Merge old and new PropertyValue implementations

Summary:
This effectively replaces the old PropertyValue implementation from the
one in storage/v2

Depends on D2333

Reviewers: mferencevic, ipaljak

Reviewed By: mferencevic

Subscribers: pullbot

Differential Revision: https://phabricator.memgraph.io/D2335
This commit is contained in:
Teon Banek 2019-09-02 15:24:53 +02:00
parent 32ae2b4d23
commit c8340ad120
8 changed files with 211 additions and 586 deletions

View File

@ -68,7 +68,6 @@ set(mg_single_node_sources
storage/common/constraints/record.cpp
storage/common/constraints/unique_constraints.cpp
storage/common/locking/record_lock.cpp
storage/common/types/property_value.cpp
storage/common/types/property_value_store.cpp
storage/single_node/edge_accessor.cpp
storage/single_node/record_accessor.cpp
@ -148,7 +147,6 @@ set(mg_single_node_ha_sources
query/typed_value.cpp
storage/common/constraints/record.cpp
storage/common/constraints/unique_constraints.cpp
storage/common/types/property_value.cpp
storage/common/types/slk.cpp
storage/common/types/property_value_store.cpp
storage/common/locking/record_lock.cpp

View File

@ -1,235 +0,0 @@
#include "storage/common/types/property_value.hpp"
// constructors
PropertyValue::PropertyValue(const PropertyValue &other) : type_(other.type_) {
switch (other.type_) {
case Type::Null:
return;
case Type::Bool:
this->bool_v = other.bool_v;
return;
case Type::Int:
this->int_v = other.int_v;
return;
case Type::Double:
this->double_v = other.double_v;
return;
case Type::String:
new (&string_v) std::string(other.string_v);
return;
case Type::List:
new (&list_v) std::vector<PropertyValue>(other.list_v);
return;
case Type::Map:
new (&map_v) std::map<std::string, PropertyValue>(other.map_v);
return;
}
}
PropertyValue::PropertyValue(PropertyValue &&other) noexcept
: type_(other.type_) {
switch (other.type_) {
case Type::Null:
return;
case Type::Bool:
this->bool_v = other.bool_v;
return;
case Type::Int:
this->int_v = other.int_v;
return;
case Type::Double:
this->double_v = other.double_v;
return;
case Type::String:
new (&string_v) std::string(std::move(other.string_v));
return;
case Type::List:
new (&list_v) std::vector<PropertyValue>(std::move(other.list_v));
return;
case Type::Map:
new (&map_v) std::map<std::string, PropertyValue>(std::move(other.map_v));
return;
}
}
PropertyValue &PropertyValue::operator=(const PropertyValue &other) {
if (this != &other) {
DestroyValue();
type_ = other.type_;
switch (other.type_) {
case Type::Null:
case Type::Bool:
this->bool_v = other.bool_v;
break;
case Type::Int:
this->int_v = other.int_v;
break;
case Type::Double:
this->double_v = other.double_v;
break;
case Type::String:
new (&string_v) std::string(other.string_v);
break;
case Type::List:
new (&list_v) std::vector<PropertyValue>(other.list_v);
break;
case Type::Map:
new (&map_v) std::map<std::string, PropertyValue>(other.map_v);
break;
}
}
return *this;
}
PropertyValue &PropertyValue::operator=(PropertyValue &&other) noexcept {
if (this != &other) {
DestroyValue();
type_ = other.type_;
switch (other.type_) {
case Type::Null:
break;
case Type::Bool:
this->bool_v = other.bool_v;
break;
case Type::Int:
this->int_v = other.int_v;
break;
case Type::Double:
this->double_v = other.double_v;
break;
case Type::String:
new (&string_v) std::string(std::move(other.string_v));
break;
case Type::List:
new (&list_v) std::vector<PropertyValue>(std::move(other.list_v));
break;
case Type::Map:
new (&map_v)
std::map<std::string, PropertyValue>(std::move(other.map_v));
break;
}
// reset the type of other
other.DestroyValue();
other.type_ = Type::Null;
}
return *this;
}
void PropertyValue::DestroyValue() {
switch (type_) {
// destructor for primitive types does nothing
case Type::Null:
case Type::Bool:
case Type::Int:
case Type::Double:
return;
// destructor for non primitive types since we used placement new
case Type::String:
// Clang fails to compile ~std::string. It seems it is a bug in some
// versions of clang. Using namespace std statement solves the issue.
using namespace std;
string_v.~string();
return;
case Type::List:
list_v.~vector();
return;
case Type::Map:
map_v.~map();
return;
}
}
PropertyValue::~PropertyValue() { DestroyValue(); }
std::ostream &operator<<(std::ostream &os, const PropertyValue::Type type) {
switch (type) {
case PropertyValue::Type::Null:
return os << "null";
case PropertyValue::Type::Bool:
return os << "bool";
case PropertyValue::Type::String:
return os << "string";
case PropertyValue::Type::Int:
return os << "int";
case PropertyValue::Type::Double:
return os << "double";
case PropertyValue::Type::List:
return os << "list";
case PropertyValue::Type::Map:
return os << "map";
}
}
std::ostream &operator<<(std::ostream &os, const PropertyValue &value) {
switch (value.type()) {
case PropertyValue::Type::Null:
return os << "Null";
case PropertyValue::Type::Bool:
return os << (value.ValueBool() ? "true" : "false");
case PropertyValue::Type::String:
return os << value.ValueString();
case PropertyValue::Type::Int:
return os << value.ValueInt();
case PropertyValue::Type::Double:
return os << value.ValueDouble();
case PropertyValue::Type::List:
os << "[";
for (const auto &x : value.ValueList()) {
os << x << ",";
}
return os << "]";
case PropertyValue::Type::Map:
os << "{";
for (const auto &kv :
value.ValueMap()) {
os << kv.first << ": " << kv.second << ",";
}
return os << "}";
}
}
bool operator==(const PropertyValue &first, const PropertyValue &second) {
if (first.type() != second.type()) return false;
switch (first.type()) {
case PropertyValue::Type::Null:
return true;
case PropertyValue::Type::Bool:
return first.ValueBool() == second.ValueBool();
case PropertyValue::Type::Int:
return first.ValueInt() == second.ValueInt();
case PropertyValue::Type::Double:
return first.ValueDouble() == second.ValueDouble();
case PropertyValue::Type::String:
return first.ValueString() == second.ValueString();
case PropertyValue::Type::List:
return first.ValueList() == second.ValueList();
case PropertyValue::Type::Map:
return first.ValueMap() == second.ValueMap();
}
}
bool operator<(const PropertyValue &first, const PropertyValue &second) {
if (first.type() != second.type()) return first.type() < second.type();
switch (first.type()) {
case PropertyValue::Type::Null:
return false;
case PropertyValue::Type::Bool:
return first.ValueBool() < second.ValueBool();
case PropertyValue::Type::Int:
return first.ValueInt() < second.ValueInt();
case PropertyValue::Type::Double:
return first.ValueDouble() < second.ValueDouble();
case PropertyValue::Type::String:
return first.ValueString() < second.ValueString();
case PropertyValue::Type::List:
return first.ValueList() < second.ValueList();
case PropertyValue::Type::Map:
return first.ValueMap() < second.ValueMap();
}
}

View File

@ -1,182 +1,6 @@
#pragma once
#include <iostream>
#include <map>
#include <string>
#include <vector>
#include "storage/v2/property_value.hpp"
#include "utils/exceptions.hpp"
/**
* An exception raised by the PropertyValue system. Typically when
* trying to perform operations (such as addition) on PropertyValues
* of incompatible Types.
*/
class PropertyValueException : public utils::StacktraceException {
public:
using utils::StacktraceException::StacktraceException;
};
/**
* Encapsulation of a value and its type in a class that has no compile-time
* info about the type.
*
* Values can be of a number of predefined types that are enumerated in
* PropertyValue::Type. Each such type corresponds to exactly one C++ type.
*/
class PropertyValue {
public:
/** A value type. Each type corresponds to exactly one C++ type */
enum class Type : unsigned { Null, String, Bool, Int, Double, List, Map };
/** Checks if the given PropertyValue::Types are comparable */
static bool AreComparableTypes(Type a, Type b) {
auto is_numeric = [](const Type t) {
return t == Type::Int || t == Type::Double;
};
return a == b || (is_numeric(a) && is_numeric(b));
}
// default constructor, makes Null
PropertyValue() : type_(Type::Null) {}
// constructors for primitive types
explicit PropertyValue(bool value) : type_(Type::Bool) { bool_v = value; }
explicit PropertyValue(int value) : type_(Type::Int) { int_v = value; }
explicit PropertyValue(int64_t value) : type_(Type::Int) { int_v = value; }
explicit PropertyValue(double value) : type_(Type::Double) {
double_v = value;
}
// constructors for non-primitive types
explicit PropertyValue(const std::string &value) : type_(Type::String) {
new (&string_v) std::string(value);
}
explicit PropertyValue(const char *value) : type_(Type::String) {
new (&string_v) std::string(value);
}
explicit PropertyValue(const std::vector<PropertyValue> &value)
: type_(Type::List) {
new (&list_v) std::vector<PropertyValue>(value);
}
explicit PropertyValue(const std::map<std::string, PropertyValue> &value)
: type_(Type::Map) {
new (&map_v) std::map<std::string, PropertyValue>(value);
}
// move constructors for non-primitive types
explicit PropertyValue(std::string &&value) noexcept : type_(Type::String) {
new (&string_v) std::string(std::move(value));
}
explicit PropertyValue(std::vector<PropertyValue> &&value) noexcept
: type_(Type::List) {
new (&list_v) std::vector<PropertyValue>(std::move(value));
}
explicit PropertyValue(std::map<std::string, PropertyValue> &&value) noexcept
: type_(Type::Map) {
new (&map_v) std::map<std::string, PropertyValue>(std::move(value));
}
PropertyValue &operator=(const PropertyValue &other);
PropertyValue &operator=(PropertyValue &&other) noexcept;
PropertyValue(const PropertyValue &other);
PropertyValue(PropertyValue &&other) noexcept;
~PropertyValue();
Type type() const { return type_; }
bool IsNull() const { return type_ == Type::Null; }
bool ValueBool() const {
if (type_ != Type::Bool) {
throw PropertyValueException("This value isn't a bool!");
}
return bool_v;
}
int64_t ValueInt() const {
if (type_ != Type::Int) {
throw PropertyValueException("This value isn't a int!");
}
return int_v;
}
double ValueDouble() const {
if (type_ != Type::Double) {
throw PropertyValueException("This value isn't a double!");
}
return double_v;
}
const std::string &ValueString() const {
if (type_ != Type::String) {
throw PropertyValueException("The value isn't a string!");
}
return string_v;
}
const std::vector<PropertyValue> &ValueList() const {
if (type_ != Type::List) {
throw PropertyValueException("The value isn't a list!");
}
return list_v;
}
const std::map<std::string, PropertyValue> &ValueMap() const {
if (type_ != Type::Map) {
throw PropertyValueException("The value isn't a map!");
}
return map_v;
}
std::string &ValueString() {
if (type_ != Type::String) {
throw PropertyValueException("The value isn't a string!");
}
return string_v;
}
std::vector<PropertyValue> &ValueList() {
if (type_ != Type::List) {
throw PropertyValueException("The value isn't a list!");
}
return list_v;
}
std::map<std::string, PropertyValue> &ValueMap() {
if (type_ != Type::Map) {
throw PropertyValueException("The value isn't a map!");
}
return map_v;
}
private:
void DestroyValue();
// storage for the value of the property
union {
bool bool_v;
int64_t int_v;
double double_v;
std::string string_v;
// We support lists of values of different types, neo4j supports lists of
// values of the same type.
std::vector<PropertyValue> list_v;
std::map<std::string, PropertyValue> map_v;
};
/**
* The Type of property.
*/
Type type_;
};
// stream output
std::ostream &operator<<(std::ostream &os, const PropertyValue::Type type);
std::ostream &operator<<(std::ostream &os, const PropertyValue &value);
// comparison
bool operator==(const PropertyValue &first, const PropertyValue &second);
bool operator<(const PropertyValue &first, const PropertyValue &second);
using storage::PropertyValue;
using storage::PropertyValueException;

View File

@ -259,13 +259,13 @@ class LabelPropertyIndex {
// upper bound and value type
std::function<bool(const IndexEntry &entry)> predicate;
if (lower && upper &&
!PropertyValue::AreComparableTypes(type(lower), type(upper)))
!AreComparablePropertyValueTypes(type(lower), type(upper)))
predicate = [](const IndexEntry &) { return false; };
else if (upper) {
auto upper_index_entry =
make_index_bound(upper, upper.value().IsExclusive());
predicate = [upper_index_entry](const IndexEntry &entry) {
return PropertyValue::AreComparableTypes(
return AreComparablePropertyValueTypes(
entry.value_.type(), upper_index_entry.value_.type()) &&
entry < upper_index_entry;
};
@ -273,8 +273,7 @@ class LabelPropertyIndex {
auto lower_type = type(lower);
make_index_bound(lower, lower.value().IsExclusive());
predicate = [lower_type](const IndexEntry &entry) {
return PropertyValue::AreComparableTypes(entry.value_.type(),
lower_type);
return AreComparablePropertyValueTypes(entry.value_.type(), lower_type);
};
}
@ -367,6 +366,15 @@ class LabelPropertyIndex {
}
private:
static bool AreComparablePropertyValueTypes(PropertyValue::Type a,
PropertyValue::Type b) {
auto is_numeric = [](const PropertyValue::Type t) {
return t == PropertyValue::Type::Int || t == PropertyValue::Type::Double;
};
return a == b || (is_numeric(a) && is_numeric(b));
}
/**
* @brief - Contains value, vlist and vertex record to distinguish between
* index entries.
@ -401,7 +409,7 @@ class LabelPropertyIndex {
* than the second one
*/
static bool Less(const PropertyValue &a, const PropertyValue &b) {
if (!PropertyValue::AreComparableTypes(a.type(), b.type()))
if (!AreComparablePropertyValueTypes(a.type(), b.type()))
return a.type() < b.type();
if (a.type() == b.type()) {

View File

@ -259,13 +259,13 @@ class LabelPropertyIndex {
// upper bound and value type
std::function<bool(const IndexEntry &entry)> predicate;
if (lower && upper &&
!PropertyValue::AreComparableTypes(type(lower), type(upper)))
!AreComparablePropertyValueTypes(type(lower), type(upper)))
predicate = [](const IndexEntry &) { return false; };
else if (upper) {
auto upper_index_entry =
make_index_bound(upper, upper.value().IsExclusive());
predicate = [upper_index_entry](const IndexEntry &entry) {
return PropertyValue::AreComparableTypes(
return AreComparablePropertyValueTypes(
entry.value_.type(), upper_index_entry.value_.type()) &&
entry < upper_index_entry;
};
@ -273,8 +273,7 @@ class LabelPropertyIndex {
auto lower_type = type(lower);
make_index_bound(lower, lower.value().IsExclusive());
predicate = [lower_type](const IndexEntry &entry) {
return PropertyValue::AreComparableTypes(entry.value_.type(),
lower_type);
return AreComparablePropertyValueTypes(entry.value_.type(), lower_type);
};
}
@ -367,6 +366,15 @@ class LabelPropertyIndex {
}
private:
static bool AreComparablePropertyValueTypes(PropertyValue::Type a,
PropertyValue::Type b) {
auto is_numeric = [](const PropertyValue::Type t) {
return t == PropertyValue::Type::Int || t == PropertyValue::Type::Double;
};
return a == b || (is_numeric(a) && is_numeric(b));
}
/**
* @brief - Contains value, vlist and vertex record to distinguish between
* index entries.
@ -401,7 +409,7 @@ class LabelPropertyIndex {
* than the second one
*/
static bool Less(const PropertyValue &a, const PropertyValue &b) {
if (!PropertyValue::AreComparableTypes(a.type(), b.type()))
if (!AreComparablePropertyValueTypes(a.type(), b.type()))
return a.type() < b.type();
if (a.type() == b.type()) {

View File

@ -24,9 +24,10 @@ class PropertyValueException : public utils::BasicException {
/// PropertyValue::Type. Each such type corresponds to exactly one C++ type.
class PropertyValue {
public:
enum class Type : uint8_t { Null, Bool, Int, Double, String, List, Map };
/// A value type, each type corresponds to exactly one C++ type.
enum class Type : unsigned char { Null, Bool, Int, Double, String, List, Map };
// default constructor, makes Null
/// Make a Null value
PropertyValue() : type_(Type::Null) {}
// constructors for primitive types
@ -67,133 +68,16 @@ class PropertyValue {
}
// copy constructor
PropertyValue(const PropertyValue &other) : type_(other.type_) {
switch (other.type_) {
case Type::Null:
return;
case Type::Bool:
this->bool_v = other.bool_v;
return;
case Type::Int:
this->int_v = other.int_v;
return;
case Type::Double:
this->double_v = other.double_v;
return;
case Type::String:
new (&string_v) std::string(other.string_v);
return;
case Type::List:
new (&list_v) std::vector<PropertyValue>(other.list_v);
return;
case Type::Map:
new (&map_v) std::map<std::string, PropertyValue>(other.map_v);
return;
}
}
PropertyValue(const PropertyValue &other);
// move constructor
PropertyValue(PropertyValue &&other) noexcept : type_(other.type_) {
switch (other.type_) {
case Type::Null:
break;
case Type::Bool:
this->bool_v = other.bool_v;
break;
case Type::Int:
this->int_v = other.int_v;
break;
case Type::Double:
this->double_v = other.double_v;
break;
case Type::String:
new (&string_v) std::string(std::move(other.string_v));
break;
case Type::List:
new (&list_v) std::vector<PropertyValue>(std::move(other.list_v));
break;
case Type::Map:
new (&map_v)
std::map<std::string, PropertyValue>(std::move(other.map_v));
break;
}
// reset the type of other
other.DestroyValue();
other.type_ = Type::Null;
}
PropertyValue(PropertyValue &&other) noexcept;
// copy assignment
PropertyValue &operator=(const PropertyValue &other) {
if (this == &other) return *this;
DestroyValue();
type_ = other.type_;
switch (other.type_) {
case Type::Null:
break;
case Type::Bool:
this->bool_v = other.bool_v;
break;
case Type::Int:
this->int_v = other.int_v;
break;
case Type::Double:
this->double_v = other.double_v;
break;
case Type::String:
new (&string_v) std::string(other.string_v);
break;
case Type::List:
new (&list_v) std::vector<PropertyValue>(other.list_v);
break;
case Type::Map:
new (&map_v) std::map<std::string, PropertyValue>(other.map_v);
break;
}
return *this;
}
PropertyValue &operator=(const PropertyValue &other);
// move assignment
PropertyValue &operator=(PropertyValue &&other) noexcept {
if (this == &other) return *this;
DestroyValue();
type_ = other.type_;
switch (other.type_) {
case Type::Null:
break;
case Type::Bool:
this->bool_v = other.bool_v;
break;
case Type::Int:
this->int_v = other.int_v;
break;
case Type::Double:
this->double_v = other.double_v;
break;
case Type::String:
new (&string_v) std::string(std::move(other.string_v));
break;
case Type::List:
new (&list_v) std::vector<PropertyValue>(std::move(other.list_v));
break;
case Type::Map:
new (&map_v)
std::map<std::string, PropertyValue>(std::move(other.map_v));
break;
}
// reset the type of other
other.DestroyValue();
other.type_ = Type::Null;
return *this;
}
PropertyValue &operator=(PropertyValue &&other) noexcept;
// TODO: Implement copy assignment operators for primitive types.
// TODO: Implement copy and move assignment operators for non-primitive types.
@ -237,12 +121,14 @@ class PropertyValue {
}
return string_v;
}
const std::vector<PropertyValue> &ValueList() const {
if (type_ != Type::List) {
throw PropertyValueException("The value isn't a list!");
}
return list_v;
}
const std::map<std::string, PropertyValue> &ValueMap() const {
if (type_ != Type::Map) {
throw PropertyValueException("The value isn't a map!");
@ -257,12 +143,14 @@ class PropertyValue {
}
return string_v;
}
std::vector<PropertyValue> &ValueList() {
if (type_ != Type::List) {
throw PropertyValueException("The value isn't a list!");
}
return list_v;
}
std::map<std::string, PropertyValue> &ValueMap() {
if (type_ != Type::Map) {
throw PropertyValueException("The value isn't a map!");
@ -271,30 +159,7 @@ class PropertyValue {
}
private:
void DestroyValue() {
switch (type_) {
// destructor for primitive types does nothing
case Type::Null:
case Type::Bool:
case Type::Int:
case Type::Double:
return;
// destructor for non primitive types since we used placement new
case Type::String:
// Clang fails to compile ~std::string. It seems it is a bug in some
// versions of clang. Using namespace std statement solves the issue.
using namespace std;
string_v.~string();
return;
case Type::List:
list_v.~vector();
return;
case Type::Map:
map_v.~map();
return;
}
}
void DestroyValue() noexcept;
union {
bool bool_v;
@ -395,4 +260,153 @@ inline bool operator<(const PropertyValue &first, const PropertyValue &second) {
}
}
inline PropertyValue::PropertyValue(const PropertyValue &other)
: type_(other.type_) {
switch (other.type_) {
case Type::Null:
return;
case Type::Bool:
this->bool_v = other.bool_v;
return;
case Type::Int:
this->int_v = other.int_v;
return;
case Type::Double:
this->double_v = other.double_v;
return;
case Type::String:
new (&string_v) std::string(other.string_v);
return;
case Type::List:
new (&list_v) std::vector<PropertyValue>(other.list_v);
return;
case Type::Map:
new (&map_v) std::map<std::string, PropertyValue>(other.map_v);
return;
}
}
inline PropertyValue::PropertyValue(PropertyValue &&other) noexcept
: type_(other.type_) {
switch (other.type_) {
case Type::Null:
break;
case Type::Bool:
this->bool_v = other.bool_v;
break;
case Type::Int:
this->int_v = other.int_v;
break;
case Type::Double:
this->double_v = other.double_v;
break;
case Type::String:
new (&string_v) std::string(std::move(other.string_v));
break;
case Type::List:
new (&list_v) std::vector<PropertyValue>(std::move(other.list_v));
break;
case Type::Map:
new (&map_v) std::map<std::string, PropertyValue>(std::move(other.map_v));
break;
}
// reset the type of other
other.DestroyValue();
other.type_ = Type::Null;
}
inline PropertyValue &PropertyValue::operator=(const PropertyValue &other) {
if (this == &other) return *this;
DestroyValue();
type_ = other.type_;
switch (other.type_) {
case Type::Null:
break;
case Type::Bool:
this->bool_v = other.bool_v;
break;
case Type::Int:
this->int_v = other.int_v;
break;
case Type::Double:
this->double_v = other.double_v;
break;
case Type::String:
new (&string_v) std::string(other.string_v);
break;
case Type::List:
new (&list_v) std::vector<PropertyValue>(other.list_v);
break;
case Type::Map:
new (&map_v) std::map<std::string, PropertyValue>(other.map_v);
break;
}
return *this;
}
inline PropertyValue &PropertyValue::operator=(PropertyValue &&other) noexcept {
if (this == &other) return *this;
DestroyValue();
type_ = other.type_;
switch (other.type_) {
case Type::Null:
break;
case Type::Bool:
this->bool_v = other.bool_v;
break;
case Type::Int:
this->int_v = other.int_v;
break;
case Type::Double:
this->double_v = other.double_v;
break;
case Type::String:
new (&string_v) std::string(std::move(other.string_v));
break;
case Type::List:
new (&list_v) std::vector<PropertyValue>(std::move(other.list_v));
break;
case Type::Map:
new (&map_v) std::map<std::string, PropertyValue>(std::move(other.map_v));
break;
}
// reset the type of other
other.DestroyValue();
other.type_ = Type::Null;
return *this;
}
inline void PropertyValue::DestroyValue() noexcept {
switch (type_) {
// destructor for primitive types does nothing
case Type::Null:
case Type::Bool:
case Type::Int:
case Type::Double:
return;
// destructor for non primitive types since we used placement new
case Type::String:
// Clang fails to compile ~std::string. It seems it is a bug in some
// versions of clang. Using namespace std statement solves the issue.
using namespace std;
string_v.~string();
return;
case Type::List:
list_v.~vector();
return;
case Type::Map:
map_v.~map();
return;
}
}
} // namespace storage

View File

@ -254,19 +254,12 @@ TEST_F(GraphDbAccessorIndex, LabelPropertyValueSorting) {
std::vector<PropertyValue> expected_property_value(50, PropertyValue(0));
// strings
for (int i = 0; i < 10; ++i) {
auto vertex_accessor = dba.InsertVertex();
vertex_accessor.add_label(label);
vertex_accessor.PropsSet(property, PropertyValue(std::to_string(i)));
expected_property_value[i] = vertex_accessor.PropsAt(property);
}
// bools - insert in reverse to check for comparison between values.
for (int i = 9; i >= 0; --i) {
auto vertex_accessor = dba.InsertVertex();
vertex_accessor.add_label(label);
vertex_accessor.PropsSet(property, PropertyValue(static_cast<bool>(i / 5)));
expected_property_value[10 + i] = vertex_accessor.PropsAt(property);
expected_property_value[i] = vertex_accessor.PropsAt(property);
}
// integers
@ -274,7 +267,7 @@ TEST_F(GraphDbAccessorIndex, LabelPropertyValueSorting) {
auto vertex_accessor = dba.InsertVertex();
vertex_accessor.add_label(label);
vertex_accessor.PropsSet(property, PropertyValue(i));
expected_property_value[20 + 2 * i] = vertex_accessor.PropsAt(property);
expected_property_value[10 + 2 * i] = vertex_accessor.PropsAt(property);
}
// doubles
for (int i = 0; i < 10; ++i) {
@ -282,7 +275,15 @@ TEST_F(GraphDbAccessorIndex, LabelPropertyValueSorting) {
vertex_accessor.add_label(label);
vertex_accessor.PropsSet(property,
PropertyValue(static_cast<double>(i + 0.5)));
expected_property_value[20 + 2 * i + 1] = vertex_accessor.PropsAt(property);
expected_property_value[10 + 2 * i + 1] = vertex_accessor.PropsAt(property);
}
// strings
for (int i = 0; i < 10; ++i) {
auto vertex_accessor = dba.InsertVertex();
vertex_accessor.add_label(label);
vertex_accessor.PropsSet(property, PropertyValue(std::to_string(i)));
expected_property_value[30 + i] = vertex_accessor.PropsAt(property);
}
// lists of ints - insert in reverse to check for comparision between

View File

@ -1663,12 +1663,19 @@ TEST(QueryPlan, ScanAllByLabelProperty) {
Bound::Type::INCLUSIVE,
{TypedValue(std::vector<TypedValue>{TypedValue(1)})});
auto are_comparable = [](PropertyValue::Type a, PropertyValue::Type b) {
auto is_numeric = [](const PropertyValue::Type t) {
return t == PropertyValue::Type::Int || t == PropertyValue::Type::Double;
};
return a == b || (is_numeric(a) && is_numeric(b));
};
// when a range contains different types, nothing should get returned
for (const auto &value_a : values)
for (const auto &value_b : values) {
if (PropertyValue::AreComparableTypes(
static_cast<PropertyValue>(value_a).type(),
static_cast<PropertyValue>(value_b).type()))
if (are_comparable(static_cast<PropertyValue>(value_a).type(),
static_cast<PropertyValue>(value_b).type()))
continue;
check(TypedValue(value_a), Bound::Type::INCLUSIVE, TypedValue(value_b),
Bound::Type::INCLUSIVE, {});