIds(acc.Vertices(label2, prop_val, View::NEW), View::NEW), IsEmpty());
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_F(IndexTest, LabelPropertyIndexDuplicateVersions) {
storage.CreateIndex(label1, prop_val);
{
auto acc = storage.Access();
for (int i = 0; i < 5; ++i) {
auto vertex = CreateVertex(&acc);
ASSERT_NO_ERROR(vertex.AddLabel(label1));
ASSERT_NO_ERROR(vertex.SetProperty(prop_val, PropertyValue(i)));
}
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, View::NEW), View::NEW), UnorderedElementsAre(0, 1, 2, 3, 4));
ASSERT_NO_ERROR(acc.Commit());
}
{
auto acc = storage.Access();
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, View::OLD), View::OLD), UnorderedElementsAre(0, 1, 2, 3, 4));
for (auto vertex : acc.Vertices(View::OLD)) {
ASSERT_NO_ERROR(vertex.SetProperty(prop_val, PropertyValue()));
}
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, View::OLD), View::OLD), UnorderedElementsAre(0, 1, 2, 3, 4));
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, View::NEW), View::NEW), IsEmpty());
for (auto vertex : acc.Vertices(View::OLD)) {
ASSERT_NO_ERROR(vertex.SetProperty(prop_val, PropertyValue(42)));
}
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, View::OLD), View::OLD), UnorderedElementsAre(0, 1, 2, 3, 4));
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, View::NEW), View::NEW), UnorderedElementsAre(0, 1, 2, 3, 4));
}
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_F(IndexTest, LabelPropertyIndexTransactionalIsolation) {
storage.CreateIndex(label1, prop_val);
auto acc_before = storage.Access();
auto acc = storage.Access();
auto acc_after = storage.Access();
for (int i = 0; i < 5; ++i) {
auto vertex = CreateVertex(&acc);
ASSERT_NO_ERROR(vertex.AddLabel(label1));
ASSERT_NO_ERROR(vertex.SetProperty(prop_val, PropertyValue(i)));
}
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, View::NEW), View::NEW), UnorderedElementsAre(0, 1, 2, 3, 4));
EXPECT_THAT(GetIds(acc_before.Vertices(label1, prop_val, View::NEW), View::NEW), IsEmpty());
EXPECT_THAT(GetIds(acc_after.Vertices(label1, prop_val, View::NEW), View::NEW), IsEmpty());
ASSERT_NO_ERROR(acc.Commit());
auto acc_after_commit = storage.Access();
EXPECT_THAT(GetIds(acc_before.Vertices(label1, prop_val, View::NEW), View::NEW), IsEmpty());
EXPECT_THAT(GetIds(acc_after.Vertices(label1, prop_val, View::NEW), View::NEW), IsEmpty());
EXPECT_THAT(GetIds(acc_after_commit.Vertices(label1, prop_val, View::NEW), View::NEW),
UnorderedElementsAre(0, 1, 2, 3, 4));
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_F(IndexTest, LabelPropertyIndexFiltering) {
// We insert vertices with values:
// 0 0.0 1 1.0 2 2.0 3 3.0 4 4.0
// Then we check all combinations of inclusive and exclusive bounds.
// We also have a mix of doubles and integers to verify that they are sorted
// properly.
storage.CreateIndex(label1, prop_val);
{
auto acc = storage.Access();
for (int i = 0; i < 10; ++i) {
auto vertex = CreateVertex(&acc);
ASSERT_NO_ERROR(vertex.AddLabel(label1));
ASSERT_NO_ERROR(vertex.SetProperty(prop_val, i % 2 ? PropertyValue(i / 2) : PropertyValue(i / 2.0)));
}
ASSERT_NO_ERROR(acc.Commit());
}
{
auto acc = storage.Access();
for (int i = 0; i < 5; ++i) {
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, PropertyValue(i), View::OLD)),
UnorderedElementsAre(2 * i, 2 * i + 1));
}
// [1, +inf>
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, memgraph::utils::MakeBoundInclusive(PropertyValue(1)),
std::nullopt, View::OLD)),
UnorderedElementsAre(2, 3, 4, 5, 6, 7, 8, 9));
// <1, +inf>
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, memgraph::utils::MakeBoundExclusive(PropertyValue(1)),
std::nullopt, View::OLD)),
UnorderedElementsAre(4, 5, 6, 7, 8, 9));
// <-inf, 3]
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, std::nullopt,
memgraph::utils::MakeBoundInclusive(PropertyValue(3)), View::OLD)),
UnorderedElementsAre(0, 1, 2, 3, 4, 5, 6, 7));
// <-inf, 3>
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, std::nullopt,
memgraph::utils::MakeBoundExclusive(PropertyValue(3)), View::OLD)),
UnorderedElementsAre(0, 1, 2, 3, 4, 5));
// [1, 3]
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, memgraph::utils::MakeBoundInclusive(PropertyValue(1)),
memgraph::utils::MakeBoundInclusive(PropertyValue(3)), View::OLD)),
UnorderedElementsAre(2, 3, 4, 5, 6, 7));
// <1, 3]
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, memgraph::utils::MakeBoundExclusive(PropertyValue(1)),
memgraph::utils::MakeBoundInclusive(PropertyValue(3)), View::OLD)),
UnorderedElementsAre(4, 5, 6, 7));
// [1, 3>
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, memgraph::utils::MakeBoundInclusive(PropertyValue(1)),
memgraph::utils::MakeBoundExclusive(PropertyValue(3)), View::OLD)),
UnorderedElementsAre(2, 3, 4, 5));
// <1, 3>
EXPECT_THAT(GetIds(acc.Vertices(label1, prop_val, memgraph::utils::MakeBoundExclusive(PropertyValue(1)),
memgraph::utils::MakeBoundExclusive(PropertyValue(3)), View::OLD)),
UnorderedElementsAre(4, 5));
}
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_F(IndexTest, LabelPropertyIndexCountEstimate) {
storage.CreateIndex(label1, prop_val);
auto acc = storage.Access();
for (int i = 1; i <= 10; ++i) {
for (int j = 0; j < i; ++j) {
auto vertex = CreateVertex(&acc);
ASSERT_NO_ERROR(vertex.AddLabel(label1));
ASSERT_NO_ERROR(vertex.SetProperty(prop_val, PropertyValue(i)));
}
}
EXPECT_EQ(acc.ApproximateVertexCount(label1, prop_val), 55);
for (int i = 1; i <= 10; ++i) {
EXPECT_EQ(acc.ApproximateVertexCount(label1, prop_val, PropertyValue(i)), i);
}
EXPECT_EQ(acc.ApproximateVertexCount(label1, prop_val, memgraph::utils::MakeBoundInclusive(PropertyValue(2)),
memgraph::utils::MakeBoundInclusive(PropertyValue(6))),
2 + 3 + 4 + 5 + 6);
}
TEST_F(IndexTest, LabelPropertyIndexMixedIteration) {
storage.CreateIndex(label1, prop_val);
const std::array temporals{TemporalData{TemporalType::Date, 23}, TemporalData{TemporalType::Date, 28},
TemporalData{TemporalType::LocalDateTime, 20}};
std::vector<PropertyValue> values = {
PropertyValue(false),
PropertyValue(true),
PropertyValue(-std::numeric_limits<double>::infinity()),
PropertyValue(std::numeric_limits<int64_t>::min()),
PropertyValue(-1),
PropertyValue(-0.5),
PropertyValue(0),
PropertyValue(0.5),
PropertyValue(1),
PropertyValue(1.5),
PropertyValue(2),
PropertyValue(std::numeric_limits<int64_t>::max()),
PropertyValue(std::numeric_limits<double>::infinity()),
PropertyValue(""),
PropertyValue("a"),
PropertyValue("b"),
PropertyValue("c"),
PropertyValue(std::vector<PropertyValue>()),
PropertyValue(std::vector<PropertyValue>{PropertyValue(0.8)}),
PropertyValue(std::vector<PropertyValue>{PropertyValue(2)}),
PropertyValue(std::map<std::string, PropertyValue>()),
PropertyValue(std::map<std::string, PropertyValue>{{"id", PropertyValue(5)}}),
PropertyValue(std::map<std::string, PropertyValue>{{"id", PropertyValue(10)}}),
PropertyValue(temporals[0]),
PropertyValue(temporals[1]),
PropertyValue(temporals[2]),
};
// Create vertices, each with one of the values above.
{
auto acc = storage.Access();
for (const auto &value : values) {
auto v = acc.CreateVertex();
ASSERT_TRUE(v.AddLabel(label1).HasValue());
ASSERT_TRUE(v.SetProperty(prop_val, value).HasValue());
}
ASSERT_FALSE(acc.Commit().HasError());
}
// Verify that all nodes are in the index.
{
auto acc = storage.Access();
auto iterable = acc.Vertices(label1, prop_val, View::OLD);
auto it = iterable.begin();
for (const auto &value : values) {
ASSERT_NE(it, iterable.end());
auto vertex = *it;
auto maybe_value = vertex.GetProperty(prop_val, View::OLD);
ASSERT_TRUE(maybe_value.HasValue());
ASSERT_EQ(value, *maybe_value);
++it;
}
ASSERT_EQ(it, iterable.end());
}
auto verify = [&](const std::optional<memgraph::utils::Bound<PropertyValue>> &from,
const std::optional<memgraph::utils::Bound<PropertyValue>> &to,
const std::vector<PropertyValue> &expected) {
auto acc = storage.Access();
auto iterable = acc.Vertices(label1, prop_val, from, to, View::OLD);
size_t i = 0;
for (auto it = iterable.begin(); it != iterable.end(); ++it, ++i) {
auto vertex = *it;
auto maybe_value = vertex.GetProperty(prop_val, View::OLD);
ASSERT_TRUE(maybe_value.HasValue());
ASSERT_EQ(*maybe_value, expected[i]);
}
ASSERT_EQ(i, expected.size());
};
// Range iteration with two specified bounds that have the same type should
// yield the naturally expected items.
verify(memgraph::utils::MakeBoundExclusive(PropertyValue(false)),
memgraph::utils::MakeBoundExclusive(PropertyValue(true)), {});
verify(memgraph::utils::MakeBoundExclusive(PropertyValue(false)),
memgraph::utils::MakeBoundInclusive(PropertyValue(true)), {PropertyValue(true)});
verify(memgraph::utils::MakeBoundInclusive(PropertyValue(false)),
memgraph::utils::MakeBoundExclusive(PropertyValue(true)), {PropertyValue(false)});
verify(memgraph::utils::MakeBoundInclusive(PropertyValue(false)),
memgraph::utils::MakeBoundInclusive(PropertyValue(true)), {PropertyValue(false), PropertyValue(true)});
verify(memgraph::utils::MakeBoundExclusive(PropertyValue(0)), memgraph::utils::MakeBoundExclusive(PropertyValue(1.8)),
{PropertyValue(0.5), PropertyValue(1), PropertyValue(1.5)});
verify(memgraph::utils::MakeBoundExclusive(PropertyValue(0)), memgraph::utils::MakeBoundInclusive(PropertyValue(1.8)),
{PropertyValue(0.5), PropertyValue(1), PropertyValue(1.5)});
verify(memgraph::utils::MakeBoundInclusive(PropertyValue(0)), memgraph::utils::MakeBoundExclusive(PropertyValue(1.8)),
{PropertyValue(0), PropertyValue(0.5), PropertyValue(1), PropertyValue(1.5)});
verify(memgraph::utils::MakeBoundInclusive(PropertyValue(0)), memgraph::utils::MakeBoundInclusive(PropertyValue(1.8)),
{PropertyValue(0), PropertyValue(0.5), PropertyValue(1), PropertyValue(1.5)});
verify(memgraph::utils::MakeBoundExclusive(PropertyValue("b")),
memgraph::utils::MakeBoundExclusive(PropertyValue("memgraph")), {PropertyValue("c")});
verify(memgraph::utils::MakeBoundExclusive(PropertyValue("b")),
memgraph::utils::MakeBoundInclusive(PropertyValue("memgraph")), {PropertyValue("c")});
verify(memgraph::utils::MakeBoundInclusive(PropertyValue("b")),
memgraph::utils::MakeBoundExclusive(PropertyValue("memgraph")), {PropertyValue("b"), PropertyValue("c")});
verify(memgraph::utils::MakeBoundInclusive(PropertyValue("b")),
memgraph::utils::MakeBoundInclusive(PropertyValue("memgraph")), {PropertyValue("b"), PropertyValue("c")});
verify(memgraph::utils::MakeBoundExclusive(PropertyValue(std::vector<PropertyValue>{PropertyValue(0.8)})),
memgraph::utils::MakeBoundExclusive(PropertyValue(std::vector<PropertyValue>{PropertyValue("b")})),
{PropertyValue(std::vector<PropertyValue>{PropertyValue(2)})});
verify(memgraph::utils::MakeBoundExclusive(PropertyValue(std::vector<PropertyValue>{PropertyValue(0.8)})),
memgraph::utils::MakeBoundInclusive(PropertyValue(std::vector<PropertyValue>{PropertyValue("b")})),
{PropertyValue(std::vector<PropertyValue>{PropertyValue(2)})});
verify(memgraph::utils::MakeBoundInclusive(PropertyValue(std::vector<PropertyValue>{PropertyValue(0.8)})),
memgraph::utils::MakeBoundExclusive(PropertyValue(std::vector<PropertyValue>{PropertyValue("b")})),
{PropertyValue(std::vector<PropertyValue>{PropertyValue(0.8)}),
PropertyValue(std::vector<PropertyValue>{PropertyValue(2)})});
verify(memgraph::utils::MakeBoundInclusive(PropertyValue(std::vector<PropertyValue>{PropertyValue(0.8)})),
memgraph::utils::MakeBoundInclusive(PropertyValue(std::vector<PropertyValue>{PropertyValue("b")})),
{PropertyValue(std::vector<PropertyValue>{PropertyValue(0.8)}),
PropertyValue(std::vector<PropertyValue>{PropertyValue(2)})});
verify(memgraph::utils::MakeBoundExclusive(
PropertyValue(std::map<std::string, PropertyValue>{{"id", PropertyValue(5.0)}})),
memgraph::utils::MakeBoundExclusive(
PropertyValue(std::map<std::string, PropertyValue>{{"id", PropertyValue("b")}})),
{PropertyValue(std::map<std::string, PropertyValue>{{"id", PropertyValue(10)}})});
verify(memgraph::utils::MakeBoundExclusive(
PropertyValue(std::map<std::string, PropertyValue>{{"id", PropertyValue(5.0)}})),
memgraph::utils::MakeBoundInclusive(
PropertyValue(std::map<std::string, PropertyValue>{{"id", PropertyValue("b")}})),
{PropertyValue(std::map<std::string, PropertyValue>{{"id", PropertyValue(10)}})});
verify(memgraph::utils::MakeBoundInclusive(
PropertyValue(std::map<std::string, PropertyValue>{{"id", PropertyValue(5.0)}})),
memgraph::utils::MakeBoundExclusive(
PropertyValue(std::map<std::string, PropertyValue>{{"id", PropertyValue("b")}})),
{PropertyValue(std::map<std::string, PropertyValue>{{"id", PropertyValue(5)}}),
PropertyValue(std::map<std::string, PropertyValue>{{"id", PropertyValue(10)}})});
verify(memgraph::utils::MakeBoundInclusive(
PropertyValue(std::map<std::string, PropertyValue>{{"id", PropertyValue(5.0)}})),
memgraph::utils::MakeBoundInclusive(
PropertyValue(std::map<std::string, PropertyValue>{{"id", PropertyValue("b")}})),
{PropertyValue(std::map<std::string, PropertyValue>{{"id", PropertyValue(5)}}),
PropertyValue(std::map<std::string, PropertyValue>{{"id", PropertyValue(10)}})});
verify(memgraph::utils::MakeBoundExclusive(PropertyValue(temporals[0])),
memgraph::utils::MakeBoundInclusive(PropertyValue(TemporalData{TemporalType::Date, 200})),
// LocalDateTime has a "higher" type number so it is not part of the range
{PropertyValue(temporals[1])});
verify(memgraph::utils::MakeBoundExclusive(PropertyValue(temporals[0])),
memgraph::utils::MakeBoundInclusive(PropertyValue(temporals[2])),
{PropertyValue(temporals[1]), PropertyValue(temporals[2])});
verify(memgraph::utils::MakeBoundInclusive(PropertyValue(temporals[0])),
memgraph::utils::MakeBoundExclusive(PropertyValue(temporals[2])),
{PropertyValue(temporals[0]), PropertyValue(temporals[1])});
verify(memgraph::utils::MakeBoundInclusive(PropertyValue(temporals[0])),
memgraph::utils::MakeBoundInclusive(PropertyValue(temporals[2])),
{PropertyValue(temporals[0]), PropertyValue(temporals[1]), PropertyValue(temporals[2])});
// Range iteration with one unspecified bound should only yield items that
// have the same type as the specified bound.
verify(memgraph::utils::MakeBoundInclusive(PropertyValue(false)), std::nullopt,
{PropertyValue(false), PropertyValue(true)});
verify(std::nullopt, memgraph::utils::MakeBoundExclusive(PropertyValue(true)), {PropertyValue(false)});
verify(memgraph::utils::MakeBoundInclusive(PropertyValue(1)), std::nullopt,
{PropertyValue(1), PropertyValue(1.5), PropertyValue(2), PropertyValue(std::numeric_limits<int64_t>::max()),
PropertyValue(std::numeric_limits<double>::infinity())});
verify(std::nullopt, memgraph::utils::MakeBoundExclusive(PropertyValue(0)),
{PropertyValue(-std::numeric_limits<double>::infinity()), PropertyValue(std::numeric_limits<int64_t>::min()),
PropertyValue(-1), PropertyValue(-0.5)});
verify(memgraph::utils::MakeBoundInclusive(PropertyValue("b")), std::nullopt,
{PropertyValue("b"), PropertyValue("c")});
verify(std::nullopt, memgraph::utils::MakeBoundExclusive(PropertyValue("b")),
{PropertyValue(""), PropertyValue("a")});
verify(memgraph::utils::MakeBoundInclusive(PropertyValue(std::vector<PropertyValue>{PropertyValue(false)})),
std::nullopt,
{PropertyValue(std::vector<PropertyValue>{PropertyValue(0.8)}),
PropertyValue(std::vector<PropertyValue>{PropertyValue(2)})});
verify(std::nullopt, memgraph::utils::MakeBoundExclusive(PropertyValue(std::vector<PropertyValue>{PropertyValue(1)})),
{PropertyValue(std::vector<PropertyValue>()), PropertyValue(std::vector<PropertyValue>{PropertyValue(0.8)})});
verify(memgraph::utils::MakeBoundInclusive(
PropertyValue(std::map<std::string, PropertyValue>{{"id", PropertyValue(false)}})),
std::nullopt,
{PropertyValue(std::map<std::string, PropertyValue>{{"id", PropertyValue(5)}}),
PropertyValue(std::map<std::string, PropertyValue>{{"id", PropertyValue(10)}})});
verify(std::nullopt,
memgraph::utils::MakeBoundExclusive(
PropertyValue(std::map<std::string, PropertyValue>{{"id", PropertyValue(7.5)}})),
{PropertyValue(std::map<std::string, PropertyValue>()),
PropertyValue(std::map<std::string, PropertyValue>{{"id", PropertyValue(5)}})});
verify(memgraph::utils::MakeBoundInclusive(PropertyValue(TemporalData(TemporalType::Date, 10))), std::nullopt,
{PropertyValue(temporals[0]), PropertyValue(temporals[1]), PropertyValue(temporals[2])});
verify(std::nullopt, memgraph::utils::MakeBoundExclusive(PropertyValue(TemporalData(TemporalType::Duration, 0))),
{PropertyValue(temporals[0]), PropertyValue(temporals[1]), PropertyValue(temporals[2])});
// Range iteration with two specified bounds that don't have the same type
// should yield no items.
for (size_t i = 0; i < values.size(); ++i) {
for (size_t j = i; j < values.size(); ++j) {
if (PropertyValue::AreComparableTypes(values[i].type(), values[j].type())) {
verify(memgraph::utils::MakeBoundInclusive(values[i]), memgraph::utils::MakeBoundInclusive(values[j]),
{values.begin() + i, values.begin() + j + 1});
} else {
verify(memgraph::utils::MakeBoundInclusive(values[i]), memgraph::utils::MakeBoundInclusive(values[j]), {});
}
}
}
// Iteration without any bounds should return all items of the index.
verify(std::nullopt, std::nullopt, values);
}

View File

@ -1,110 +0,0 @@
// Copyright 2022 Memgraph Ltd.
//
// Use of this software is governed by the Business Source License
// included in the file licenses/BSL.txt; by using this file, you agree to be bound by the terms of the Business Source
// License, and you may not use this file except in compliance with the Business Source License.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0, included in the file
// licenses/APL.txt.
#include <gtest/gtest.h>
#include "storage/v2/isolation_level.hpp"
#include "storage/v2/storage.hpp"
namespace {
int64_t VerticesCount(memgraph::storage::Storage::Accessor &accessor) {
int64_t count{0};
for ([[maybe_unused]] const auto &vertex : accessor.Vertices(memgraph::storage::View::NEW)) {
++count;
}
return count;
}
inline constexpr std::array isolation_levels{memgraph::storage::IsolationLevel::SNAPSHOT_ISOLATION,
memgraph::storage::IsolationLevel::READ_COMMITTED,
memgraph::storage::IsolationLevel::READ_UNCOMMITTED};
std::string_view IsolationLevelToString(const memgraph::storage::IsolationLevel isolation_level) {
switch (isolation_level) {
case memgraph::storage::IsolationLevel::SNAPSHOT_ISOLATION:
return "SNAPSHOT_ISOLATION";
case memgraph::storage::IsolationLevel::READ_COMMITTED:
return "READ_COMMITTED";
case memgraph::storage::IsolationLevel::READ_UNCOMMITTED:
return "READ_UNCOMMITTED";
}
}
} // namespace
class StorageIsolationLevelTest : public ::testing::TestWithParam<memgraph::storage::IsolationLevel> {
public:
struct PrintToStringParamName {
std::string operator()(const testing::TestParamInfo<memgraph::storage::IsolationLevel> &info) {
return std::string(IsolationLevelToString(static_cast<memgraph::storage::IsolationLevel>(info.param)));
}
};
};
TEST_P(StorageIsolationLevelTest, Visibility) {
const auto default_isolation_level = GetParam();
for (const auto override_isolation_level : isolation_levels) {
memgraph::storage::Storage storage{
memgraph::storage::Config{.transaction = {.isolation_level = default_isolation_level}}};
auto creator = storage.Access();
auto default_isolation_level_reader = storage.Access();
auto override_isolation_level_reader = storage.Access(override_isolation_level);
ASSERT_EQ(VerticesCount(default_isolation_level_reader), 0);
ASSERT_EQ(VerticesCount(override_isolation_level_reader), 0);
static constexpr auto iteration_count = 10;
{
SCOPED_TRACE(fmt::format(
"Visibility while the creator transaction is active "
"(default isolation level = {}, override isolation level = {})",
IsolationLevelToString(default_isolation_level), IsolationLevelToString(override_isolation_level)));
for (size_t i = 1; i <= iteration_count; ++i) {
creator.CreateVertex();
const auto check_vertices_count = [i](auto &accessor, const auto isolation_level) {
const auto expected_count = isolation_level == memgraph::storage::IsolationLevel::READ_UNCOMMITTED ? i : 0;
EXPECT_EQ(VerticesCount(accessor), expected_count);
};
check_vertices_count(default_isolation_level_reader, default_isolation_level);
check_vertices_count(override_isolation_level_reader, override_isolation_level);
}
}
ASSERT_FALSE(creator.Commit().HasError());
{
SCOPED_TRACE(fmt::format(
"Visibility after the creator transaction is committed "
"(default isolation level = {}, override isolation level = {})",
IsolationLevelToString(default_isolation_level), IsolationLevelToString(override_isolation_level)));
const auto check_vertices_count = [](auto &accessor, const auto isolation_level) {
const auto expected_count =
isolation_level == memgraph::storage::IsolationLevel::SNAPSHOT_ISOLATION ? 0 : iteration_count;
ASSERT_EQ(VerticesCount(accessor), expected_count);
};
check_vertices_count(default_isolation_level_reader, default_isolation_level);
check_vertices_count(override_isolation_level_reader, override_isolation_level);
}
ASSERT_FALSE(default_isolation_level_reader.Commit().HasError());
ASSERT_FALSE(override_isolation_level_reader.Commit().HasError());
SCOPED_TRACE("Visibility after a new transaction is started");
auto verifier = storage.Access();
ASSERT_EQ(VerticesCount(verifier), iteration_count);
ASSERT_FALSE(verifier.Commit().HasError());
}
}
INSTANTIATE_TEST_CASE_P(ParameterizedStorageIsolationLevelTests, StorageIsolationLevelTest,
::testing::ValuesIn(isolation_levels), StorageIsolationLevelTest::PrintToStringParamName());

View File

@ -1,47 +0,0 @@
// Copyright 2022 Memgraph Ltd.
//
// Use of this software is governed by the Business Source License
// included in the file licenses/BSL.txt; by using this file, you agree to be bound by the terms of the Business Source
// License, and you may not use this file except in compliance with the Business Source License.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0, included in the file
// licenses/APL.txt.
#include <gtest/gtest.h>
#include "storage/v2/name_id_mapper.hpp"
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST(NameIdMapper, Basic) {
memgraph::storage::NameIdMapper mapper;
ASSERT_EQ(mapper.NameToId("n1"), 0);
ASSERT_EQ(mapper.NameToId("n2"), 1);
ASSERT_EQ(mapper.NameToId("n1"), 0);
ASSERT_EQ(mapper.NameToId("n2"), 1);
ASSERT_EQ(mapper.NameToId("n3"), 2);
ASSERT_EQ(mapper.IdToName(0), "n1");
ASSERT_EQ(mapper.IdToName(1), "n2");
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST(NameIdMapper, Correctness) {
memgraph::storage::NameIdMapper mapper;
ASSERT_DEATH(mapper.IdToName(0), "");
ASSERT_EQ(mapper.NameToId("n1"), 0);
ASSERT_EQ(mapper.IdToName(0), "n1");
ASSERT_DEATH(mapper.IdToName(1), "");
ASSERT_EQ(mapper.NameToId("n2"), 1);
ASSERT_EQ(mapper.IdToName(1), "n2");
ASSERT_EQ(mapper.NameToId("n1"), 0);
ASSERT_EQ(mapper.NameToId("n2"), 1);
ASSERT_EQ(mapper.IdToName(1), "n2");
ASSERT_EQ(mapper.IdToName(0), "n1");
}

View File

@ -1,651 +0,0 @@
// Copyright 2022 Memgraph Ltd.
//
// Use of this software is governed by the Business Source License
// included in the file licenses/BSL.txt; by using this file, you agree to be bound by the terms of the Business Source
// License, and you may not use this file except in compliance with the Business Source License.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0, included in the file
// licenses/APL.txt.
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include <limits>
#include "storage/v2/property_store.hpp"
#include "storage/v2/property_value.hpp"
#include "storage/v2/temporal.hpp"
using testing::UnorderedElementsAre;
const memgraph::storage::PropertyValue kSampleValues[] = {
memgraph::storage::PropertyValue(),
memgraph::storage::PropertyValue(false),
memgraph::storage::PropertyValue(true),
memgraph::storage::PropertyValue(0),
memgraph::storage::PropertyValue(33),
memgraph::storage::PropertyValue(-33),
memgraph::storage::PropertyValue(-3137),
memgraph::storage::PropertyValue(3137),
memgraph::storage::PropertyValue(310000007),
memgraph::storage::PropertyValue(-310000007),
memgraph::storage::PropertyValue(3100000000007L),
memgraph::storage::PropertyValue(-3100000000007L),
memgraph::storage::PropertyValue(0.0),
memgraph::storage::PropertyValue(33.33),
memgraph::storage::PropertyValue(-33.33),
memgraph::storage::PropertyValue(3137.3137),
memgraph::storage::PropertyValue(-3137.3137),
memgraph::storage::PropertyValue("sample"),
memgraph::storage::PropertyValue(std::string(404, 'n')),
memgraph::storage::PropertyValue(std::vector<memgraph::storage::PropertyValue>{
memgraph::storage::PropertyValue(33), memgraph::storage::PropertyValue(std::string("sample")),
memgraph::storage::PropertyValue(-33.33)}),
memgraph::storage::PropertyValue(std::vector<memgraph::storage::PropertyValue>{
memgraph::storage::PropertyValue(), memgraph::storage::PropertyValue(false)}),
memgraph::storage::PropertyValue(std::map<std::string, memgraph::storage::PropertyValue>{
{"sample", memgraph::storage::PropertyValue()}, {"key", memgraph::storage::PropertyValue(false)}}),
memgraph::storage::PropertyValue(std::map<std::string, memgraph::storage::PropertyValue>{
{"test", memgraph::storage::PropertyValue(33)},
{"map", memgraph::storage::PropertyValue(std::string("sample"))},
{"item", memgraph::storage::PropertyValue(-33.33)}}),
memgraph::storage::PropertyValue(memgraph::storage::TemporalData(memgraph::storage::TemporalType::Date, 23)),
};
void TestIsPropertyEqual(const memgraph::storage::PropertyStore &store, memgraph::storage::PropertyId property,
const memgraph::storage::PropertyValue &value) {
ASSERT_TRUE(store.IsPropertyEqual(property, value));
for (const auto &sample : kSampleValues) {
if (sample == value) {
ASSERT_TRUE(store.IsPropertyEqual(property, sample));
} else {
ASSERT_FALSE(store.IsPropertyEqual(property, sample));
}
}
}
TEST(PropertyStore, Simple) {
memgraph::storage::PropertyStore props;
auto prop = memgraph::storage::PropertyId::FromInt(42);
auto value = memgraph::storage::PropertyValue(42);
ASSERT_TRUE(props.SetProperty(prop, value));
ASSERT_EQ(props.GetProperty(prop), value);
ASSERT_TRUE(props.HasProperty(prop));
TestIsPropertyEqual(props, prop, value);
ASSERT_THAT(props.Properties(), UnorderedElementsAre(std::pair(prop, value)));
ASSERT_FALSE(props.SetProperty(prop, memgraph::storage::PropertyValue()));
ASSERT_TRUE(props.GetProperty(prop).IsNull());
ASSERT_FALSE(props.HasProperty(prop));
TestIsPropertyEqual(props, prop, memgraph::storage::PropertyValue());
ASSERT_EQ(props.Properties().size(), 0);
}
TEST(PropertyStore, SimpleLarge) {
memgraph::storage::PropertyStore props;
auto prop = memgraph::storage::PropertyId::FromInt(42);
{
auto value = memgraph::storage::PropertyValue(std::string(10000, 'a'));
ASSERT_TRUE(props.SetProperty(prop, value));
ASSERT_EQ(props.GetProperty(prop), value);
ASSERT_TRUE(props.HasProperty(prop));
TestIsPropertyEqual(props, prop, value);
ASSERT_THAT(props.Properties(), UnorderedElementsAre(std::pair(prop, value)));
}
{
auto value =
memgraph::storage::PropertyValue(memgraph::storage::TemporalData(memgraph::storage::TemporalType::Date, 23));
ASSERT_FALSE(props.SetProperty(prop, value));
ASSERT_EQ(props.GetProperty(prop), value);
ASSERT_TRUE(props.HasProperty(prop));
TestIsPropertyEqual(props, prop, value);
ASSERT_THAT(props.Properties(), UnorderedElementsAre(std::pair(prop, value)));
}
ASSERT_FALSE(props.SetProperty(prop, memgraph::storage::PropertyValue()));
ASSERT_TRUE(props.GetProperty(prop).IsNull());
ASSERT_FALSE(props.HasProperty(prop));
TestIsPropertyEqual(props, prop, memgraph::storage::PropertyValue());
ASSERT_EQ(props.Properties().size(), 0);
}
TEST(PropertyStore, EmptySetToNull) {
memgraph::storage::PropertyStore props;
auto prop = memgraph::storage::PropertyId::FromInt(42);
ASSERT_TRUE(props.SetProperty(prop, memgraph::storage::PropertyValue()));
ASSERT_TRUE(props.GetProperty(prop).IsNull());
ASSERT_FALSE(props.HasProperty(prop));
TestIsPropertyEqual(props, prop, memgraph::storage::PropertyValue());
ASSERT_EQ(props.Properties().size(), 0);
}
TEST(PropertyStore, Clear) {
memgraph::storage::PropertyStore props;
auto prop = memgraph::storage::PropertyId::FromInt(42);
auto value = memgraph::storage::PropertyValue(42);
ASSERT_TRUE(props.SetProperty(prop, value));
ASSERT_EQ(props.GetProperty(prop), value);
ASSERT_TRUE(props.HasProperty(prop));
TestIsPropertyEqual(props, prop, value);
ASSERT_THAT(props.Properties(), UnorderedElementsAre(std::pair(prop, value)));
ASSERT_TRUE(props.ClearProperties());
ASSERT_TRUE(props.GetProperty(prop).IsNull());
ASSERT_FALSE(props.HasProperty(prop));
TestIsPropertyEqual(props, prop, memgraph::storage::PropertyValue());
ASSERT_EQ(props.Properties().size(), 0);
}
TEST(PropertyStore, EmptyClear) {
memgraph::storage::PropertyStore props;
ASSERT_FALSE(props.ClearProperties());
ASSERT_EQ(props.Properties().size(), 0);
}
TEST(PropertyStore, MoveConstruct) {
memgraph::storage::PropertyStore props1;
auto prop = memgraph::storage::PropertyId::FromInt(42);
auto value = memgraph::storage::PropertyValue(42);
ASSERT_TRUE(props1.SetProperty(prop, value));
ASSERT_EQ(props1.GetProperty(prop), value);
ASSERT_TRUE(props1.HasProperty(prop));
TestIsPropertyEqual(props1, prop, value);
ASSERT_THAT(props1.Properties(), UnorderedElementsAre(std::pair(prop, value)));
{
memgraph::storage::PropertyStore props2(std::move(props1));
ASSERT_EQ(props2.GetProperty(prop), value);
ASSERT_TRUE(props2.HasProperty(prop));
TestIsPropertyEqual(props2, prop, value);
ASSERT_THAT(props2.Properties(), UnorderedElementsAre(std::pair(prop, value)));
}
// NOLINTNEXTLINE(bugprone-use-after-move,clang-analyzer-cplusplus.Move,hicpp-invalid-access-moved)
ASSERT_TRUE(props1.GetProperty(prop).IsNull());
ASSERT_FALSE(props1.HasProperty(prop));
TestIsPropertyEqual(props1, prop, memgraph::storage::PropertyValue());
ASSERT_EQ(props1.Properties().size(), 0);
}
TEST(PropertyStore, MoveConstructLarge) {
memgraph::storage::PropertyStore props1;
auto prop = memgraph::storage::PropertyId::FromInt(42);
auto value = memgraph::storage::PropertyValue(std::string(10000, 'a'));
ASSERT_TRUE(props1.SetProperty(prop, value));
ASSERT_EQ(props1.GetProperty(prop), value);
ASSERT_TRUE(props1.HasProperty(prop));
TestIsPropertyEqual(props1, prop, value);
ASSERT_THAT(props1.Properties(), UnorderedElementsAre(std::pair(prop, value)));
{
memgraph::storage::PropertyStore props2(std::move(props1));
ASSERT_EQ(props2.GetProperty(prop), value);
ASSERT_TRUE(props2.HasProperty(prop));
TestIsPropertyEqual(props2, prop, value);
ASSERT_THAT(props2.Properties(), UnorderedElementsAre(std::pair(prop, value)));
}
// NOLINTNEXTLINE(bugprone-use-after-move,clang-analyzer-cplusplus.Move,hicpp-invalid-access-moved)
ASSERT_TRUE(props1.GetProperty(prop).IsNull());
ASSERT_FALSE(props1.HasProperty(prop));
TestIsPropertyEqual(props1, prop, memgraph::storage::PropertyValue());
ASSERT_EQ(props1.Properties().size(), 0);
}
TEST(PropertyStore, MoveAssign) {
memgraph::storage::PropertyStore props1;
auto prop = memgraph::storage::PropertyId::FromInt(42);
auto value = memgraph::storage::PropertyValue(42);
ASSERT_TRUE(props1.SetProperty(prop, value));
ASSERT_EQ(props1.GetProperty(prop), value);
ASSERT_TRUE(props1.HasProperty(prop));
TestIsPropertyEqual(props1, prop, value);
ASSERT_THAT(props1.Properties(), UnorderedElementsAre(std::pair(prop, value)));
{
auto value2 = memgraph::storage::PropertyValue(68);
memgraph::storage::PropertyStore props2;
ASSERT_TRUE(props2.SetProperty(prop, value2));
ASSERT_EQ(props2.GetProperty(prop), value2);
ASSERT_TRUE(props2.HasProperty(prop));
TestIsPropertyEqual(props2, prop, value2);
ASSERT_THAT(props2.Properties(), UnorderedElementsAre(std::pair(prop, value2)));
props2 = std::move(props1);
ASSERT_EQ(props2.GetProperty(prop), value);
ASSERT_TRUE(props2.HasProperty(prop));
TestIsPropertyEqual(props2, prop, value);
ASSERT_THAT(props2.Properties(), UnorderedElementsAre(std::pair(prop, value)));
}
// NOLINTNEXTLINE(bugprone-use-after-move,clang-analyzer-cplusplus.Move,hicpp-invalid-access-moved)
ASSERT_TRUE(props1.GetProperty(prop).IsNull());
ASSERT_FALSE(props1.HasProperty(prop));
TestIsPropertyEqual(props1, prop, memgraph::storage::PropertyValue());
ASSERT_EQ(props1.Properties().size(), 0);
}
TEST(PropertyStore, MoveAssignLarge) {
memgraph::storage::PropertyStore props1;
auto prop = memgraph::storage::PropertyId::FromInt(42);
auto value = memgraph::storage::PropertyValue(std::string(10000, 'a'));
ASSERT_TRUE(props1.SetProperty(prop, value));
ASSERT_EQ(props1.GetProperty(prop), value);
ASSERT_TRUE(props1.HasProperty(prop));
TestIsPropertyEqual(props1, prop, value);
ASSERT_THAT(props1.Properties(), UnorderedElementsAre(std::pair(prop, value)));
{
auto value2 = memgraph::storage::PropertyValue(std::string(10000, 'b'));
memgraph::storage::PropertyStore props2;
ASSERT_TRUE(props2.SetProperty(prop, value2));
ASSERT_EQ(props2.GetProperty(prop), value2);
ASSERT_TRUE(props2.HasProperty(prop));
TestIsPropertyEqual(props2, prop, value2);
ASSERT_THAT(props2.Properties(), UnorderedElementsAre(std::pair(prop, value2)));
props2 = std::move(props1);
ASSERT_EQ(props2.GetProperty(prop), value);
ASSERT_TRUE(props2.HasProperty(prop));
TestIsPropertyEqual(props2, prop, value);
ASSERT_THAT(props2.Properties(), UnorderedElementsAre(std::pair(prop, value)));
}
// NOLINTNEXTLINE(bugprone-use-after-move,clang-analyzer-cplusplus.Move,hicpp-invalid-access-moved)
ASSERT_TRUE(props1.GetProperty(prop).IsNull());
ASSERT_FALSE(props1.HasProperty(prop));
TestIsPropertyEqual(props1, prop, memgraph::storage::PropertyValue());
ASSERT_EQ(props1.Properties().size(), 0);
}
TEST(PropertyStore, EmptySet) {
std::vector<memgraph::storage::PropertyValue> vec{memgraph::storage::PropertyValue(true),
memgraph::storage::PropertyValue(123),
memgraph::storage::PropertyValue()};
std::map<std::string, memgraph::storage::PropertyValue> map{{"nandare", memgraph::storage::PropertyValue(false)}};
const memgraph::storage::TemporalData temporal{memgraph::storage::TemporalType::LocalDateTime, 23};
std::vector<memgraph::storage::PropertyValue> data{
memgraph::storage::PropertyValue(true), memgraph::storage::PropertyValue(123),
memgraph::storage::PropertyValue(123.5), memgraph::storage::PropertyValue("nandare"),
memgraph::storage::PropertyValue(vec), memgraph::storage::PropertyValue(map),
memgraph::storage::PropertyValue(temporal)};
auto prop = memgraph::storage::PropertyId::FromInt(42);
for (const auto &value : data) {
memgraph::storage::PropertyStore props;
ASSERT_TRUE(props.SetProperty(prop, value));
ASSERT_EQ(props.GetProperty(prop), value);
ASSERT_TRUE(props.HasProperty(prop));
TestIsPropertyEqual(props, prop, value);
ASSERT_THAT(props.Properties(), UnorderedElementsAre(std::pair(prop, value)));
ASSERT_FALSE(props.SetProperty(prop, value));
ASSERT_EQ(props.GetProperty(prop), value);
ASSERT_TRUE(props.HasProperty(prop));
TestIsPropertyEqual(props, prop, value);
ASSERT_THAT(props.Properties(), UnorderedElementsAre(std::pair(prop, value)));
ASSERT_FALSE(props.SetProperty(prop, memgraph::storage::PropertyValue()));
ASSERT_TRUE(props.GetProperty(prop).IsNull());
ASSERT_FALSE(props.HasProperty(prop));
TestIsPropertyEqual(props, prop, memgraph::storage::PropertyValue());
ASSERT_EQ(props.Properties().size(), 0);
ASSERT_TRUE(props.SetProperty(prop, memgraph::storage::PropertyValue()));
ASSERT_TRUE(props.GetProperty(prop).IsNull());
ASSERT_FALSE(props.HasProperty(prop));
TestIsPropertyEqual(props, prop, memgraph::storage::PropertyValue());
ASSERT_EQ(props.Properties().size(), 0);
}
}
TEST(PropertyStore, FullSet) {
std::vector<memgraph::storage::PropertyValue> vec{memgraph::storage::PropertyValue(true),
memgraph::storage::PropertyValue(123),
memgraph::storage::PropertyValue()};
std::map<std::string, memgraph::storage::PropertyValue> map{{"nandare", memgraph::storage::PropertyValue(false)}};
const memgraph::storage::TemporalData temporal{memgraph::storage::TemporalType::LocalDateTime, 23};
std::map<memgraph::storage::PropertyId, memgraph::storage::PropertyValue> data{
{memgraph::storage::PropertyId::FromInt(1), memgraph::storage::PropertyValue(true)},
{memgraph::storage::PropertyId::FromInt(2), memgraph::storage::PropertyValue(123)},
{memgraph::storage::PropertyId::FromInt(3), memgraph::storage::PropertyValue(123.5)},
{memgraph::storage::PropertyId::FromInt(4), memgraph::storage::PropertyValue("nandare")},
{memgraph::storage::PropertyId::FromInt(5), memgraph::storage::PropertyValue(vec)},
{memgraph::storage::PropertyId::FromInt(6), memgraph::storage::PropertyValue(map)},
{memgraph::storage::PropertyId::FromInt(7), memgraph::storage::PropertyValue(temporal)}};
std::vector<memgraph::storage::PropertyValue> alt{memgraph::storage::PropertyValue(),
memgraph::storage::PropertyValue(std::string()),
memgraph::storage::PropertyValue(std::string(10, 'a')),
memgraph::storage::PropertyValue(std::string(100, 'a')),
memgraph::storage::PropertyValue(std::string(1000, 'a')),
memgraph::storage::PropertyValue(std::string(10000, 'a')),
memgraph::storage::PropertyValue(std::string(100000, 'a'))};
memgraph::storage::PropertyStore props;
for (const auto &target : data) {
for (const auto &item : data) {
ASSERT_TRUE(props.SetProperty(item.first, item.second));
}
for (size_t i = 0; i < alt.size(); ++i) {
if (i == 1) {
ASSERT_TRUE(props.SetProperty(target.first, alt[i]));
} else {
ASSERT_FALSE(props.SetProperty(target.first, alt[i]));
}
for (const auto &item : data) {
if (item.first == target.first) {
ASSERT_EQ(props.GetProperty(item.first), alt[i]);
if (alt[i].IsNull()) {
ASSERT_FALSE(props.HasProperty(item.first));
} else {
ASSERT_TRUE(props.HasProperty(item.first));
}
TestIsPropertyEqual(props, item.first, alt[i]);
} else {
ASSERT_EQ(props.GetProperty(item.first), item.second);
ASSERT_TRUE(props.HasProperty(item.first));
TestIsPropertyEqual(props, item.first, item.second);
}
}
auto current = data;
if (alt[i].IsNull()) {
current.erase(target.first);
} else {
current[target.first] = alt[i];
}
ASSERT_EQ(props.Properties(), current);
}
for (ssize_t i = alt.size() - 1; i >= 0; --i) {
ASSERT_FALSE(props.SetProperty(target.first, alt[i]));
for (const auto &item : data) {
if (item.first == target.first) {
ASSERT_EQ(props.GetProperty(item.first), alt[i]);
if (alt[i].IsNull()) {
ASSERT_FALSE(props.HasProperty(item.first));
} else {
ASSERT_TRUE(props.HasProperty(item.first));
}
TestIsPropertyEqual(props, item.first, alt[i]);
} else {
ASSERT_EQ(props.GetProperty(item.first), item.second);
ASSERT_TRUE(props.HasProperty(item.first));
TestIsPropertyEqual(props, item.first, item.second);
}
}
auto current = data;
if (alt[i].IsNull()) {
current.erase(target.first);
} else {
current[target.first] = alt[i];
}
ASSERT_EQ(props.Properties(), current);
}
ASSERT_TRUE(props.SetProperty(target.first, target.second));
ASSERT_EQ(props.GetProperty(target.first), target.second);
ASSERT_TRUE(props.HasProperty(target.first));
TestIsPropertyEqual(props, target.first, target.second);
props.ClearProperties();
ASSERT_EQ(props.Properties().size(), 0);
for (const auto &item : data) {
ASSERT_TRUE(props.GetProperty(item.first).IsNull());
ASSERT_FALSE(props.HasProperty(item.first));
TestIsPropertyEqual(props, item.first, memgraph::storage::PropertyValue());
}
}
}
TEST(PropertyStore, IntEncoding) {
std::map<memgraph::storage::PropertyId, memgraph::storage::PropertyValue> data{
{memgraph::storage::PropertyId::FromUint(0UL),
memgraph::storage::PropertyValue(std::numeric_limits<int64_t>::min())},
{memgraph::storage::PropertyId::FromUint(10UL), memgraph::storage::PropertyValue(-137438953472L)},
{memgraph::storage::PropertyId::FromUint(std::numeric_limits<uint8_t>::max()),
memgraph::storage::PropertyValue(-4294967297L)},
{memgraph::storage::PropertyId::FromUint(256UL),
memgraph::storage::PropertyValue(std::numeric_limits<int32_t>::min())},
{memgraph::storage::PropertyId::FromUint(1024UL), memgraph::storage::PropertyValue(-1048576L)},
{memgraph::storage::PropertyId::FromUint(1025UL), memgraph::storage::PropertyValue(-65537L)},
{memgraph::storage::PropertyId::FromUint(1026UL),
memgraph::storage::PropertyValue(std::numeric_limits<int16_t>::min())},
{memgraph::storage::PropertyId::FromUint(1027UL), memgraph::storage::PropertyValue(-1024L)},
{memgraph::storage::PropertyId::FromUint(2000UL), memgraph::storage::PropertyValue(-257L)},
{memgraph::storage::PropertyId::FromUint(3000UL),
memgraph::storage::PropertyValue(std::numeric_limits<int8_t>::min())},
{memgraph::storage::PropertyId::FromUint(4000UL), memgraph::storage::PropertyValue(-1L)},
{memgraph::storage::PropertyId::FromUint(10000UL), memgraph::storage::PropertyValue(0L)},
{memgraph::storage::PropertyId::FromUint(20000UL), memgraph::storage::PropertyValue(1L)},
{memgraph::storage::PropertyId::FromUint(30000UL),
memgraph::storage::PropertyValue(std::numeric_limits<int8_t>::max())},
{memgraph::storage::PropertyId::FromUint(40000UL), memgraph::storage::PropertyValue(256L)},
{memgraph::storage::PropertyId::FromUint(50000UL), memgraph::storage::PropertyValue(1024L)},
{memgraph::storage::PropertyId::FromUint(std::numeric_limits<uint16_t>::max()),
memgraph::storage::PropertyValue(std::numeric_limits<int16_t>::max())},
{memgraph::storage::PropertyId::FromUint(65536UL), memgraph::storage::PropertyValue(65536L)},
{memgraph::storage::PropertyId::FromUint(1048576UL), memgraph::storage::PropertyValue(1048576L)},
{memgraph::storage::PropertyId::FromUint(std::numeric_limits<uint32_t>::max()),
memgraph::storage::PropertyValue(std::numeric_limits<int32_t>::max())},
{memgraph::storage::PropertyId::FromUint(4294967296UL), memgraph::storage::PropertyValue(4294967296L)},
{memgraph::storage::PropertyId::FromUint(137438953472UL), memgraph::storage::PropertyValue(137438953472L)},
{memgraph::storage::PropertyId::FromUint(std::numeric_limits<uint64_t>::max()),
memgraph::storage::PropertyValue(std::numeric_limits<int64_t>::max())}};
memgraph::storage::PropertyStore props;
for (const auto &item : data) {
ASSERT_TRUE(props.SetProperty(item.first, item.second));
ASSERT_EQ(props.GetProperty(item.first), item.second);
ASSERT_TRUE(props.HasProperty(item.first));
TestIsPropertyEqual(props, item.first, item.second);
}
for (auto it = data.rbegin(); it != data.rend(); ++it) {
const auto &item = *it;
ASSERT_FALSE(props.SetProperty(item.first, item.second));
ASSERT_EQ(props.GetProperty(item.first), item.second);
ASSERT_TRUE(props.HasProperty(item.first));
TestIsPropertyEqual(props, item.first, item.second);
}
ASSERT_EQ(props.Properties(), data);
props.ClearProperties();
ASSERT_EQ(props.Properties().size(), 0);
for (const auto &item : data) {
ASSERT_TRUE(props.GetProperty(item.first).IsNull());
ASSERT_FALSE(props.HasProperty(item.first));
TestIsPropertyEqual(props, item.first, memgraph::storage::PropertyValue());
}
}
TEST(PropertyStore, IsPropertyEqualIntAndDouble) {
memgraph::storage::PropertyStore props;
auto prop = memgraph::storage::PropertyId::FromInt(42);
ASSERT_TRUE(props.SetProperty(prop, memgraph::storage::PropertyValue(42)));
std::vector<std::pair<memgraph::storage::PropertyValue, memgraph::storage::PropertyValue>> tests{
{memgraph::storage::PropertyValue(0), memgraph::storage::PropertyValue(0.0)},
{memgraph::storage::PropertyValue(123), memgraph::storage::PropertyValue(123.0)},
{memgraph::storage::PropertyValue(12345), memgraph::storage::PropertyValue(12345.0)},
{memgraph::storage::PropertyValue(12345678), memgraph::storage::PropertyValue(12345678.0)},
{memgraph::storage::PropertyValue(1234567890123L), memgraph::storage::PropertyValue(1234567890123.0)},
};
// Test equality with raw values.
for (auto test : tests) {
ASSERT_EQ(test.first, test.second);
// Test first, second
ASSERT_FALSE(props.SetProperty(prop, test.first));
ASSERT_EQ(props.GetProperty(prop), test.first);
ASSERT_TRUE(props.HasProperty(prop));
ASSERT_TRUE(props.IsPropertyEqual(prop, test.first));
ASSERT_TRUE(props.IsPropertyEqual(prop, test.second));
// Test second, first
ASSERT_FALSE(props.SetProperty(prop, test.second));
ASSERT_EQ(props.GetProperty(prop), test.second);
ASSERT_TRUE(props.HasProperty(prop));
ASSERT_TRUE(props.IsPropertyEqual(prop, test.second));
ASSERT_TRUE(props.IsPropertyEqual(prop, test.first));
// Make both negative
test.first = memgraph::storage::PropertyValue(test.first.ValueInt() * -1);
test.second = memgraph::storage::PropertyValue(test.second.ValueDouble() * -1.0);
ASSERT_EQ(test.first, test.second);
// Test -first, -second
ASSERT_FALSE(props.SetProperty(prop, test.first));
ASSERT_EQ(props.GetProperty(prop), test.first);
ASSERT_TRUE(props.HasProperty(prop));
ASSERT_TRUE(props.IsPropertyEqual(prop, test.first));
ASSERT_TRUE(props.IsPropertyEqual(prop, test.second));
// Test -second, -first
ASSERT_FALSE(props.SetProperty(prop, test.second));
ASSERT_EQ(props.GetProperty(prop), test.second);
ASSERT_TRUE(props.HasProperty(prop));
ASSERT_TRUE(props.IsPropertyEqual(prop, test.second));
ASSERT_TRUE(props.IsPropertyEqual(prop, test.first));
}
// Test equality with values wrapped in lists.
for (auto test : tests) {
test.first = memgraph::storage::PropertyValue(
std::vector<memgraph::storage::PropertyValue>{memgraph::storage::PropertyValue(test.first.ValueInt())});
test.second = memgraph::storage::PropertyValue(
std::vector<memgraph::storage::PropertyValue>{memgraph::storage::PropertyValue(test.second.ValueDouble())});
ASSERT_EQ(test.first, test.second);
// Test first, second
ASSERT_FALSE(props.SetProperty(prop, test.first));
ASSERT_EQ(props.GetProperty(prop), test.first);
ASSERT_TRUE(props.HasProperty(prop));
ASSERT_TRUE(props.IsPropertyEqual(prop, test.first));
ASSERT_TRUE(props.IsPropertyEqual(prop, test.second));
// Test second, first
ASSERT_FALSE(props.SetProperty(prop, test.second));
ASSERT_EQ(props.GetProperty(prop), test.second);
ASSERT_TRUE(props.HasProperty(prop));
ASSERT_TRUE(props.IsPropertyEqual(prop, test.second));
ASSERT_TRUE(props.IsPropertyEqual(prop, test.first));
// Make both negative
test.first = memgraph::storage::PropertyValue(std::vector<memgraph::storage::PropertyValue>{
memgraph::storage::PropertyValue(test.first.ValueList()[0].ValueInt() * -1)});
test.second = memgraph::storage::PropertyValue(std::vector<memgraph::storage::PropertyValue>{
memgraph::storage::PropertyValue(test.second.ValueList()[0].ValueDouble() * -1.0)});
ASSERT_EQ(test.first, test.second);
// Test -first, -second
ASSERT_FALSE(props.SetProperty(prop, test.first));
ASSERT_EQ(props.GetProperty(prop), test.first);
ASSERT_TRUE(props.HasProperty(prop));
ASSERT_TRUE(props.IsPropertyEqual(prop, test.first));
ASSERT_TRUE(props.IsPropertyEqual(prop, test.second));
// Test -second, -first
ASSERT_FALSE(props.SetProperty(prop, test.second));
ASSERT_EQ(props.GetProperty(prop), test.second);
ASSERT_TRUE(props.HasProperty(prop));
ASSERT_TRUE(props.IsPropertyEqual(prop, test.second));
ASSERT_TRUE(props.IsPropertyEqual(prop, test.first));
}
}
TEST(PropertyStore, IsPropertyEqualString) {
memgraph::storage::PropertyStore props;
auto prop = memgraph::storage::PropertyId::FromInt(42);
ASSERT_TRUE(props.SetProperty(prop, memgraph::storage::PropertyValue("test")));
ASSERT_TRUE(props.IsPropertyEqual(prop, memgraph::storage::PropertyValue("test")));
// Different length.
ASSERT_FALSE(props.IsPropertyEqual(prop, memgraph::storage::PropertyValue("helloworld")));
// Same length, different value.
ASSERT_FALSE(props.IsPropertyEqual(prop, memgraph::storage::PropertyValue("asdf")));
// Shortened and extended.
ASSERT_FALSE(props.IsPropertyEqual(prop, memgraph::storage::PropertyValue("tes")));
ASSERT_FALSE(props.IsPropertyEqual(prop, memgraph::storage::PropertyValue("testt")));
}
TEST(PropertyStore, IsPropertyEqualList) {
memgraph::storage::PropertyStore props;
auto prop = memgraph::storage::PropertyId::FromInt(42);
ASSERT_TRUE(
props.SetProperty(prop, memgraph::storage::PropertyValue(std::vector<memgraph::storage::PropertyValue>{
memgraph::storage::PropertyValue(42), memgraph::storage::PropertyValue("test")})));
ASSERT_TRUE(props.IsPropertyEqual(
prop, memgraph::storage::PropertyValue(std::vector<memgraph::storage::PropertyValue>{
memgraph::storage::PropertyValue(42), memgraph::storage::PropertyValue("test")})));
// Different length.
ASSERT_FALSE(props.IsPropertyEqual(
prop, memgraph::storage::PropertyValue(
std::vector<memgraph::storage::PropertyValue>{memgraph::storage::PropertyValue(24)})));
// Same length, different value.
ASSERT_FALSE(props.IsPropertyEqual(
prop, memgraph::storage::PropertyValue(std::vector<memgraph::storage::PropertyValue>{
memgraph::storage::PropertyValue(42), memgraph::storage::PropertyValue("asdf")})));
// Shortened and extended.
ASSERT_FALSE(props.IsPropertyEqual(
prop, memgraph::storage::PropertyValue(
std::vector<memgraph::storage::PropertyValue>{memgraph::storage::PropertyValue(42)})));
ASSERT_FALSE(
props.IsPropertyEqual(prop, memgraph::storage::PropertyValue(std::vector<memgraph::storage::PropertyValue>{
memgraph::storage::PropertyValue(42), memgraph::storage::PropertyValue("test"),
memgraph::storage::PropertyValue(true)})));
}
TEST(PropertyStore, IsPropertyEqualMap) {
memgraph::storage::PropertyStore props;
auto prop = memgraph::storage::PropertyId::FromInt(42);
ASSERT_TRUE(props.SetProperty(
prop, memgraph::storage::PropertyValue(std::map<std::string, memgraph::storage::PropertyValue>{
{"abc", memgraph::storage::PropertyValue(42)}, {"zyx", memgraph::storage::PropertyValue("test")}})));
ASSERT_TRUE(props.IsPropertyEqual(
prop, memgraph::storage::PropertyValue(std::map<std::string, memgraph::storage::PropertyValue>{
{"abc", memgraph::storage::PropertyValue(42)}, {"zyx", memgraph::storage::PropertyValue("test")}})));
// Different length.
ASSERT_FALSE(props.IsPropertyEqual(
prop, memgraph::storage::PropertyValue(std::map<std::string, memgraph::storage::PropertyValue>{
{"fgh", memgraph::storage::PropertyValue(24)}})));
// Same length, different value.
ASSERT_FALSE(props.IsPropertyEqual(
prop, memgraph::storage::PropertyValue(std::map<std::string, memgraph::storage::PropertyValue>{
{"abc", memgraph::storage::PropertyValue(42)}, {"zyx", memgraph::storage::PropertyValue("testt")}})));
// Same length, different key (different length).
ASSERT_FALSE(props.IsPropertyEqual(
prop, memgraph::storage::PropertyValue(std::map<std::string, memgraph::storage::PropertyValue>{
{"abc", memgraph::storage::PropertyValue(42)}, {"zyxw", memgraph::storage::PropertyValue("test")}})));
// Same length, different key (same length).
ASSERT_FALSE(props.IsPropertyEqual(
prop, memgraph::storage::PropertyValue(std::map<std::string, memgraph::storage::PropertyValue>{
{"abc", memgraph::storage::PropertyValue(42)}, {"zyw", memgraph::storage::PropertyValue("test")}})));
// Shortened and extended.
ASSERT_FALSE(props.IsPropertyEqual(
prop, memgraph::storage::PropertyValue(std::map<std::string, memgraph::storage::PropertyValue>{
{"abc", memgraph::storage::PropertyValue(42)}})));
ASSERT_FALSE(props.IsPropertyEqual(
prop, memgraph::storage::PropertyValue(std::map<std::string, memgraph::storage::PropertyValue>{
{"abc", memgraph::storage::PropertyValue(42)},
{"sdf", memgraph::storage::PropertyValue(true)},
{"zyx", memgraph::storage::PropertyValue("test")}})));
}
TEST(PropertyStore, IsPropertyEqualTemporalData) {
memgraph::storage::PropertyStore props;
auto prop = memgraph::storage::PropertyId::FromInt(42);
const memgraph::storage::TemporalData temporal{memgraph::storage::TemporalType::Date, 23};
ASSERT_TRUE(props.SetProperty(prop, memgraph::storage::PropertyValue(temporal)));
ASSERT_TRUE(props.IsPropertyEqual(prop, memgraph::storage::PropertyValue(temporal)));
// Different type.
ASSERT_FALSE(props.IsPropertyEqual(prop, memgraph::storage::PropertyValue(memgraph::storage::TemporalData{
memgraph::storage::TemporalType::Duration, 23})));
// Same type, different value.
ASSERT_FALSE(props.IsPropertyEqual(prop, memgraph::storage::PropertyValue(memgraph::storage::TemporalData{
memgraph::storage::TemporalType::Date, 30})));
}

View File

@ -1,828 +0,0 @@
// Copyright 2022 Memgraph Ltd.
//
// Use of this software is governed by the Business Source License
// included in the file licenses/BSL.txt; by using this file, you agree to be bound by the terms of the Business Source
// License, and you may not use this file except in compliance with the Business Source License.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0, included in the file
// licenses/APL.txt.
#include <chrono>
#include <thread>
#include <fmt/format.h>
#include <gmock/gmock-generated-matchers.h>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include <storage/v2/property_value.hpp>
#include <storage/v2/replication/enums.hpp>
#include <storage/v2/storage.hpp>
#include "storage/v2/view.hpp"
using testing::UnorderedElementsAre;
class ReplicationTest : public ::testing::Test {
protected:
std::filesystem::path storage_directory{std::filesystem::temp_directory_path() /
"MG_test_unit_storage_v2_replication"};
void SetUp() override { Clear(); }
void TearDown() override { Clear(); }
memgraph::storage::Config configuration{
.items = {.properties_on_edges = true},
.durability = {
.storage_directory = storage_directory,
.snapshot_wal_mode = memgraph::storage::Config::Durability::SnapshotWalMode::PERIODIC_SNAPSHOT_WITH_WAL,
}};
const std::string local_host = ("127.0.0.1");
const std::array<uint16_t, 2> ports{10000, 20000};
const std::array<std::string, 2> replicas = {"REPLICA1", "REPLICA2"};
private:
void Clear() {
if (!std::filesystem::exists(storage_directory)) return;
std::filesystem::remove_all(storage_directory);
}
};
TEST_F(ReplicationTest, BasicSynchronousReplicationTest) {
memgraph::storage::Storage main_store(configuration);
memgraph::storage::Storage replica_store(configuration);
replica_store.SetReplicaRole(memgraph::io::network::Endpoint{local_host, ports[0]});
ASSERT_FALSE(main_store
.RegisterReplica("REPLICA", memgraph::io::network::Endpoint{local_host, ports[0]},
memgraph::storage::replication::ReplicationMode::SYNC,
memgraph::storage::replication::RegistrationMode::MUST_BE_INSTANTLY_VALID)
.HasError());
// vertex create
// vertex add label
// vertex set property
const auto *vertex_label = "vertex_label";
const auto *vertex_property = "vertex_property";
const auto *vertex_property_value = "vertex_property_value";
std::optional<memgraph::storage::Gid> vertex_gid;
{
auto acc = main_store.Access();
auto v = acc.CreateVertex();
vertex_gid.emplace(v.Gid());
ASSERT_TRUE(v.AddLabel(main_store.NameToLabel(vertex_label)).HasValue());
ASSERT_TRUE(v.SetProperty(main_store.NameToProperty(vertex_property),
memgraph::storage::PropertyValue(vertex_property_value))
.HasValue());
ASSERT_FALSE(acc.Commit().HasError());
}
{
auto acc = replica_store.Access();
const auto v = acc.FindVertex(*vertex_gid, memgraph::storage::View::OLD);
ASSERT_TRUE(v);
const auto labels = v->Labels(memgraph::storage::View::OLD);
ASSERT_TRUE(labels.HasValue());
ASSERT_EQ(labels->size(), 1);
ASSERT_THAT(*labels, UnorderedElementsAre(replica_store.NameToLabel(vertex_label)));
const auto properties = v->Properties(memgraph::storage::View::OLD);
ASSERT_TRUE(properties.HasValue());
ASSERT_EQ(properties->size(), 1);
ASSERT_THAT(*properties,
UnorderedElementsAre(std::make_pair(replica_store.NameToProperty(vertex_property),
memgraph::storage::PropertyValue(vertex_property_value))));
ASSERT_FALSE(acc.Commit().HasError());
}
// vertex remove label
{
auto acc = main_store.Access();
auto v = acc.FindVertex(*vertex_gid, memgraph::storage::View::OLD);
ASSERT_TRUE(v);
ASSERT_TRUE(v->RemoveLabel(main_store.NameToLabel(vertex_label)).HasValue());
ASSERT_FALSE(acc.Commit().HasError());
}
{
auto acc = replica_store.Access();
const auto v = acc.FindVertex(*vertex_gid, memgraph::storage::View::OLD);
ASSERT_TRUE(v);
const auto labels = v->Labels(memgraph::storage::View::OLD);
ASSERT_TRUE(labels.HasValue());
ASSERT_EQ(labels->size(), 0);
ASSERT_FALSE(acc.Commit().HasError());
}
// vertex delete
{
auto acc = main_store.Access();
auto v = acc.FindVertex(*vertex_gid, memgraph::storage::View::OLD);
ASSERT_TRUE(v);
ASSERT_TRUE(acc.DeleteVertex(&*v).HasValue());
ASSERT_FALSE(acc.Commit().HasError());
}
{
auto acc = replica_store.Access();
const auto v = acc.FindVertex(*vertex_gid, memgraph::storage::View::OLD);
ASSERT_FALSE(v);
vertex_gid.reset();
ASSERT_FALSE(acc.Commit().HasError());
}
// edge create
// edge set property
const auto *edge_type = "edge_type";
const auto *edge_property = "edge_property";
const auto *edge_property_value = "edge_property_value";
std::optional<memgraph::storage::Gid> edge_gid;
{
auto acc = main_store.Access();
auto v = acc.CreateVertex();
vertex_gid.emplace(v.Gid());
auto edge = acc.CreateEdge(&v, &v, main_store.NameToEdgeType(edge_type));
ASSERT_TRUE(edge.HasValue());
ASSERT_TRUE(edge->SetProperty(main_store.NameToProperty(edge_property),
memgraph::storage::PropertyValue(edge_property_value))
.HasValue());
edge_gid.emplace(edge->Gid());
ASSERT_FALSE(acc.Commit().HasError());
}
const auto find_edge = [&](const auto &edges,
const memgraph::storage::Gid edge_gid) -> std::optional<memgraph::storage::EdgeAccessor> {
for (const auto &edge : edges) {
if (edge.Gid() == edge_gid) {
return edge;
}
}
return std::nullopt;
};
{
auto acc = replica_store.Access();
const auto v = acc.FindVertex(*vertex_gid, memgraph::storage::View::OLD);
ASSERT_TRUE(v);
const auto out_edges = v->OutEdges(memgraph::storage::View::OLD);
ASSERT_TRUE(out_edges.HasValue());
const auto edge = find_edge(*out_edges, *edge_gid);
ASSERT_EQ(edge->EdgeType(), replica_store.NameToEdgeType(edge_type));
const auto properties = edge->Properties(memgraph::storage::View::OLD);
ASSERT_TRUE(properties.HasValue());
ASSERT_EQ(properties->size(), 1);
ASSERT_THAT(*properties,
UnorderedElementsAre(std::make_pair(replica_store.NameToProperty(edge_property),
memgraph::storage::PropertyValue(edge_property_value))));
ASSERT_FALSE(acc.Commit().HasError());
}
// delete edge
{
auto acc = main_store.Access();
auto v = acc.FindVertex(*vertex_gid, memgraph::storage::View::OLD);
ASSERT_TRUE(v);
auto out_edges = v->OutEdges(memgraph::storage::View::OLD);
auto edge = find_edge(*out_edges, *edge_gid);
ASSERT_TRUE(edge);
ASSERT_TRUE(acc.DeleteEdge(&*edge).HasValue());
ASSERT_FALSE(acc.Commit().HasError());
}
{
auto acc = replica_store.Access();
const auto v = acc.FindVertex(*vertex_gid, memgraph::storage::View::OLD);
ASSERT_TRUE(v);
const auto out_edges = v->OutEdges(memgraph::storage::View::OLD);
ASSERT_TRUE(out_edges.HasValue());
ASSERT_FALSE(find_edge(*out_edges, *edge_gid));
ASSERT_FALSE(acc.Commit().HasError());
}
// label index create
// label property index create
// existence constraint create
// unique constriant create
const auto *label = "label";
const auto *property = "property";
const auto *property_extra = "property_extra";
{
ASSERT_TRUE(main_store.CreateIndex(main_store.NameToLabel(label)));
ASSERT_TRUE(main_store.CreateIndex(main_store.NameToLabel(label), main_store.NameToProperty(property)));
ASSERT_FALSE(
main_store.CreateExistenceConstraint(main_store.NameToLabel(label), main_store.NameToProperty(property))
.HasError());
ASSERT_FALSE(main_store
.CreateUniqueConstraint(main_store.NameToLabel(label), {main_store.NameToProperty(property),
main_store.NameToProperty(property_extra)})
.HasError());
}
{
const auto indices = replica_store.ListAllIndices();
ASSERT_THAT(indices.label, UnorderedElementsAre(replica_store.NameToLabel(label)));
ASSERT_THAT(indices.label_property, UnorderedElementsAre(std::make_pair(replica_store.NameToLabel(label),
replica_store.NameToProperty(property))));
const auto constraints = replica_store.ListAllConstraints();
ASSERT_THAT(constraints.existence, UnorderedElementsAre(std::make_pair(replica_store.NameToLabel(label),
replica_store.NameToProperty(property))));
ASSERT_THAT(constraints.unique,
UnorderedElementsAre(std::make_pair(
replica_store.NameToLabel(label),
std::set{replica_store.NameToProperty(property), replica_store.NameToProperty(property_extra)})));
}
// label index drop
// label property index drop
// existence constraint drop
// unique constriant drop
{
ASSERT_TRUE(main_store.DropIndex(main_store.NameToLabel(label)));
ASSERT_TRUE(main_store.DropIndex(main_store.NameToLabel(label), main_store.NameToProperty(property)));
ASSERT_TRUE(main_store.DropExistenceConstraint(main_store.NameToLabel(label), main_store.NameToProperty(property)));
ASSERT_EQ(
main_store.DropUniqueConstraint(main_store.NameToLabel(label), {main_store.NameToProperty(property),
main_store.NameToProperty(property_extra)}),
memgraph::storage::UniqueConstraints::DeletionStatus::SUCCESS);
}
{
const auto indices = replica_store.ListAllIndices();
ASSERT_EQ(indices.label.size(), 0);
ASSERT_EQ(indices.label_property.size(), 0);
const auto constraints = replica_store.ListAllConstraints();
ASSERT_EQ(constraints.existence.size(), 0);
ASSERT_EQ(constraints.unique.size(), 0);
}
}
TEST_F(ReplicationTest, MultipleSynchronousReplicationTest) {
memgraph::storage::Storage main_store(
{.durability = {
.storage_directory = storage_directory,
.snapshot_wal_mode = memgraph::storage::Config::Durability::SnapshotWalMode::PERIODIC_SNAPSHOT_WITH_WAL,
}});
memgraph::storage::Storage replica_store1(
{.durability = {
.storage_directory = storage_directory,
.snapshot_wal_mode = memgraph::storage::Config::Durability::SnapshotWalMode::PERIODIC_SNAPSHOT_WITH_WAL,
}});
replica_store1.SetReplicaRole(memgraph::io::network::Endpoint{local_host, ports[0]});
memgraph::storage::Storage replica_store2(
{.durability = {
.storage_directory = storage_directory,
.snapshot_wal_mode = memgraph::storage::Config::Durability::SnapshotWalMode::PERIODIC_SNAPSHOT_WITH_WAL,
}});
replica_store2.SetReplicaRole(memgraph::io::network::Endpoint{local_host, ports[1]});
ASSERT_FALSE(main_store
.RegisterReplica(replicas[0], memgraph::io::network::Endpoint{local_host, ports[0]},
memgraph::storage::replication::ReplicationMode::SYNC,
memgraph::storage::replication::RegistrationMode::MUST_BE_INSTANTLY_VALID)
.HasError());
ASSERT_FALSE(main_store
.RegisterReplica(replicas[1], memgraph::io::network::Endpoint{local_host, ports[1]},
memgraph::storage::replication::ReplicationMode::SYNC,
memgraph::storage::replication::RegistrationMode::MUST_BE_INSTANTLY_VALID)
.HasError());
const auto *vertex_label = "label";
const auto *vertex_property = "property";
const auto *vertex_property_value = "property_value";
std::optional<memgraph::storage::Gid> vertex_gid;
{
auto acc = main_store.Access();
auto v = acc.CreateVertex();
ASSERT_TRUE(v.AddLabel(main_store.NameToLabel(vertex_label)).HasValue());
ASSERT_TRUE(v.SetProperty(main_store.NameToProperty(vertex_property),
memgraph::storage::PropertyValue(vertex_property_value))
.HasValue());
vertex_gid.emplace(v.Gid());
ASSERT_FALSE(acc.Commit().HasError());
}
const auto check_replica = [&](memgraph::storage::Storage *replica_store) {
auto acc = replica_store->Access();
const auto v = acc.FindVertex(*vertex_gid, memgraph::storage::View::OLD);
ASSERT_TRUE(v);
const auto labels = v->Labels(memgraph::storage::View::OLD);
ASSERT_TRUE(labels.HasValue());
ASSERT_THAT(*labels, UnorderedElementsAre(replica_store->NameToLabel(vertex_label)));
ASSERT_FALSE(acc.Commit().HasError());
};
check_replica(&replica_store1);
check_replica(&replica_store2);
main_store.UnregisterReplica(replicas[1]);
{
auto acc = main_store.Access();
auto v = acc.CreateVertex();
vertex_gid.emplace(v.Gid());
ASSERT_FALSE(acc.Commit().HasError());
}
// REPLICA1 should contain the new vertex
{
auto acc = replica_store1.Access();
const auto v = acc.FindVertex(*vertex_gid, memgraph::storage::View::OLD);
ASSERT_TRUE(v);
ASSERT_FALSE(acc.Commit().HasError());
}
// REPLICA2 should not contain the new vertex
{
auto acc = replica_store2.Access();
const auto v = acc.FindVertex(*vertex_gid, memgraph::storage::View::OLD);
ASSERT_FALSE(v);
ASSERT_FALSE(acc.Commit().HasError());
}
}
TEST_F(ReplicationTest, RecoveryProcess) {
std::vector<memgraph::storage::Gid> vertex_gids;
// Force the creation of snapshot
{
memgraph::storage::Storage main_store(
{.durability = {
.storage_directory = storage_directory,
.recover_on_startup = true,
.snapshot_wal_mode = memgraph::storage::Config::Durability::SnapshotWalMode::PERIODIC_SNAPSHOT_WITH_WAL,
.snapshot_on_exit = true,
}});
{
auto acc = main_store.Access();
// Create the vertex before registering a replica
auto v = acc.CreateVertex();
vertex_gids.emplace_back(v.Gid());
ASSERT_FALSE(acc.Commit().HasError());
}
}
{
// Create second WAL
memgraph::storage::Storage main_store(
{.durability = {
.storage_directory = storage_directory,
.recover_on_startup = true,
.snapshot_wal_mode = memgraph::storage::Config::Durability::SnapshotWalMode::PERIODIC_SNAPSHOT_WITH_WAL}});
// Create vertices in 2 different transactions
{
auto acc = main_store.Access();
auto v = acc.CreateVertex();
vertex_gids.emplace_back(v.Gid());
ASSERT_FALSE(acc.Commit().HasError());
}
{
auto acc = main_store.Access();
auto v = acc.CreateVertex();
vertex_gids.emplace_back(v.Gid());
ASSERT_FALSE(acc.Commit().HasError());
}
}
memgraph::storage::Storage main_store(
{.durability = {
.storage_directory = storage_directory,
.recover_on_startup = true,
.snapshot_wal_mode = memgraph::storage::Config::Durability::SnapshotWalMode::PERIODIC_SNAPSHOT_WITH_WAL,
}});
static constexpr const auto *property_name = "property_name";
static constexpr const auto property_value = 1;
{
// Force the creation of current WAL file
auto acc = main_store.Access();
for (const auto &vertex_gid : vertex_gids) {
auto v = acc.FindVertex(vertex_gid, memgraph::storage::View::OLD);
ASSERT_TRUE(v);
ASSERT_TRUE(
v->SetProperty(main_store.NameToProperty(property_name), memgraph::storage::PropertyValue(property_value))
.HasValue());
}
ASSERT_FALSE(acc.Commit().HasError());
}
std::filesystem::path replica_storage_directory{std::filesystem::temp_directory_path() /
"MG_test_unit_storage_v2_replication_replica"};
memgraph::utils::OnScopeExit replica_directory_cleaner(
[&]() { std::filesystem::remove_all(replica_storage_directory); });
static constexpr const auto *vertex_label = "vertex_label";
{
memgraph::storage::Storage replica_store(
{.durability = {
.storage_directory = replica_storage_directory,
.snapshot_wal_mode = memgraph::storage::Config::Durability::SnapshotWalMode::PERIODIC_SNAPSHOT_WITH_WAL}});
replica_store.SetReplicaRole(memgraph::io::network::Endpoint{local_host, ports[0]});
ASSERT_FALSE(main_store
.RegisterReplica(replicas[0], memgraph::io::network::Endpoint{local_host, ports[0]},
memgraph::storage::replication::ReplicationMode::SYNC,
memgraph::storage::replication::RegistrationMode::MUST_BE_INSTANTLY_VALID)
.HasError());
ASSERT_EQ(main_store.GetReplicaState(replicas[0]), memgraph::storage::replication::ReplicaState::RECOVERY);
while (main_store.GetReplicaState(replicas[0]) != memgraph::storage::replication::ReplicaState::READY) {
std::this_thread::sleep_for(std::chrono::milliseconds(10));
}
{
auto acc = main_store.Access();
for (const auto &vertex_gid : vertex_gids) {
auto v = acc.FindVertex(vertex_gid, memgraph::storage::View::OLD);
ASSERT_TRUE(v);
ASSERT_TRUE(v->AddLabel(main_store.NameToLabel(vertex_label)).HasValue());
}
ASSERT_FALSE(acc.Commit().HasError());
}
{
auto acc = replica_store.Access();
for (const auto &vertex_gid : vertex_gids) {
auto v = acc.FindVertex(vertex_gid, memgraph::storage::View::OLD);
ASSERT_TRUE(v);
const auto labels = v->Labels(memgraph::storage::View::OLD);
ASSERT_TRUE(labels.HasValue());
ASSERT_THAT(*labels, UnorderedElementsAre(replica_store.NameToLabel(vertex_label)));
const auto properties = v->Properties(memgraph::storage::View::OLD);
ASSERT_TRUE(properties.HasValue());
ASSERT_THAT(*properties,
UnorderedElementsAre(std::make_pair(replica_store.NameToProperty(property_name),
memgraph::storage::PropertyValue(property_value))));
}
ASSERT_FALSE(acc.Commit().HasError());
}
}
{
memgraph::storage::Storage replica_store(
{.durability = {
.storage_directory = replica_storage_directory,
.recover_on_startup = true,
.snapshot_wal_mode = memgraph::storage::Config::Durability::SnapshotWalMode::PERIODIC_SNAPSHOT_WITH_WAL}});
{
auto acc = replica_store.Access();
for (const auto &vertex_gid : vertex_gids) {
auto v = acc.FindVertex(vertex_gid, memgraph::storage::View::OLD);
ASSERT_TRUE(v);
const auto labels = v->Labels(memgraph::storage::View::OLD);
ASSERT_TRUE(labels.HasValue());
ASSERT_THAT(*labels, UnorderedElementsAre(replica_store.NameToLabel(vertex_label)));
const auto properties = v->Properties(memgraph::storage::View::OLD);
ASSERT_TRUE(properties.HasValue());
ASSERT_THAT(*properties,
UnorderedElementsAre(std::make_pair(replica_store.NameToProperty(property_name),
memgraph::storage::PropertyValue(property_value))));
}
ASSERT_FALSE(acc.Commit().HasError());
}
}
}
TEST_F(ReplicationTest, BasicAsynchronousReplicationTest) {
memgraph::storage::Storage main_store(configuration);
memgraph::storage::Storage replica_store_async(configuration);
replica_store_async.SetReplicaRole(memgraph::io::network::Endpoint{local_host, ports[1]});
ASSERT_FALSE(main_store
.RegisterReplica("REPLICA_ASYNC", memgraph::io::network::Endpoint{local_host, ports[1]},
memgraph::storage::replication::ReplicationMode::ASYNC,
memgraph::storage::replication::RegistrationMode::MUST_BE_INSTANTLY_VALID)
.HasError());
static constexpr size_t vertices_create_num = 10;
std::vector<memgraph::storage::Gid> created_vertices;
for (size_t i = 0; i < vertices_create_num; ++i) {
auto acc = main_store.Access();
auto v = acc.CreateVertex();
created_vertices.push_back(v.Gid());
ASSERT_FALSE(acc.Commit().HasError());
if (i == 0) {
ASSERT_EQ(main_store.GetReplicaState("REPLICA_ASYNC"), memgraph::storage::replication::ReplicaState::REPLICATING);
} else {
ASSERT_EQ(main_store.GetReplicaState("REPLICA_ASYNC"), memgraph::storage::replication::ReplicaState::RECOVERY);
}
}
while (main_store.GetReplicaState("REPLICA_ASYNC") != memgraph::storage::replication::ReplicaState::READY) {
std::this_thread::sleep_for(std::chrono::milliseconds(10));
}
ASSERT_TRUE(std::all_of(created_vertices.begin(), created_vertices.end(), [&](const auto vertex_gid) {
auto acc = replica_store_async.Access();
auto v = acc.FindVertex(vertex_gid, memgraph::storage::View::OLD);
const bool exists = v.has_value();
EXPECT_FALSE(acc.Commit().HasError());
return exists;
}));
}
TEST_F(ReplicationTest, EpochTest) {
memgraph::storage::Storage main_store(configuration);
memgraph::storage::Storage replica_store1(configuration);
replica_store1.SetReplicaRole(memgraph::io::network::Endpoint{local_host, ports[0]});
memgraph::storage::Storage replica_store2(configuration);
replica_store2.SetReplicaRole(memgraph::io::network::Endpoint{local_host, 10001});
ASSERT_FALSE(main_store
.RegisterReplica(replicas[0], memgraph::io::network::Endpoint{local_host, ports[0]},
memgraph::storage::replication::ReplicationMode::SYNC,
memgraph::storage::replication::RegistrationMode::MUST_BE_INSTANTLY_VALID)
.HasError());
ASSERT_FALSE(main_store
.RegisterReplica(replicas[1], memgraph::io::network::Endpoint{local_host, 10001},
memgraph::storage::replication::ReplicationMode::SYNC,
memgraph::storage::replication::RegistrationMode::MUST_BE_INSTANTLY_VALID)
.HasError());
std::optional<memgraph::storage::Gid> vertex_gid;
{
auto acc = main_store.Access();
const auto v = acc.CreateVertex();
vertex_gid.emplace(v.Gid());
ASSERT_FALSE(acc.Commit().HasError());
}
{
auto acc = replica_store1.Access();
const auto v = acc.FindVertex(*vertex_gid, memgraph::storage::View::OLD);
ASSERT_TRUE(v);
ASSERT_FALSE(acc.Commit().HasError());
}
{
auto acc = replica_store2.Access();
const auto v = acc.FindVertex(*vertex_gid, memgraph::storage::View::OLD);
ASSERT_TRUE(v);
ASSERT_FALSE(acc.Commit().HasError());
}
main_store.UnregisterReplica(replicas[0]);
main_store.UnregisterReplica(replicas[1]);
replica_store1.SetMainReplicationRole();
ASSERT_FALSE(replica_store1
.RegisterReplica(replicas[1], memgraph::io::network::Endpoint{local_host, 10001},
memgraph::storage::replication::ReplicationMode::SYNC,
memgraph::storage::replication::RegistrationMode::MUST_BE_INSTANTLY_VALID)
.HasError());
{
auto acc = main_store.Access();
acc.CreateVertex();
ASSERT_FALSE(acc.Commit().HasError());
}
{
auto acc = replica_store1.Access();
auto v = acc.CreateVertex();
vertex_gid.emplace(v.Gid());
ASSERT_FALSE(acc.Commit().HasError());
}
// Replica1 should forward it's vertex to Replica2
{
auto acc = replica_store2.Access();
const auto v = acc.FindVertex(*vertex_gid, memgraph::storage::View::OLD);
ASSERT_TRUE(v);
ASSERT_FALSE(acc.Commit().HasError());
}
replica_store1.SetReplicaRole(memgraph::io::network::Endpoint{local_host, ports[0]});
ASSERT_TRUE(main_store
.RegisterReplica(replicas[0], memgraph::io::network::Endpoint{local_host, ports[0]},
memgraph::storage::replication::ReplicationMode::SYNC,
memgraph::storage::replication::RegistrationMode::MUST_BE_INSTANTLY_VALID)
.HasError());
{
auto acc = main_store.Access();
const auto v = acc.CreateVertex();
vertex_gid.emplace(v.Gid());
ASSERT_FALSE(acc.Commit().HasError());
}
// Replica1 is not compatible with the main so it shouldn't contain
// it's newest vertex
{
auto acc = replica_store1.Access();
const auto v = acc.FindVertex(*vertex_gid, memgraph::storage::View::OLD);
ASSERT_FALSE(v);
ASSERT_FALSE(acc.Commit().HasError());
}
}
TEST_F(ReplicationTest, ReplicationInformation) {
memgraph::storage::Storage main_store(configuration);
memgraph::storage::Storage replica_store1(configuration);
const memgraph::io::network::Endpoint replica1_endpoint{local_host, 10001};
replica_store1.SetReplicaRole(replica1_endpoint);
const memgraph::io::network::Endpoint replica2_endpoint{local_host, 10002};
memgraph::storage::Storage replica_store2(configuration);
replica_store2.SetReplicaRole(replica2_endpoint);
const std::string replica1_name{replicas[0]};
ASSERT_FALSE(main_store
.RegisterReplica(replica1_name, replica1_endpoint,
memgraph::storage::replication::ReplicationMode::SYNC,
memgraph::storage::replication::RegistrationMode::MUST_BE_INSTANTLY_VALID)
.HasError());
const std::string replica2_name{replicas[1]};
ASSERT_FALSE(main_store
.RegisterReplica(replica2_name, replica2_endpoint,
memgraph::storage::replication::ReplicationMode::ASYNC,
memgraph::storage::replication::RegistrationMode::MUST_BE_INSTANTLY_VALID)
.HasError());
ASSERT_EQ(main_store.GetReplicationRole(), memgraph::storage::ReplicationRole::MAIN);
ASSERT_EQ(replica_store1.GetReplicationRole(), memgraph::storage::ReplicationRole::REPLICA);
ASSERT_EQ(replica_store2.GetReplicationRole(), memgraph::storage::ReplicationRole::REPLICA);
const auto replicas_info = main_store.ReplicasInfo();
ASSERT_EQ(replicas_info.size(), 2);
const auto &first_info = replicas_info[0];
ASSERT_EQ(first_info.name, replica1_name);
ASSERT_EQ(first_info.mode, memgraph::storage::replication::ReplicationMode::SYNC);
ASSERT_EQ(first_info.endpoint, replica1_endpoint);
ASSERT_EQ(first_info.state, memgraph::storage::replication::ReplicaState::READY);
const auto &second_info = replicas_info[1];
ASSERT_EQ(second_info.name, replica2_name);
ASSERT_EQ(second_info.mode, memgraph::storage::replication::ReplicationMode::ASYNC);
ASSERT_EQ(second_info.endpoint, replica2_endpoint);
ASSERT_EQ(second_info.state, memgraph::storage::replication::ReplicaState::READY);
}
TEST_F(ReplicationTest, ReplicationReplicaWithExistingName) {
memgraph::storage::Storage main_store(configuration);
memgraph::storage::Storage replica_store1(configuration);
const memgraph::io::network::Endpoint replica1_endpoint{local_host, 10001};
replica_store1.SetReplicaRole(replica1_endpoint);
const memgraph::io::network::Endpoint replica2_endpoint{local_host, 10002};
memgraph::storage::Storage replica_store2(configuration);
replica_store2.SetReplicaRole(replica2_endpoint);
const std::string replica1_name{replicas[0]};
ASSERT_FALSE(main_store
.RegisterReplica(replica1_name, replica1_endpoint,
memgraph::storage::replication::ReplicationMode::SYNC,
memgraph::storage::replication::RegistrationMode::MUST_BE_INSTANTLY_VALID)
.HasError());
const std::string replica2_name{replicas[0]};
ASSERT_TRUE(main_store
.RegisterReplica(replica2_name, replica2_endpoint,
memgraph::storage::replication::ReplicationMode::ASYNC,
memgraph::storage::replication::RegistrationMode::MUST_BE_INSTANTLY_VALID)
.GetError() == memgraph::storage::Storage::RegisterReplicaError::NAME_EXISTS);
}
TEST_F(ReplicationTest, ReplicationReplicaWithExistingEndPoint) {
memgraph::storage::Storage main_store(configuration);
memgraph::storage::Storage replica_store1(configuration);
const memgraph::io::network::Endpoint replica1_endpoint{local_host, 10001};
replica_store1.SetReplicaRole(replica1_endpoint);
const memgraph::io::network::Endpoint replica2_endpoint{local_host, 10001};
memgraph::storage::Storage replica_store2(configuration);
replica_store2.SetReplicaRole(replica2_endpoint);
const std::string replica1_name{replicas[0]};
ASSERT_FALSE(main_store
.RegisterReplica(replica1_name, replica1_endpoint,
memgraph::storage::replication::ReplicationMode::SYNC,
memgraph::storage::replication::RegistrationMode::MUST_BE_INSTANTLY_VALID)
.HasError());
const std::string replica2_name{replicas[1]};
ASSERT_TRUE(main_store
.RegisterReplica(replica2_name, replica2_endpoint,
memgraph::storage::replication::ReplicationMode::ASYNC,
memgraph::storage::replication::RegistrationMode::MUST_BE_INSTANTLY_VALID)
.GetError() == memgraph::storage::Storage::RegisterReplicaError::END_POINT_EXISTS);
}
TEST_F(ReplicationTest, RestoringReplicationAtStartupAftgerDroppingReplica) {
auto main_config = configuration;
main_config.durability.restore_replicas_on_startup = true;
auto main_store = std::make_unique<memgraph::storage::Storage>(main_config);
memgraph::storage::Storage replica_store1(configuration);
replica_store1.SetReplicaRole(memgraph::io::network::Endpoint{local_host, ports[0]});
memgraph::storage::Storage replica_store2(configuration);
replica_store2.SetReplicaRole(memgraph::io::network::Endpoint{local_host, ports[1]});
auto res = main_store->RegisterReplica(replicas[0], memgraph::io::network::Endpoint{local_host, ports[0]},
memgraph::storage::replication::ReplicationMode::SYNC,
memgraph::storage::replication::RegistrationMode::MUST_BE_INSTANTLY_VALID);
ASSERT_FALSE(res.HasError());
res = main_store->RegisterReplica(replicas[1], memgraph::io::network::Endpoint{local_host, ports[1]},
memgraph::storage::replication::ReplicationMode::SYNC,
memgraph::storage::replication::RegistrationMode::MUST_BE_INSTANTLY_VALID);
ASSERT_FALSE(res.HasError());
auto replica_infos = main_store->ReplicasInfo();
ASSERT_EQ(replica_infos.size(), 2);
ASSERT_EQ(replica_infos[0].name, replicas[0]);
ASSERT_EQ(replica_infos[0].endpoint.address, local_host);
ASSERT_EQ(replica_infos[0].endpoint.port, ports[0]);
ASSERT_EQ(replica_infos[1].name, replicas[1]);
ASSERT_EQ(replica_infos[1].endpoint.address, local_host);
ASSERT_EQ(replica_infos[1].endpoint.port, ports[1]);
main_store.reset();
auto other_main_store = std::make_unique<memgraph::storage::Storage>(main_config);
replica_infos = other_main_store->ReplicasInfo();
ASSERT_EQ(replica_infos.size(), 2);
ASSERT_EQ(replica_infos[0].name, replicas[0]);
ASSERT_EQ(replica_infos[0].endpoint.address, local_host);
ASSERT_EQ(replica_infos[0].endpoint.port, ports[0]);
ASSERT_EQ(replica_infos[1].name, replicas[1]);
ASSERT_EQ(replica_infos[1].endpoint.address, local_host);
ASSERT_EQ(replica_infos[1].endpoint.port, ports[1]);
}
TEST_F(ReplicationTest, RestoringReplicationAtStartup) {
auto main_config = configuration;
main_config.durability.restore_replicas_on_startup = true;
auto main_store = std::make_unique<memgraph::storage::Storage>(main_config);
memgraph::storage::Storage replica_store1(configuration);
replica_store1.SetReplicaRole(memgraph::io::network::Endpoint{local_host, ports[0]});
memgraph::storage::Storage replica_store2(configuration);
replica_store2.SetReplicaRole(memgraph::io::network::Endpoint{local_host, ports[1]});
auto res = main_store->RegisterReplica(replicas[0], memgraph::io::network::Endpoint{local_host, ports[0]},
memgraph::storage::replication::ReplicationMode::SYNC,
memgraph::storage::replication::RegistrationMode::MUST_BE_INSTANTLY_VALID);
ASSERT_FALSE(res.HasError());
res = main_store->RegisterReplica(replicas[1], memgraph::io::network::Endpoint{local_host, ports[1]},
memgraph::storage::replication::ReplicationMode::SYNC,
memgraph::storage::replication::RegistrationMode::MUST_BE_INSTANTLY_VALID);
ASSERT_FALSE(res.HasError());
auto replica_infos = main_store->ReplicasInfo();
ASSERT_EQ(replica_infos.size(), 2);
ASSERT_EQ(replica_infos[0].name, replicas[0]);
ASSERT_EQ(replica_infos[0].endpoint.address, local_host);
ASSERT_EQ(replica_infos[0].endpoint.port, ports[0]);
ASSERT_EQ(replica_infos[1].name, replicas[1]);
ASSERT_EQ(replica_infos[1].endpoint.address, local_host);
ASSERT_EQ(replica_infos[1].endpoint.port, ports[1]);
const auto unregister_res = main_store->UnregisterReplica(replicas[0]);
ASSERT_TRUE(unregister_res);
replica_infos = main_store->ReplicasInfo();
ASSERT_EQ(replica_infos.size(), 1);
ASSERT_EQ(replica_infos[0].name, replicas[1]);
ASSERT_EQ(replica_infos[0].endpoint.address, local_host);
ASSERT_EQ(replica_infos[0].endpoint.port, ports[1]);
main_store.reset();
auto other_main_store = std::make_unique<memgraph::storage::Storage>(main_config);
replica_infos = other_main_store->ReplicasInfo();
ASSERT_EQ(replica_infos.size(), 1);
ASSERT_EQ(replica_infos[0].name, replicas[1]);
ASSERT_EQ(replica_infos[0].endpoint.address, local_host);
ASSERT_EQ(replica_infos[0].endpoint.port, ports[1]);
}
TEST_F(ReplicationTest, AddingInvalidReplica) {
memgraph::storage::Storage main_store(configuration);
ASSERT_TRUE(main_store
.RegisterReplica("REPLICA", memgraph::io::network::Endpoint{local_host, ports[0]},
memgraph::storage::replication::ReplicationMode::SYNC,
memgraph::storage::replication::RegistrationMode::MUST_BE_INSTANTLY_VALID)
.GetError() == memgraph::storage::Storage::RegisterReplicaError::CONNECTION_FAILED);
}

View File

@ -1,623 +0,0 @@
// Copyright 2022 Memgraph Ltd.
//
// Use of this software is governed by the Business Source License
// included in the file licenses/BSL.txt; by using this file, you agree to be bound by the terms of the Business Source
// License, and you may not use this file except in compliance with the Business Source License.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0, included in the file
// licenses/APL.txt.
#include <gtest/gtest.h>
#include <fmt/format.h>
#include <algorithm>
#include <filesystem>
#include <string_view>
#include "storage/v2/durability/exceptions.hpp"
#include "storage/v2/durability/version.hpp"
#include "storage/v2/durability/wal.hpp"
#include "storage/v2/mvcc.hpp"
#include "storage/v2/name_id_mapper.hpp"
#include "utils/file.hpp"
#include "utils/file_locker.hpp"
#include "utils/uuid.hpp"
// Helper function used to convert between enum types.
memgraph::storage::durability::WalDeltaData::Type StorageGlobalOperationToWalDeltaDataType(
memgraph::storage::durability::StorageGlobalOperation operation) {
switch (operation) {
case memgraph::storage::durability::StorageGlobalOperation::LABEL_INDEX_CREATE:
return memgraph::storage::durability::WalDeltaData::Type::LABEL_INDEX_CREATE;
case memgraph::storage::durability::StorageGlobalOperation::LABEL_INDEX_DROP:
return memgraph::storage::durability::WalDeltaData::Type::LABEL_INDEX_DROP;
case memgraph::storage::durability::StorageGlobalOperation::LABEL_PROPERTY_INDEX_CREATE:
return memgraph::storage::durability::WalDeltaData::Type::LABEL_PROPERTY_INDEX_CREATE;
case memgraph::storage::durability::StorageGlobalOperation::LABEL_PROPERTY_INDEX_DROP:
return memgraph::storage::durability::WalDeltaData::Type::LABEL_PROPERTY_INDEX_DROP;
case memgraph::storage::durability::StorageGlobalOperation::EXISTENCE_CONSTRAINT_CREATE:
return memgraph::storage::durability::WalDeltaData::Type::EXISTENCE_CONSTRAINT_CREATE;
case memgraph::storage::durability::StorageGlobalOperation::EXISTENCE_CONSTRAINT_DROP:
return memgraph::storage::durability::WalDeltaData::Type::EXISTENCE_CONSTRAINT_DROP;
case memgraph::storage::durability::StorageGlobalOperation::UNIQUE_CONSTRAINT_CREATE:
return memgraph::storage::durability::WalDeltaData::Type::UNIQUE_CONSTRAINT_CREATE;
case memgraph::storage::durability::StorageGlobalOperation::UNIQUE_CONSTRAINT_DROP:
return memgraph::storage::durability::WalDeltaData::Type::UNIQUE_CONSTRAINT_DROP;
}
}
// This class mimics the internals of the storage to generate the deltas.
class DeltaGenerator final {
public:
class Transaction final {
private:
friend class DeltaGenerator;
explicit Transaction(DeltaGenerator *gen)
: gen_(gen),
transaction_(gen->transaction_id_++, gen->timestamp_++,
memgraph::storage::IsolationLevel::SNAPSHOT_ISOLATION) {}
public:
memgraph::storage::Vertex *CreateVertex() {
auto gid = memgraph::storage::Gid::FromUint(gen_->vertices_count_++);
auto delta = memgraph::storage::CreateDeleteObjectDelta(&transaction_);
auto &it = gen_->vertices_.emplace_back(gid, delta);
delta->prev.Set(&it);
{
memgraph::storage::durability::WalDeltaData data;
data.type = memgraph::storage::durability::WalDeltaData::Type::VERTEX_CREATE;
data.vertex_create_delete.gid = gid;
data_.push_back(data);
}
return &it;
}
void DeleteVertex(memgraph::storage::Vertex *vertex) {
memgraph::storage::CreateAndLinkDelta(&transaction_, &*vertex, memgraph::storage::Delta::RecreateObjectTag());
{
memgraph::storage::durability::WalDeltaData data;
data.type = memgraph::storage::durability::WalDeltaData::Type::VERTEX_DELETE;
data.vertex_create_delete.gid = vertex->gid;
data_.push_back(data);
}
}
void AddLabel(memgraph::storage::Vertex *vertex, const std::string &label) {
auto label_id = memgraph::storage::LabelId::FromUint(gen_->mapper_.NameToId(label));
vertex->labels.push_back(label_id);
memgraph::storage::CreateAndLinkDelta(&transaction_, &*vertex, memgraph::storage::Delta::RemoveLabelTag(),
label_id);
{
memgraph::storage::durability::WalDeltaData data;
data.type = memgraph::storage::durability::WalDeltaData::Type::VERTEX_ADD_LABEL;
data.vertex_add_remove_label.gid = vertex->gid;
data.vertex_add_remove_label.label = label;
data_.push_back(data);
}
}
void RemoveLabel(memgraph::storage::Vertex *vertex, const std::string &label) {
auto label_id = memgraph::storage::LabelId::FromUint(gen_->mapper_.NameToId(label));
vertex->labels.erase(std::find(vertex->labels.begin(), vertex->labels.end(), label_id));
memgraph::storage::CreateAndLinkDelta(&transaction_, &*vertex, memgraph::storage::Delta::AddLabelTag(), label_id);
{
memgraph::storage::durability::WalDeltaData data;
data.type = memgraph::storage::durability::WalDeltaData::Type::VERTEX_REMOVE_LABEL;
data.vertex_add_remove_label.gid = vertex->gid;
data.vertex_add_remove_label.label = label;
data_.push_back(data);
}
}
void SetProperty(memgraph::storage::Vertex *vertex, const std::string &property,
const memgraph::storage::PropertyValue &value) {
auto property_id = memgraph::storage::PropertyId::FromUint(gen_->mapper_.NameToId(property));
auto &props = vertex->properties;
auto old_value = props.GetProperty(property_id);
memgraph::storage::CreateAndLinkDelta(&transaction_, &*vertex, memgraph::storage::Delta::SetPropertyTag(),
property_id, old_value);
props.SetProperty(property_id, value);
{
memgraph::storage::durability::WalDeltaData data;
data.type = memgraph::storage::durability::WalDeltaData::Type::VERTEX_SET_PROPERTY;
data.vertex_edge_set_property.gid = vertex->gid;
data.vertex_edge_set_property.property = property;
// We don't store the property value here. That is because the storage
// generates multiple `SetProperty` deltas using only the final values
// of the property. The intermediate values aren't encoded. The value is
// later determined in the `Finalize` function.
data_.push_back(data);
}
}
void Finalize(bool append_transaction_end = true) {
auto commit_timestamp = gen_->timestamp_++;
for (const auto &delta : transaction_.deltas) {
auto owner = delta.prev.Get();
while (owner.type == memgraph::storage::PreviousPtr::Type::DELTA) {
owner = owner.delta->prev.Get();
}
if (owner.type == memgraph::storage::PreviousPtr::Type::VERTEX) {
gen_->wal_file_.AppendDelta(delta, *owner.vertex, commit_timestamp);
} else if (owner.type == memgraph::storage::PreviousPtr::Type::EDGE) {
gen_->wal_file_.AppendDelta(delta, *owner.edge, commit_timestamp);
} else {
LOG_FATAL("Invalid delta owner!");
}
}
if (append_transaction_end) {
gen_->wal_file_.AppendTransactionEnd(commit_timestamp);
if (gen_->valid_) {
gen_->UpdateStats(commit_timestamp, transaction_.deltas.size() + 1);
for (auto &data : data_) {
if (data.type == memgraph::storage::durability::WalDeltaData::Type::VERTEX_SET_PROPERTY) {
// We need to put the final property value into the SET_PROPERTY
// delta.
auto vertex =
std::find(gen_->vertices_.begin(), gen_->vertices_.end(), data.vertex_edge_set_property.gid);
ASSERT_NE(vertex, gen_->vertices_.end());
auto property_id = memgraph::storage::PropertyId::FromUint(
gen_->mapper_.NameToId(data.vertex_edge_set_property.property));
data.vertex_edge_set_property.value = vertex->properties.GetProperty(property_id);
}
gen_->data_.emplace_back(commit_timestamp, data);
}
memgraph::storage::durability::WalDeltaData data{
.type = memgraph::storage::durability::WalDeltaData::Type::TRANSACTION_END};
gen_->data_.emplace_back(commit_timestamp, data);
}
} else {
gen_->valid_ = false;
}
}
private:
DeltaGenerator *gen_;
memgraph::storage::Transaction transaction_;
std::vector<memgraph::storage::durability::WalDeltaData> data_;
};
using DataT = std::vector<std::pair<uint64_t, memgraph::storage::durability::WalDeltaData>>;
DeltaGenerator(const std::filesystem::path &data_directory, bool properties_on_edges, uint64_t seq_num)
: uuid_(memgraph::utils::GenerateUUID()),
epoch_id_(memgraph::utils::GenerateUUID()),
seq_num_(seq_num),
wal_file_(data_directory, uuid_, epoch_id_, {.properties_on_edges = properties_on_edges}, &mapper_, seq_num,
&file_retainer_) {}
Transaction CreateTransaction() { return Transaction(this); }
void ResetTransactionIds() {
transaction_id_ = memgraph::storage::kTransactionInitialId;
timestamp_ = memgraph::storage::kTimestampInitialId;
valid_ = false;
}
void AppendOperation(memgraph::storage::durability::StorageGlobalOperation operation, const std::string &label,
const std::set<std::string> properties = {}) {
auto label_id = memgraph::storage::LabelId::FromUint(mapper_.NameToId(label));
std::set<memgraph::storage::PropertyId> property_ids;
for (const auto &property : properties) {
property_ids.insert(memgraph::storage::PropertyId::FromUint(mapper_.NameToId(property)));
}
wal_file_.AppendOperation(operation, label_id, property_ids, timestamp_);
if (valid_) {
UpdateStats(timestamp_, 1);
memgraph::storage::durability::WalDeltaData data;
data.type = StorageGlobalOperationToWalDeltaDataType(operation);
switch (operation) {
case memgraph::storage::durability::StorageGlobalOperation::LABEL_INDEX_CREATE:
case memgraph::storage::durability::StorageGlobalOperation::LABEL_INDEX_DROP:
data.operation_label.label = label;
break;
case memgraph::storage::durability::StorageGlobalOperation::LABEL_PROPERTY_INDEX_CREATE:
case memgraph::storage::durability::StorageGlobalOperation::LABEL_PROPERTY_INDEX_DROP:
case memgraph::storage::durability::StorageGlobalOperation::EXISTENCE_CONSTRAINT_CREATE:
case memgraph::storage::durability::StorageGlobalOperation::EXISTENCE_CONSTRAINT_DROP:
data.operation_label_property.label = label;
data.operation_label_property.property = *properties.begin();
case memgraph::storage::durability::StorageGlobalOperation::UNIQUE_CONSTRAINT_CREATE:
case memgraph::storage::durability::StorageGlobalOperation::UNIQUE_CONSTRAINT_DROP:
data.operation_label_properties.label = label;
data.operation_label_properties.properties = properties;
}
data_.emplace_back(timestamp_, data);
}
}
uint64_t GetPosition() { return wal_file_.GetSize(); }
memgraph::storage::durability::WalInfo GetInfo() {
return {.offset_metadata = 0,
.offset_deltas = 0,
.uuid = uuid_,
.epoch_id = epoch_id_,
.seq_num = seq_num_,
.from_timestamp = tx_from_,
.to_timestamp = tx_to_,
.num_deltas = deltas_count_};
}
DataT GetData() { return data_; }
private:
void UpdateStats(uint64_t timestamp, uint64_t count) {
if (deltas_count_ == 0) {
tx_from_ = timestamp;
}
tx_to_ = timestamp;
deltas_count_ += count;
}
std::string uuid_;
std::string epoch_id_;
uint64_t seq_num_;
uint64_t transaction_id_{memgraph::storage::kTransactionInitialId};
uint64_t timestamp_{memgraph::storage::kTimestampInitialId};
uint64_t vertices_count_{0};
std::list<memgraph::storage::Vertex> vertices_;
memgraph::storage::NameIdMapper mapper_;
memgraph::storage::durability::WalFile wal_file_;
DataT data_;
uint64_t deltas_count_{0};
uint64_t tx_from_{0};
uint64_t tx_to_{0};
uint64_t valid_{true};
memgraph::utils::FileRetainer file_retainer_;
};
// NOLINTNEXTLINE(cppcoreguidelines-macro-usage)
#define TRANSACTION(append_transaction_end, ops) \
{ \
auto tx = gen.CreateTransaction(); \
ops; \
tx.Finalize(append_transaction_end); \
}
// NOLINTNEXTLINE(cppcoreguidelines-macro-usage)
#define OPERATION(op, ...) gen.AppendOperation(memgraph::storage::durability::StorageGlobalOperation::op, __VA_ARGS__)
void AssertWalInfoEqual(const memgraph::storage::durability::WalInfo &a,
const memgraph::storage::durability::WalInfo &b) {
ASSERT_EQ(a.uuid, b.uuid);
ASSERT_EQ(a.epoch_id, b.epoch_id);
ASSERT_EQ(a.seq_num, b.seq_num);
ASSERT_EQ(a.from_timestamp, b.from_timestamp);
ASSERT_EQ(a.to_timestamp, b.to_timestamp);
ASSERT_EQ(a.num_deltas, b.num_deltas);
}
void AssertWalDataEqual(const DeltaGenerator::DataT &data, const std::filesystem::path &path) {
auto info = memgraph::storage::durability::ReadWalInfo(path);
memgraph::storage::durability::Decoder wal;
wal.Initialize(path, memgraph::storage::durability::kWalMagic);
wal.SetPosition(info.offset_deltas);
DeltaGenerator::DataT current;
for (uint64_t i = 0; i < info.num_deltas; ++i) {
auto timestamp = memgraph::storage::durability::ReadWalDeltaHeader(&wal);
current.emplace_back(timestamp, memgraph::storage::durability::ReadWalDeltaData(&wal));
}
ASSERT_EQ(data.size(), current.size());
ASSERT_EQ(data, current);
}
class WalFileTest : public ::testing::TestWithParam<bool> {
public:
WalFileTest() {}
void SetUp() override { Clear(); }
void TearDown() override { Clear(); }
std::vector<std::filesystem::path> GetFilesList() {
std::vector<std::filesystem::path> ret;
for (auto &item : std::filesystem::directory_iterator(storage_directory)) {
ret.push_back(item.path());
}
std::sort(ret.begin(), ret.end());
std::reverse(ret.begin(), ret.end());
return ret;
}
std::filesystem::path storage_directory{std::filesystem::temp_directory_path() / "MG_test_unit_storage_v2_wal_file"};
private:
void Clear() {
if (!std::filesystem::exists(storage_directory)) return;
std::filesystem::remove_all(storage_directory);
}
};
INSTANTIATE_TEST_CASE_P(EdgesWithProperties, WalFileTest, ::testing::Values(true));
INSTANTIATE_TEST_CASE_P(EdgesWithoutProperties, WalFileTest, ::testing::Values(false));
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_P(WalFileTest, EmptyFile) {
{ DeltaGenerator gen(storage_directory, GetParam(), 5); }
auto wal_files = GetFilesList();
ASSERT_EQ(wal_files.size(), 0);
}
// NOLINTNEXTLINE(cppcoreguidelines-macro-usage)
#define GENERATE_SIMPLE_TEST(name, ops) \
TEST_P(WalFileTest, name) { \
memgraph::storage::durability::WalInfo info; \
DeltaGenerator::DataT data; \
\
{ \
DeltaGenerator gen(storage_directory, GetParam(), 5); \
ops; \
info = gen.GetInfo(); \
data = gen.GetData(); \
} \
\
auto wal_files = GetFilesList(); \
ASSERT_EQ(wal_files.size(), 1); \
\
if (info.num_deltas == 0) { \
ASSERT_THROW(memgraph::storage::durability::ReadWalInfo(wal_files.front()), \
memgraph::storage::durability::RecoveryFailure); \
} else { \
AssertWalInfoEqual(info, memgraph::storage::durability::ReadWalInfo(wal_files.front())); \
AssertWalDataEqual(data, wal_files.front()); \
} \
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
GENERATE_SIMPLE_TEST(TransactionWithEnd, { TRANSACTION(true, { tx.CreateVertex(); }); });
// NOLINTNEXTLINE(hicpp-special-member-functions)
GENERATE_SIMPLE_TEST(TransactionWithoutEnd, { TRANSACTION(false, { tx.CreateVertex(); }); });
// NOLINTNEXTLINE(hicpp-special-member-functions)
GENERATE_SIMPLE_TEST(OperationSingle, { OPERATION(LABEL_INDEX_CREATE, "hello"); });
// NOLINTNEXTLINE(hicpp-special-member-functions)
GENERATE_SIMPLE_TEST(TransactionsEnd00, {
TRANSACTION(false, { tx.CreateVertex(); });
TRANSACTION(false, { tx.CreateVertex(); });
});
// NOLINTNEXTLINE(hicpp-special-member-functions)
GENERATE_SIMPLE_TEST(TransactionsEnd01, {
TRANSACTION(false, { tx.CreateVertex(); });
TRANSACTION(true, { tx.CreateVertex(); });
});
// NOLINTNEXTLINE(hicpp-special-member-functions)
GENERATE_SIMPLE_TEST(TransactionsEnd10, {
TRANSACTION(true, { tx.CreateVertex(); });
TRANSACTION(false, { tx.CreateVertex(); });
});
// NOLINTNEXTLINE(hicpp-special-member-functions)
GENERATE_SIMPLE_TEST(TransactionsEnd11, {
TRANSACTION(true, { tx.CreateVertex(); });
TRANSACTION(true, { tx.CreateVertex(); });
});
// NOLINTNEXTLINE(hicpp-special-member-functions)
GENERATE_SIMPLE_TEST(TransactionsWithOperation_00, {
OPERATION(LABEL_INDEX_CREATE, "hello");
TRANSACTION(false, { tx.CreateVertex(); });
TRANSACTION(false, { tx.CreateVertex(); });
});
// NOLINTNEXTLINE(hicpp-special-member-functions)
GENERATE_SIMPLE_TEST(TransactionsWithOperation_01, {
OPERATION(LABEL_INDEX_CREATE, "hello");
TRANSACTION(false, { tx.CreateVertex(); });
TRANSACTION(true, { tx.CreateVertex(); });
});
// NOLINTNEXTLINE(hicpp-special-member-functions)
GENERATE_SIMPLE_TEST(TransactionsWithOperation_10, {
OPERATION(LABEL_INDEX_CREATE, "hello");
TRANSACTION(true, { tx.CreateVertex(); });
TRANSACTION(false, { tx.CreateVertex(); });
});
// NOLINTNEXTLINE(hicpp-special-member-functions)
GENERATE_SIMPLE_TEST(TransactionsWithOperation_11, {
OPERATION(LABEL_INDEX_CREATE, "hello");
TRANSACTION(true, { tx.CreateVertex(); });
TRANSACTION(true, { tx.CreateVertex(); });
});
// NOLINTNEXTLINE(hicpp-special-member-functions)
GENERATE_SIMPLE_TEST(TransactionsWithOperation0_0, {
TRANSACTION(false, { tx.CreateVertex(); });
OPERATION(LABEL_INDEX_CREATE, "hello");
TRANSACTION(false, { tx.CreateVertex(); });
});
// NOLINTNEXTLINE(hicpp-special-member-functions)
GENERATE_SIMPLE_TEST(TransactionsWithOperation0_1, {
TRANSACTION(false, { tx.CreateVertex(); });
OPERATION(LABEL_INDEX_CREATE, "hello");
TRANSACTION(true, { tx.CreateVertex(); });
});
// NOLINTNEXTLINE(hicpp-special-member-functions)
GENERATE_SIMPLE_TEST(TransactionsWithOperation1_0, {
TRANSACTION(true, { tx.CreateVertex(); });
OPERATION(LABEL_INDEX_CREATE, "hello");
TRANSACTION(false, { tx.CreateVertex(); });
});
// NOLINTNEXTLINE(hicpp-special-member-functions)
GENERATE_SIMPLE_TEST(TransactionsWithOperation1_1, {
TRANSACTION(true, { tx.CreateVertex(); });
OPERATION(LABEL_INDEX_CREATE, "hello");
TRANSACTION(true, { tx.CreateVertex(); });
});
// NOLINTNEXTLINE(hicpp-special-member-functions)
GENERATE_SIMPLE_TEST(TransactionsWithOperation00_, {
TRANSACTION(false, { tx.CreateVertex(); });
TRANSACTION(false, { tx.CreateVertex(); });
OPERATION(LABEL_INDEX_CREATE, "hello");
});
// NOLINTNEXTLINE(hicpp-special-member-functions)
GENERATE_SIMPLE_TEST(TransactionsWithOperation01_, {
TRANSACTION(false, { tx.CreateVertex(); });
TRANSACTION(true, { tx.CreateVertex(); });
OPERATION(LABEL_INDEX_CREATE, "hello");
});
// NOLINTNEXTLINE(hicpp-special-member-functions)
GENERATE_SIMPLE_TEST(TransactionsWithOperation10_, {
TRANSACTION(true, { tx.CreateVertex(); });
TRANSACTION(false, { tx.CreateVertex(); });
OPERATION(LABEL_INDEX_CREATE, "hello");
});
// NOLINTNEXTLINE(hicpp-special-member-functions)
GENERATE_SIMPLE_TEST(TransactionsWithOperation11_, {
TRANSACTION(true, { tx.CreateVertex(); });
TRANSACTION(true, { tx.CreateVertex(); });
OPERATION(LABEL_INDEX_CREATE, "hello");
});
// NOLINTNEXTLINE(hicpp-special-member-functions)
GENERATE_SIMPLE_TEST(AllTransactionOperationsWithEnd, {
TRANSACTION(true, {
auto vertex1 = tx.CreateVertex();
auto vertex2 = tx.CreateVertex();
tx.AddLabel(vertex1, "test");
tx.AddLabel(vertex2, "hello");
tx.SetProperty(vertex2, "hello", memgraph::storage::PropertyValue("nandare"));
tx.RemoveLabel(vertex1, "test");
tx.SetProperty(vertex2, "hello", memgraph::storage::PropertyValue(123));
tx.SetProperty(vertex2, "hello", memgraph::storage::PropertyValue());
tx.DeleteVertex(vertex1);
});
});
// NOLINTNEXTLINE(hicpp-special-member-functions)
GENERATE_SIMPLE_TEST(AllTransactionOperationsWithoutEnd, {
TRANSACTION(false, {
auto vertex1 = tx.CreateVertex();
auto vertex2 = tx.CreateVertex();
tx.AddLabel(vertex1, "test");
tx.AddLabel(vertex2, "hello");
tx.SetProperty(vertex2, "hello", memgraph::storage::PropertyValue("nandare"));
tx.RemoveLabel(vertex1, "test");
tx.SetProperty(vertex2, "hello", memgraph::storage::PropertyValue(123));
tx.SetProperty(vertex2, "hello", memgraph::storage::PropertyValue());
tx.DeleteVertex(vertex1);
});
});
// NOLINTNEXTLINE(hicpp-special-member-functions)
GENERATE_SIMPLE_TEST(AllGlobalOperations, {
OPERATION(LABEL_INDEX_CREATE, "hello");
OPERATION(LABEL_INDEX_DROP, "hello");
OPERATION(LABEL_PROPERTY_INDEX_CREATE, "hello", {"world"});
OPERATION(LABEL_PROPERTY_INDEX_DROP, "hello", {"world"});
OPERATION(EXISTENCE_CONSTRAINT_CREATE, "hello", {"world"});
OPERATION(EXISTENCE_CONSTRAINT_DROP, "hello", {"world"});
OPERATION(UNIQUE_CONSTRAINT_CREATE, "hello", {"world", "and", "universe"});
OPERATION(UNIQUE_CONSTRAINT_DROP, "hello", {"world", "and", "universe"});
});
// NOLINTNEXTLINE(hicpp-special-member-functions)
GENERATE_SIMPLE_TEST(InvalidTransactionOrdering, {
TRANSACTION(true, { tx.CreateVertex(); });
TRANSACTION(true, { tx.CreateVertex(); });
TRANSACTION(true, { tx.CreateVertex(); });
gen.ResetTransactionIds();
TRANSACTION(true, { tx.CreateVertex(); });
});
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_P(WalFileTest, InvalidMarker) {
memgraph::storage::durability::WalInfo info;
{
DeltaGenerator gen(storage_directory, GetParam(), 5);
TRANSACTION(true, { tx.CreateVertex(); });
info = gen.GetInfo();
}
auto wal_files = GetFilesList();
ASSERT_EQ(wal_files.size(), 1);
const auto &wal_file = wal_files.front();
auto final_info = memgraph::storage::durability::ReadWalInfo(wal_file);
AssertWalInfoEqual(info, final_info);
size_t i = 0;
for (auto marker : memgraph::storage::durability::kMarkersAll) {
if (marker == memgraph::storage::durability::Marker::SECTION_DELTA) continue;
auto current_file = storage_directory / fmt::format("temporary_{}", i);
ASSERT_TRUE(std::filesystem::copy_file(wal_file, current_file));
memgraph::utils::OutputFile file;
file.Open(current_file, memgraph::utils::OutputFile::Mode::OVERWRITE_EXISTING);
file.SetPosition(memgraph::utils::OutputFile::Position::SET, final_info.offset_deltas);
auto value = static_cast<uint8_t>(marker);
file.Write(&value, sizeof(value));
file.Sync();
file.Close();
ASSERT_THROW(memgraph::storage::durability::ReadWalInfo(current_file),
memgraph::storage::durability::RecoveryFailure);
++i;
}
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_P(WalFileTest, PartialData) {
std::vector<std::pair<uint64_t, memgraph::storage::durability::WalInfo>> infos;
{
DeltaGenerator gen(storage_directory, GetParam(), 5);
TRANSACTION(true, { tx.CreateVertex(); });
infos.emplace_back(gen.GetPosition(), gen.GetInfo());
TRANSACTION(true, {
auto vertex = tx.CreateVertex();
tx.AddLabel(vertex, "hello");
});
infos.emplace_back(gen.GetPosition(), gen.GetInfo());
OPERATION(LABEL_PROPERTY_INDEX_CREATE, "hello", {"world"});
infos.emplace_back(gen.GetPosition(), gen.GetInfo());
TRANSACTION(true, {
auto vertex1 = tx.CreateVertex();
auto vertex2 = tx.CreateVertex();
tx.AddLabel(vertex1, "test");
tx.AddLabel(vertex2, "hello");
tx.SetProperty(vertex2, "hello", memgraph::storage::PropertyValue("nandare"));
tx.RemoveLabel(vertex1, "test");
tx.SetProperty(vertex2, "hello", memgraph::storage::PropertyValue(123));
tx.SetProperty(vertex2, "hello", memgraph::storage::PropertyValue());
tx.DeleteVertex(vertex1);
});
infos.emplace_back(gen.GetPosition(), gen.GetInfo());
}
auto wal_files = GetFilesList();
ASSERT_EQ(wal_files.size(), 1);
const auto &wal_file = wal_files.front();
AssertWalInfoEqual(infos.back().second, memgraph::storage::durability::ReadWalInfo(wal_file));
auto current_file = storage_directory / "temporary";
memgraph::utils::InputFile infile;
infile.Open(wal_file);
uint64_t pos = 0;
for (size_t i = 0; i < infile.GetSize(); ++i) {
if (i < infos.front().first) {
ASSERT_THROW(memgraph::storage::durability::ReadWalInfo(current_file),
memgraph::storage::durability::RecoveryFailure);
} else {
if (i >= infos[pos + 1].first) ++pos;
AssertWalInfoEqual(infos[pos].second, memgraph::storage::durability::ReadWalInfo(current_file));
}
{
memgraph::utils::OutputFile outfile;
outfile.Open(current_file, memgraph::utils::OutputFile::Mode::APPEND_TO_EXISTING);
uint8_t value;
ASSERT_TRUE(infile.Read(&value, sizeof(value)));
outfile.Write(&value, sizeof(value));
outfile.Sync();
outfile.Close();
}
}
ASSERT_EQ(pos, infos.size() - 2);
AssertWalInfoEqual(infos[infos.size() - 1].second, memgraph::storage::durability::ReadWalInfo(current_file));
}