Remove Results from the Interpreter

Summary:
- Add the `AnyStream` wrapper
- Remove the `Results` struct and store a function (handler) instead

Reviewers: teon.banek, mferencevic

Reviewed By: teon.banek, mferencevic

Subscribers: pullbot

Differential Revision: https://phabricator.memgraph.io/D2497
This commit is contained in:
Lovro Lugovic 2019-10-17 14:48:04 +02:00
parent 283a91cc60
commit bf03c57181
2 changed files with 684 additions and 542 deletions

View File

@ -187,17 +187,6 @@ class SingleNodeLogicalPlan final : public LogicalPlan {
CachedPlan::CachedPlan(std::unique_ptr<LogicalPlan> plan)
: plan_(std::move(plan)) {}
void Interpreter::PrettyPrintPlan(const DbAccessor &dba,
const plan::LogicalOperator *plan_root,
std::ostream *out) {
plan::PrettyPrint(dba, plan_root, out);
}
std::string Interpreter::PlanToJson(const DbAccessor &dba,
const plan::LogicalOperator *plan_root) {
return plan::PlanToJson(dba, plan_root).dump();
}
struct Callback {
std::vector<std::string> header;
std::function<std::vector<std::vector<TypedValue>>()> fn;
@ -768,8 +757,7 @@ Interpreter::Interpreter(InterpreterContext *interpreter_context)
std::pair<std::vector<std::string>, std::vector<query::AuthQuery::Privilege>>
Interpreter::Interpret(const std::string &query,
const std::map<std::string, PropertyValue> &params) {
// Clear pending results.
results_ = std::nullopt;
prepared_query_ = std::nullopt;
execution_memory_.Release();
// Check the query for transaction commands.
@ -820,329 +808,596 @@ Interpreter::Interpret(const std::string &query,
execution_db_accessor_.emplace(&*db_accessor_);
}
// Clear leftover results.
results_ = std::nullopt;
prepared_query_ = std::nullopt;
execution_memory_.Release();
// Interpret the query and return the headers.
// Prepare the query and return the headers.
try {
results_.emplace(Prepare(query, params, &*execution_db_accessor_));
return {results_->header(), results_->privileges()};
Prepare(query, params);
return {prepared_query_->header, prepared_query_->privileges};
} catch (const utils::BasicException &) {
AbortCommand();
throw;
}
}
Interpreter::Results Interpreter::Prepare(
const std::string &query_string,
const std::map<std::string, PropertyValue> &params,
DbAccessor *db_accessor) {
std::map<std::string, TypedValue> summary;
ExecutionContext PullAllPlan(AnyStream *stream, const CachedPlan &plan,
const Parameters &parameters,
const std::vector<Symbol> &output_symbols,
bool is_profile_query,
std::map<std::string, TypedValue> *summary,
DbAccessor *dba,
utils::MonotonicBufferResource *execution_memory) {
auto cursor = plan.plan().MakeCursor(execution_memory);
Frame frame(plan.symbol_table().max_position(), execution_memory);
utils::Timer parsing_timer;
ParsedQuery parsed_query =
ParseQuery(query_string, params, &interpreter_context_->ast_cache,
&interpreter_context_->antlr_lock);
auto parsing_time = parsing_timer.Elapsed();
summary["parsing_time"] = parsing_time.count();
// TODO: set summary['type'] based on transaction metadata
// the type can't be determined based only on top level LogicalOp
// (for example MATCH DELETE RETURN will have Produce as it's top).
// For now always use "rw" because something must be set, but it doesn't
// have to be correct (for Bolt clients).
summary["type"] = "rw";
// Set up temporary memory for a single Pull. Initial memory comes from the
// stack. 256 KiB should fit on the stack and should be more than enough for a
// single `Pull`.
constexpr size_t stack_size = 256 * 1024;
char stack_data[stack_size];
utils::Timer planning_timer;
ExecutionContext ctx;
ctx.db_accessor = dba;
ctx.symbol_table = plan.symbol_table();
ctx.evaluation_context.timestamp =
std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::system_clock::now().time_since_epoch())
.count();
ctx.evaluation_context.parameters = parameters;
ctx.evaluation_context.properties =
NamesToProperties(plan.ast_storage().properties_, dba);
ctx.evaluation_context.labels =
NamesToLabels(plan.ast_storage().labels_, dba);
ctx.is_profile_query = is_profile_query;
// This local shared_ptr might be the only owner of the CachedPlan, so
// we must ensure it lives during the whole interpretation.
std::shared_ptr<CachedPlan> plan{nullptr};
utils::Timer timer;
#ifdef MG_SINGLE_NODE_HA
{
InfoQuery *info_query = nullptr;
if (!db_accessor->raft()->IsLeader() &&
(!(info_query = utils::Downcast<InfoQuery>(parsed_query.query)) ||
info_query->info_type_ != InfoQuery::InfoType::RAFT)) {
throw raft::CantExecuteQueries();
}
}
#endif
while (true) {
utils::MonotonicBufferResource monotonic_memory(&stack_data[0], stack_size);
// TODO (mferencevic): Tune the parameters accordingly.
utils::PoolResource pool_memory(128, 1024, &monotonic_memory);
ctx.evaluation_context.memory = &pool_memory;
if (auto *cypher_query = utils::Downcast<CypherQuery>(parsed_query.query)) {
plan = CypherQueryToPlan(parsed_query.stripped_query.hash(), cypher_query,
std::move(parsed_query.ast_storage),
parsed_query.parameters, db_accessor);
auto planning_time = planning_timer.Elapsed();
summary["planning_time"] = planning_time.count();
summary["cost_estimate"] = plan->cost();
auto output_symbols = plan->plan().OutputSymbols(plan->symbol_table());
std::vector<std::string> header;
header.reserve(output_symbols.size());
for (const auto &symbol : output_symbols) {
// When the symbol is aliased or expanded from '*' (inside RETURN or
// WITH), then there is no token position, so use symbol name.
// Otherwise, find the name from stripped query.
header.push_back(
utils::FindOr(parsed_query.stripped_query.named_expressions(),
symbol.token_position(), symbol.name())
.first);
if (!cursor->Pull(frame, ctx)) {
break;
}
return Results(db_accessor, parsed_query.parameters, plan,
std::move(output_symbols), std::move(header),
std::move(summary), parsed_query.required_privileges,
&execution_memory_);
}
if (!output_symbols.empty()) {
// TODO: The streamed values should also probably use the above memory.
std::vector<TypedValue> values;
values.reserve(output_symbols.size());
if (utils::IsSubtype(*parsed_query.query, ExplainQuery::kType)) {
const std::string kExplainQueryStart = "explain ";
CHECK(utils::StartsWith(
utils::ToLowerCase(parsed_query.stripped_query.query()),
kExplainQueryStart))
<< "Expected stripped query to start with '" << kExplainQueryStart
<< "'";
// We want to cache the Cypher query that appears within this "metaquery".
// However, we can't just use the hash of that Cypher query string (as the
// cache key) but then continue to use the AST that was constructed with the
// full string. The parameters within the AST are looked up using their
// token positions, which depend on the query string as they're computed at
// the time the query string is parsed. So, for example, if one first runs
// EXPLAIN (or PROFILE) on a Cypher query and *then* runs the same Cypher
// query standalone, the second execution will crash because the cached AST
// (constructed using the first query string but cached using the substring
// (equivalent to the second query string)) will use the old token
// positions. For that reason, we fully strip and parse the substring as
// well.
//
// Note that the stripped subquery string's hash will be equivalent to the
// hash of the stripped query as if it was run standalone. This guarantees
// that we will reuse any cached plans from before, rather than create a new
// one every time. This is important because the planner takes the values of
// the query parameters into account when planning and might produce a
// totally different plan if we were to create a new one right now. Doing so
// would result in discrepancies between the explained (or profiled) plan
// and the one that's executed when the query is ran standalone.
ParsedQuery parsed_query = ParseQuery(
query_string.substr(kExplainQueryStart.size()), params,
&interpreter_context_->ast_cache, &interpreter_context_->antlr_lock);
auto *cypher_query = utils::Downcast<CypherQuery>(parsed_query.query);
CHECK(cypher_query)
<< "Cypher grammar should not allow other queries in EXPLAIN";
std::shared_ptr<CachedPlan> cypher_query_plan =
CypherQueryToPlan(parsed_query.stripped_query.hash(), cypher_query,
std::move(parsed_query.ast_storage),
parsed_query.parameters, db_accessor);
std::stringstream printed_plan;
PrettyPrintPlan(*db_accessor, &cypher_query_plan->plan(), &printed_plan);
std::vector<std::vector<TypedValue>> printed_plan_rows;
for (const auto &row :
utils::Split(utils::RTrim(printed_plan.str()), "\n")) {
printed_plan_rows.push_back(std::vector<TypedValue>{TypedValue(row)});
}
summary["explain"] = PlanToJson(*db_accessor, &cypher_query_plan->plan());
SymbolTable symbol_table;
auto query_plan_symbol = symbol_table.CreateSymbol("QUERY PLAN", false);
std::vector<Symbol> output_symbols{query_plan_symbol};
auto output_plan =
std::make_unique<plan::OutputTable>(output_symbols, printed_plan_rows);
plan = std::make_shared<CachedPlan>(std::make_unique<SingleNodeLogicalPlan>(
std::move(output_plan), 0.0, AstStorage{}, symbol_table));
auto planning_time = planning_timer.Elapsed();
summary["planning_time"] = planning_time.count();
std::vector<std::string> header{query_plan_symbol.name()};
return Results(db_accessor, parsed_query.parameters, plan,
std::move(output_symbols), std::move(header),
std::move(summary), parsed_query.required_privileges,
&execution_memory_);
}
if (utils::IsSubtype(*parsed_query.query, ProfileQuery::kType)) {
const std::string kProfileQueryStart = "profile ";
CHECK(utils::StartsWith(
utils::ToLowerCase(parsed_query.stripped_query.query()),
kProfileQueryStart))
<< "Expected stripped query to start with '" << kProfileQueryStart
<< "'";
if (in_explicit_transaction_) {
throw ProfileInMulticommandTxException();
}
if (!interpreter_context_->is_tsc_available) {
throw QueryException("TSC support is missing for PROFILE");
}
// See the comment regarding the caching of Cypher queries within
// "metaqueries" for explain queries
ParsedQuery parsed_query = ParseQuery(
query_string.substr(kProfileQueryStart.size()), params,
&interpreter_context_->ast_cache, &interpreter_context_->antlr_lock);
auto *cypher_query = utils::Downcast<CypherQuery>(parsed_query.query);
CHECK(cypher_query)
<< "Cypher grammar should not allow other queries in PROFILE";
auto cypher_query_plan =
CypherQueryToPlan(parsed_query.stripped_query.hash(), cypher_query,
std::move(parsed_query.ast_storage),
parsed_query.parameters, db_accessor);
// Copy the symbol table and add our own symbols (used by the `OutputTable`
// operator below)
SymbolTable symbol_table(cypher_query_plan->symbol_table());
auto operator_symbol = symbol_table.CreateSymbol("OPERATOR", false);
auto actual_hits_symbol = symbol_table.CreateSymbol("ACTUAL HITS", false);
auto relative_time_symbol =
symbol_table.CreateSymbol("RELATIVE TIME", false);
auto absolute_time_symbol =
symbol_table.CreateSymbol("ABSOLUTE TIME", false);
std::vector<Symbol> output_symbols = {operator_symbol, actual_hits_symbol,
relative_time_symbol,
absolute_time_symbol};
std::vector<std::string> header{
operator_symbol.name(), actual_hits_symbol.name(),
relative_time_symbol.name(), absolute_time_symbol.name()};
auto output_plan = std::make_unique<plan::OutputTable>(
output_symbols,
[cypher_query_plan](Frame *frame, ExecutionContext *context) {
utils::MonotonicBufferResource execution_memory(1 * 1024 * 1024);
auto cursor = cypher_query_plan->plan().MakeCursor(&execution_memory);
// We are pulling from another plan, so set up the EvaluationContext
// correctly. The rest of the context should be good for sharing.
context->evaluation_context.properties =
NamesToProperties(cypher_query_plan->ast_storage().properties_,
context->db_accessor);
context->evaluation_context.labels = NamesToLabels(
cypher_query_plan->ast_storage().labels_, context->db_accessor);
// Pull everything to profile the execution
utils::Timer timer;
while (cursor->Pull(*frame, *context)) continue;
auto execution_time = timer.Elapsed();
context->profile_execution_time = execution_time;
return ProfilingStatsToTable(context->stats, execution_time);
});
plan = std::make_shared<CachedPlan>(std::make_unique<SingleNodeLogicalPlan>(
std::move(output_plan), 0.0, AstStorage{}, symbol_table));
auto planning_time = planning_timer.Elapsed();
summary["planning_time"] = planning_time.count();
return Results(db_accessor, parsed_query.parameters, plan,
std::move(output_symbols), std::move(header),
std::move(summary), parsed_query.required_privileges,
&execution_memory_,
/* is_profile_query */ true, /* should_abort_query */ true);
}
if (auto *dump_query = utils::Downcast<DumpQuery>(parsed_query.query)) {
#ifndef MG_SINGLE_NODE_HA
SymbolTable symbol_table;
auto query_symbol = symbol_table.CreateSymbol("QUERY", false);
std::vector<Symbol> output_symbols = {query_symbol};
std::vector<std::string> header = {query_symbol.name()};
auto output_plan = std::make_unique<plan::OutputTableStream>(
output_symbols, DumpClosure(db_accessor));
plan = std::make_shared<CachedPlan>(std::make_unique<SingleNodeLogicalPlan>(
std::move(output_plan), 0.0, AstStorage{}, symbol_table));
summary["planning_time"] = planning_timer.Elapsed().count();
return Results(db_accessor, parsed_query.parameters, plan,
std::move(output_symbols), std::move(header),
std::move(summary), parsed_query.required_privileges,
&execution_memory_,
/* is_profile_query */ false,
/* should_abort_query */ false);
#else
throw utils::NotYetImplemented("Dump database");
#endif
}
Callback callback;
if (auto *index_query = utils::Downcast<IndexQuery>(parsed_query.query)) {
if (in_explicit_transaction_) {
throw IndexInMulticommandTxException();
}
// Creating an index influences computed plan costs.
auto invalidate_plan_cache = [plan_cache =
&this->interpreter_context_->plan_cache] {
auto access = plan_cache->access();
for (auto &kv : access) {
access.remove(kv.first);
for (const auto &symbol : output_symbols) {
values.emplace_back(frame[symbol]);
}
};
callback =
HandleIndexQuery(index_query, invalidate_plan_cache, db_accessor);
} else if (auto *auth_query =
utils::Downcast<AuthQuery>(parsed_query.query)) {
#ifdef MG_SINGLE_NODE_HA
throw utils::NotYetImplemented(
"Managing user privileges is not yet supported in Memgraph HA "
"instance.");
#else
if (in_explicit_transaction_) {
throw UserModificationInMulticommandTxException();
stream->Result(values);
}
callback = HandleAuthQuery(auth_query, interpreter_context_->auth,
parsed_query.parameters, db_accessor);
#endif
} else if (auto *info_query =
utils::Downcast<InfoQuery>(parsed_query.query)) {
callback = HandleInfoQuery(info_query, db_accessor);
} else if (auto *constraint_query =
utils::Downcast<ConstraintQuery>(parsed_query.query)) {
callback = HandleConstraintQuery(constraint_query, db_accessor);
} else {
LOG(FATAL) << "Should not get here -- unknown query type!";
}
summary->insert_or_assign("plan_execution_time", timer.Elapsed().count());
cursor->Shutdown();
return ctx;
}
/**
* Convert a parsed *Cypher* query's AST into a logical plan.
*
* The created logical plan will take ownership of the `AstStorage` within
* `ParsedQuery` and might modify it during planning.
*/
std::unique_ptr<LogicalPlan> MakeLogicalPlan(AstStorage ast_storage,
CypherQuery *query,
const Parameters &parameters,
DbAccessor *db_accessor) {
auto vertex_counts = plan::MakeVertexCountCache(db_accessor);
auto symbol_table = MakeSymbolTable(query);
auto planning_context = plan::MakePlanningContext(&ast_storage, &symbol_table,
query, &vertex_counts);
std::unique_ptr<plan::LogicalOperator> root;
double cost;
std::tie(root, cost) = plan::MakeLogicalPlan(&planning_context, parameters,
FLAGS_query_cost_planner);
return std::make_unique<SingleNodeLogicalPlan>(
std::move(root), cost, std::move(ast_storage), std::move(symbol_table));
}
/**
* Return the parsed *Cypher* query's AST cached logical plan, or create and
* cache a fresh one if it doesn't yet exist.
*/
std::shared_ptr<CachedPlan> CypherQueryToPlan(
HashType hash, AstStorage ast_storage, CypherQuery *query,
const Parameters &parameters, utils::SkipList<PlanCacheEntry> *plan_cache,
DbAccessor *db_accessor) {
auto plan_cache_access = plan_cache->access();
auto it = plan_cache_access.find(hash);
if (it != plan_cache_access.end()) {
if (it->second->IsExpired()) {
plan_cache_access.remove(hash);
} else {
return it->second;
}
}
return plan_cache_access
.insert({hash,
std::make_shared<CachedPlan>(MakeLogicalPlan(
std::move(ast_storage), (query), parameters, db_accessor))})
.first->second;
}
PreparedQuery PrepareCypherQuery(
ParsedQuery parsed_query, std::map<std::string, TypedValue> *summary,
InterpreterContext *interpreter_context, DbAccessor *dba,
utils::MonotonicBufferResource *execution_memory) {
auto plan = CypherQueryToPlan(
parsed_query.stripped_query.hash(), std::move(parsed_query.ast_storage),
utils::Downcast<CypherQuery>(parsed_query.query), parsed_query.parameters,
&interpreter_context->plan_cache, dba);
summary->insert_or_assign("cost_estimate", plan->cost());
auto output_symbols = plan->plan().OutputSymbols(plan->symbol_table());
std::vector<std::string> header;
header.reserve(output_symbols.size());
for (const auto &symbol : output_symbols) {
// When the symbol is aliased or expanded from '*' (inside RETURN or
// WITH), then there is no token position, so use symbol name.
// Otherwise, find the name from stripped query.
header.push_back(
utils::FindOr(parsed_query.stripped_query.named_expressions(),
symbol.token_position(), symbol.name())
.first);
}
return PreparedQuery{
std::move(header), std::move(parsed_query.required_privileges),
[plan = std::move(plan), parameters = std::move(parsed_query.parameters),
output_symbols = std::move(output_symbols), summary, dba,
execution_memory](AnyStream *stream) {
PullAllPlan(stream, *plan, parameters, output_symbols, false, summary,
dba, execution_memory);
return true;
}};
}
PreparedQuery PrepareExplainQuery(
ParsedQuery parsed_query, std::map<std::string, TypedValue> *summary,
InterpreterContext *interpreter_context, DbAccessor *dba,
utils::MonotonicBufferResource *execution_memory) {
const std::string kExplainQueryStart = "explain ";
CHECK(
utils::StartsWith(utils::ToLowerCase(parsed_query.stripped_query.query()),
kExplainQueryStart))
<< "Expected stripped query to start with '" << kExplainQueryStart << "'";
// Parse and cache the inner query separately (as if it was a standalone
// query), producing a fresh AST. Note that currently we cannot just reuse
// part of the already produced AST because the parameters within ASTs are
// looked up using their positions within the string that was parsed. These
// wouldn't match up if if we were to reuse the AST (produced by parsing the
// full query string) when given just the inner query to execute.
ParsedQuery parsed_inner_query =
ParseQuery(parsed_query.query_string.substr(kExplainQueryStart.size()),
parsed_query.user_parameters, &interpreter_context->ast_cache,
&interpreter_context->antlr_lock);
auto *cypher_query = utils::Downcast<CypherQuery>(parsed_inner_query.query);
CHECK(cypher_query)
<< "Cypher grammar should not allow other queries in EXPLAIN";
auto cypher_query_plan = CypherQueryToPlan(
parsed_query.stripped_query.hash(), std::move(parsed_query.ast_storage),
utils::Downcast<CypherQuery>(parsed_query.query), parsed_query.parameters,
&interpreter_context->plan_cache, dba);
std::stringstream printed_plan;
plan::PrettyPrint(*dba, &cypher_query_plan->plan(), &printed_plan);
std::vector<std::vector<TypedValue>> printed_plan_rows;
for (const auto &row : utils::Split(utils::RTrim(printed_plan.str()), "\n")) {
printed_plan_rows.push_back(std::vector<TypedValue>{TypedValue(row)});
}
summary->insert_or_assign(
"explain", plan::PlanToJson(*dba, &cypher_query_plan->plan()).dump());
SymbolTable symbol_table;
auto query_plan_symbol = symbol_table.CreateSymbol("QUERY PLAN", false);
std::vector<Symbol> output_symbols{query_plan_symbol};
auto output_plan =
std::make_unique<plan::OutputTable>(output_symbols, printed_plan_rows);
auto plan =
std::make_shared<CachedPlan>(std::make_unique<SingleNodeLogicalPlan>(
std::move(output_plan), 0.0, AstStorage{}, symbol_table));
std::vector<std::string> header{query_plan_symbol.name()};
return PreparedQuery{std::move(header),
std::move(parsed_query.required_privileges),
[plan = std::move(plan),
parameters = std::move(parsed_inner_query.parameters),
output_symbols = std::move(output_symbols), summary,
dba, execution_memory](AnyStream *stream) {
PullAllPlan(stream, *plan, parameters, output_symbols,
false, summary, dba, execution_memory);
return true;
}};
}
PreparedQuery PrepareProfileQuery(
ParsedQuery parsed_query, bool in_explicit_transaction,
std::map<std::string, TypedValue> *summary,
InterpreterContext *interpreter_context, DbAccessor *dba,
utils::MonotonicBufferResource *execution_memory) {
const std::string kProfileQueryStart = "profile ";
CHECK(
utils::StartsWith(utils::ToLowerCase(parsed_query.stripped_query.query()),
kProfileQueryStart))
<< "Expected stripped query to start with '" << kProfileQueryStart << "'";
if (in_explicit_transaction) {
throw ProfileInMulticommandTxException();
}
if (interpreter_context->is_tsc_available) {
throw QueryException("TSC support is missing for PROFILE");
}
// Parse and cache the inner query separately (as if it was a standalone
// query), producing a fresh AST. Note that currently we cannot just reuse
// part of the already produced AST because the parameters within ASTs are
// looked up using their positions within the string that was parsed. These
// wouldn't match up if if we were to reuse the AST (produced by parsing the
// full query string) when given just the inner query to execute.
ParsedQuery parsed_inner_query =
ParseQuery(parsed_query.query_string.substr(kProfileQueryStart.size()),
parsed_query.user_parameters, &interpreter_context->ast_cache,
&interpreter_context->antlr_lock);
auto *cypher_query = utils::Downcast<CypherQuery>(parsed_inner_query.query);
CHECK(cypher_query)
<< "Cypher grammar should not allow other queries in PROFILE";
auto cypher_query_plan = CypherQueryToPlan(
parsed_query.stripped_query.hash(), std::move(parsed_query.ast_storage),
utils::Downcast<CypherQuery>(parsed_query.query), parsed_query.parameters,
&interpreter_context->plan_cache, dba);
// Copy the symbol table and add our own symbols (used by the `OutputTable`
// operator below)
SymbolTable symbol_table(cypher_query_plan->symbol_table());
auto operator_symbol = symbol_table.CreateSymbol("OPERATOR", false);
auto actual_hits_symbol = symbol_table.CreateSymbol("ACTUAL HITS", false);
auto relative_time_symbol = symbol_table.CreateSymbol("RELATIVE TIME", false);
auto absolute_time_symbol = symbol_table.CreateSymbol("ABSOLUTE TIME", false);
std::vector<Symbol> output_symbols = {operator_symbol, actual_hits_symbol,
relative_time_symbol,
absolute_time_symbol};
std::vector<std::string> header{
operator_symbol.name(), actual_hits_symbol.name(),
relative_time_symbol.name(), absolute_time_symbol.name()};
auto output_plan = std::make_unique<plan::OutputTable>(
output_symbols,
[cypher_query_plan](Frame *frame, ExecutionContext *context) {
utils::MonotonicBufferResource execution_memory(1 * 1024 * 1024);
auto cursor = cypher_query_plan->plan().MakeCursor(&execution_memory);
// We are pulling from another plan, so set up the EvaluationContext
// correctly. The rest of the context should be good for sharing.
context->evaluation_context.properties = NamesToProperties(
cypher_query_plan->ast_storage().properties_, context->db_accessor);
context->evaluation_context.labels = NamesToLabels(
cypher_query_plan->ast_storage().labels_, context->db_accessor);
// Pull everything to profile the execution
utils::Timer timer;
while (cursor->Pull(*frame, *context)) continue;
auto execution_time = timer.Elapsed();
context->profile_execution_time = execution_time;
return ProfilingStatsToTable(context->stats, execution_time);
});
auto plan =
std::make_shared<CachedPlan>(std::make_unique<SingleNodeLogicalPlan>(
std::move(output_plan), 0.0, AstStorage{}, symbol_table));
return PreparedQuery{
std::move(header), std::move(parsed_query.required_privileges),
[plan = std::move(plan),
parameters = std::move(parsed_inner_query.parameters),
output_symbols = std::move(output_symbols), summary, dba,
execution_memory](AnyStream *stream) {
auto ctx = PullAllPlan(stream, *plan, parameters, output_symbols, true,
summary, dba, execution_memory);
summary->insert_or_assign(
"profile",
ProfilingStatsToJson(ctx.stats, ctx.profile_execution_time).dump());
return false;
}};
}
PreparedQuery PrepareDumpQuery(
ParsedQuery parsed_query, std::map<std::string, TypedValue> *summary,
InterpreterContext *interpreter_context, DbAccessor *dba,
utils::MonotonicBufferResource *execution_memory) {
#ifndef MG_SINGLE_NODE_HA
SymbolTable symbol_table;
auto query_symbol = symbol_table.CreateSymbol("QUERY", false);
std::vector<Symbol> output_symbols = {query_symbol};
std::vector<std::string> header = {query_symbol.name()};
auto output_plan = std::make_unique<plan::OutputTableStream>(
output_symbols, DumpClosure(dba));
auto plan =
std::make_shared<CachedPlan>(std::make_unique<SingleNodeLogicalPlan>(
std::move(output_plan), 0.0, AstStorage{}, symbol_table));
return PreparedQuery{
std::move(header), std::move(parsed_query.required_privileges),
[plan = std::move(plan), parameters = std::move(parsed_query.parameters),
output_symbols = std::move(output_symbols), summary, dba,
execution_memory](AnyStream *stream) {
PullAllPlan(stream, *plan, parameters, output_symbols, false, summary,
dba, execution_memory);
return true;
}};
#else
throw utils::NotYetImplemented("Dump database");
#endif
}
PreparedQuery PrepareIndexQuery(
ParsedQuery parsed_query, bool in_explicit_transaction,
std::map<std::string, TypedValue> *summary,
InterpreterContext *interpreter_context, DbAccessor *dba,
utils::MonotonicBufferResource *execution_memory) {
if (in_explicit_transaction) {
throw IndexInMulticommandTxException();
}
auto *index_query = utils::Downcast<IndexQuery>(parsed_query.query);
// Creating an index influences computed plan costs.
auto invalidate_plan_cache = [plan_cache = &interpreter_context->plan_cache] {
auto access = plan_cache->access();
for (auto &kv : access) {
access.remove(kv.first);
}
};
auto callback = HandleIndexQuery(index_query, invalidate_plan_cache, dba);
SymbolTable symbol_table;
std::vector<Symbol> output_symbols;
for (const auto &column : callback.header) {
output_symbols.emplace_back(symbol_table.CreateSymbol(column, "false"));
}
plan = std::make_shared<CachedPlan>(std::make_unique<SingleNodeLogicalPlan>(
std::make_unique<plan::OutputTable>(
output_symbols,
[fn = callback.fn](Frame *, ExecutionContext *) { return fn(); }),
0.0, AstStorage{}, symbol_table));
auto plan =
std::make_shared<CachedPlan>(std::make_unique<SingleNodeLogicalPlan>(
std::make_unique<plan::OutputTable>(
output_symbols,
[fn = callback.fn](Frame *, ExecutionContext *) { return fn(); }),
0.0, AstStorage{}, symbol_table));
auto planning_time = planning_timer.Elapsed();
summary["planning_time"] = planning_time.count();
summary["cost_estimate"] = 0.0;
return PreparedQuery{callback.header,
std::move(parsed_query.required_privileges),
[callback = std::move(callback), plan = std::move(plan),
parameters = std::move(parsed_query.parameters),
output_symbols = std::move(output_symbols), summary,
dba, execution_memory](AnyStream *stream) {
PullAllPlan(stream, *plan, parameters, output_symbols,
false, summary, dba, execution_memory);
return !callback.should_abort_query;
}};
}
return Results(db_accessor, parsed_query.parameters, plan,
std::move(output_symbols), callback.header, std::move(summary),
parsed_query.required_privileges, &execution_memory_,
/* is_profile_query */ false, callback.should_abort_query);
PreparedQuery PrepareAuthQuery(
ParsedQuery parsed_query, bool in_explicit_transaction,
std::map<std::string, TypedValue> *summary,
InterpreterContext *interpreter_context, DbAccessor *dba,
utils::MonotonicBufferResource *execution_memory) {
#ifdef MG_SINGLE_NODE_HA
throw utils::NotYetImplemented(
"Managing user privileges is not yet supported in Memgraph HA "
"instance.");
#else
if (in_explicit_transaction) {
throw UserModificationInMulticommandTxException();
}
auto *auth_query = utils::Downcast<AuthQuery>(parsed_query.query);
auto callback = HandleAuthQuery(auth_query, interpreter_context->auth,
parsed_query.parameters, dba);
SymbolTable symbol_table;
std::vector<Symbol> output_symbols;
for (const auto &column : callback.header) {
output_symbols.emplace_back(symbol_table.CreateSymbol(column, "false"));
}
auto plan =
std::make_shared<CachedPlan>(std::make_unique<SingleNodeLogicalPlan>(
std::make_unique<plan::OutputTable>(
output_symbols,
[fn = callback.fn](Frame *, ExecutionContext *) { return fn(); }),
0.0, AstStorage{}, symbol_table));
return PreparedQuery{callback.header,
std::move(parsed_query.required_privileges),
[callback = std::move(callback), plan = std::move(plan),
parameters = std::move(parsed_query.parameters),
output_symbols = std::move(output_symbols), summary,
dba, execution_memory](AnyStream *stream) {
PullAllPlan(stream, *plan, parameters, output_symbols,
false, summary, dba, execution_memory);
return !callback.should_abort_query;
}};
#endif
}
PreparedQuery PrepareInfoQuery(
ParsedQuery parsed_query, std::map<std::string, TypedValue> *summary,
InterpreterContext *interpreter_context, DbAccessor *dba,
utils::MonotonicBufferResource *execution_memory) {
auto *info_query = utils::Downcast<InfoQuery>(parsed_query.query);
auto callback = HandleInfoQuery(info_query, dba);
SymbolTable symbol_table;
std::vector<Symbol> output_symbols;
for (const auto &column : callback.header) {
output_symbols.emplace_back(symbol_table.CreateSymbol(column, "false"));
}
auto plan =
std::make_shared<CachedPlan>(std::make_unique<SingleNodeLogicalPlan>(
std::make_unique<plan::OutputTable>(
output_symbols,
[fn = callback.fn](Frame *, ExecutionContext *) { return fn(); }),
0.0, AstStorage{}, symbol_table));
return PreparedQuery{callback.header,
std::move(parsed_query.required_privileges),
[callback = std::move(callback), plan = std::move(plan),
parameters = std::move(parsed_query.parameters),
output_symbols = std::move(output_symbols), summary,
dba, execution_memory](AnyStream *stream) {
PullAllPlan(stream, *plan, parameters, output_symbols,
false, summary, dba, execution_memory);
return !callback.should_abort_query;
}};
}
PreparedQuery PrepareConstraintQuery(
ParsedQuery parsed_query, std::map<std::string, TypedValue> *summary,
InterpreterContext *interpreter_context, DbAccessor *dba,
utils::MonotonicBufferResource *execution_memory) {
auto *constraint_query = utils::Downcast<ConstraintQuery>(parsed_query.query);
auto callback = HandleConstraintQuery(constraint_query, dba);
SymbolTable symbol_table;
std::vector<Symbol> output_symbols;
for (const auto &column : callback.header) {
output_symbols.emplace_back(symbol_table.CreateSymbol(column, "false"));
}
auto plan =
std::make_shared<CachedPlan>(std::make_unique<SingleNodeLogicalPlan>(
std::make_unique<plan::OutputTable>(
output_symbols,
[fn = callback.fn](Frame *, ExecutionContext *) { return fn(); }),
0.0, AstStorage{}, symbol_table));
return PreparedQuery{callback.header,
std::move(parsed_query.required_privileges),
[callback = std::move(callback), plan = std::move(plan),
parameters = std::move(parsed_query.parameters),
output_symbols = std::move(output_symbols), summary,
dba, execution_memory](AnyStream *stream) {
PullAllPlan(stream, *plan, parameters, output_symbols,
false, summary, dba, execution_memory);
return !callback.should_abort_query;
}};
}
void Interpreter::Prepare(const std::string &query_string,
const std::map<std::string, PropertyValue> &params) {
summary_.clear();
// TODO: Set summary['type'] based on transaction metadata. The type can't be
// determined based only on the toplevel logical operator -- for example
// `MATCH DELETE RETURN`, which is a write query, will have `Produce` as its
// toplevel operator). For now we always set "rw" because something must be
// set, but it doesn't have to be correct (for Bolt clients).
summary_["type"] = "rw";
// Set a default cost estimate of 0. Individual queries can overwrite this
// field with an improved estimate.
summary_["cost_estimate"] = 0.0;
utils::Timer parsing_timer;
ParsedQuery parsed_query =
ParseQuery(query_string, params, &interpreter_context_->ast_cache,
&interpreter_context_->antlr_lock);
summary_["parsing_time"] = parsing_timer.Elapsed().count();
#ifdef MG_SINGLE_NODE_HA
{
InfoQuery *info_query = nullptr;
if (!execution_db_accessor_->raft()->IsLeader() &&
(!(info_query = utils::Downcast<InfoQuery>(parsed_query.query)) ||
info_query->info_type_ != InfoQuery::InfoType::RAFT)) {
throw raft::CantExecuteQueries();
}
}
#endif
utils::Timer planning_timer;
PreparedQuery prepared_query;
if (utils::Downcast<CypherQuery>(parsed_query.query)) {
prepared_query = PrepareCypherQuery(
std::move(parsed_query), &summary_, interpreter_context_,
&*execution_db_accessor_, &execution_memory_);
} else if (utils::Downcast<ExplainQuery>(parsed_query.query)) {
prepared_query = PrepareExplainQuery(
std::move(parsed_query), &summary_, interpreter_context_,
&*execution_db_accessor_, &execution_memory_);
} else if (utils::Downcast<ProfileQuery>(parsed_query.query)) {
prepared_query = PrepareProfileQuery(
std::move(parsed_query), in_explicit_transaction_, &summary_,
interpreter_context_, &*execution_db_accessor_, &execution_memory_);
} else if (utils::Downcast<DumpQuery>(parsed_query.query)) {
prepared_query = PrepareDumpQuery(
std::move(parsed_query), &summary_, interpreter_context_,
&*execution_db_accessor_, &execution_memory_);
} else if (utils::Downcast<IndexQuery>(parsed_query.query)) {
prepared_query = PrepareIndexQuery(
std::move(parsed_query), in_explicit_transaction_, &summary_,
interpreter_context_, &*execution_db_accessor_, &execution_memory_);
} else if (utils::Downcast<AuthQuery>(parsed_query.query)) {
prepared_query = PrepareAuthQuery(
std::move(parsed_query), in_explicit_transaction_, &summary_,
interpreter_context_, &*execution_db_accessor_, &execution_memory_);
} else if (utils::Downcast<InfoQuery>(parsed_query.query)) {
prepared_query = PrepareInfoQuery(
std::move(parsed_query), &summary_, interpreter_context_,
&*execution_db_accessor_, &execution_memory_);
} else if (utils::Downcast<ConstraintQuery>(parsed_query.query)) {
prepared_query = PrepareConstraintQuery(
std::move(parsed_query), &summary_, interpreter_context_,
&*execution_db_accessor_, &execution_memory_);
} else {
LOG(FATAL) << "Should not get here -- unknown query type!";
}
summary_["planning_time"] = planning_timer.Elapsed().count();
prepared_query_ = std::move(prepared_query);
}
void Interpreter::Abort() {
results_ = std::nullopt;
prepared_query_ = std::nullopt;
execution_memory_.Release();
expect_rollback_ = false;
in_explicit_transaction_ = false;
@ -1153,7 +1408,7 @@ void Interpreter::Abort() {
}
void Interpreter::Commit() {
results_ = std::nullopt;
prepared_query_ = std::nullopt;
execution_memory_.Release();
if (!db_accessor_) return;
#ifdef MG_SINGLE_NODE_V2
@ -1178,14 +1433,14 @@ void Interpreter::Commit() {
}
void Interpreter::AdvanceCommand() {
results_ = std::nullopt;
prepared_query_ = std::nullopt;
execution_memory_.Release();
if (!db_accessor_) return;
db_accessor_->AdvanceCommand();
}
void Interpreter::AbortCommand() {
results_ = std::nullopt;
prepared_query_ = std::nullopt;
execution_memory_.Release();
if (in_explicit_transaction_) {
expect_rollback_ = true;
@ -1194,40 +1449,4 @@ void Interpreter::AbortCommand() {
}
}
std::shared_ptr<CachedPlan> Interpreter::CypherQueryToPlan(
HashType query_hash, CypherQuery *query, AstStorage ast_storage,
const Parameters &parameters, DbAccessor *db_accessor) {
auto plan_cache_access = interpreter_context_->plan_cache.access();
auto it = plan_cache_access.find(query_hash);
if (it != plan_cache_access.end()) {
if (it->second->IsExpired()) {
plan_cache_access.remove(query_hash);
} else {
return it->second;
}
}
return plan_cache_access
.insert({query_hash,
std::make_shared<CachedPlan>(MakeLogicalPlan(
query, std::move(ast_storage), parameters, db_accessor))})
.first->second;
}
std::unique_ptr<LogicalPlan> Interpreter::MakeLogicalPlan(
CypherQuery *query, AstStorage ast_storage, const Parameters &parameters,
DbAccessor *db_accessor) {
auto vertex_counts = plan::MakeVertexCountCache(db_accessor);
auto symbol_table = MakeSymbolTable(query);
auto planning_context = plan::MakePlanningContext(&ast_storage, &symbol_table,
query, &vertex_counts);
std::unique_ptr<plan::LogicalOperator> root;
double cost;
std::tie(root, cost) = plan::MakeLogicalPlan(&planning_context, parameters,
FLAGS_query_cost_planner);
return std::make_unique<SingleNodeLogicalPlan>(
std::move(root), cost, std::move(ast_storage), std::move(symbol_table));
}
} // namespace query

View File

@ -11,7 +11,6 @@
#include "query/frontend/stripped.hpp"
#include "query/interpret/frame.hpp"
#include "query/plan/operator.hpp"
#include "utils/likely.hpp"
#include "utils/memory.hpp"
#include "utils/skip_list.hpp"
#include "utils/spin_lock.hpp"
@ -29,6 +28,60 @@ namespace query {
static constexpr size_t kExecutionMemoryBlockSize = 1U * 1024U * 1024U;
/**
* `AnyStream` can wrap *any* type implementing the `Stream` concept into a
* single type.
*
* The type erasure technique is used. The original type which an `AnyStream`
* was constructed from is "erased", as `AnyStream` is not a class template and
* doesn't use the type in any way. Client code can then program just for
* `AnyStream`, rather than using static polymorphism to handle any type
* implementing the `Stream` concept.
*/
class AnyStream final {
public:
template <class TStream>
AnyStream(TStream *stream, utils::MemoryResource *memory_resource)
: content_{utils::Allocator<GenericWrapper<TStream>>{memory_resource}
.template new_object<GenericWrapper<TStream>>(stream),
[memory_resource](Wrapper *ptr) {
utils::Allocator<GenericWrapper<TStream>>{memory_resource}
.template delete_object<GenericWrapper<TStream>>(
static_cast<GenericWrapper<TStream> *>(ptr));
}} {}
void Result(const std::vector<TypedValue> &values) {
content_->Result(values);
}
private:
struct Wrapper {
virtual void Result(const std::vector<TypedValue> &values) = 0;
};
template <class TStream>
struct GenericWrapper final : public Wrapper {
explicit GenericWrapper(TStream *stream) : stream_{stream} {}
void Result(const std::vector<TypedValue> &values) override {
stream_->Result(values);
}
TStream *stream_;
};
std::unique_ptr<Wrapper, std::function<void(Wrapper *)>> content_;
};
/**
* A container for data related to the preparation of a query.
*/
struct PreparedQuery {
std::vector<std::string> header;
std::vector<AuthQuery::Privilege> privileges;
std::function<bool(AnyStream *stream)> query_handler;
};
// TODO: Maybe this should move to query/plan/planner.
/// Interface for accessing the root operator of a logical plan.
class LogicalPlan {
@ -121,10 +174,10 @@ struct InterpreterContext {
database::GraphDb *db;
#endif
// Antlr has singleton instance that is shared between threads. It is
// protected by locks inside of antlr. Unfortunately, they are not protected
// in a very good way. Once we have antlr version without race conditions we
// can remove this lock. This will probably never happen since antlr
// ANTLR has singleton instance that is shared between threads. It is
// protected by locks inside of ANTLR. Unfortunately, they are not protected
// in a very good way. Once we have ANTLR version without race conditions we
// can remove this lock. This will probably never happen since ANTLR
// developers introduce more bugs in each version. Fortunately, we have
// cache so this lock probably won't impact performance much...
utils::SpinLock antlr_lock;
@ -136,208 +189,58 @@ struct InterpreterContext {
utils::SkipList<PlanCacheEntry> plan_cache;
};
class Interpreter {
class Interpreter final {
public:
/**
* Encapsulates all what's necessary for the interpretation of a query
* into a single object that can be pulled (into the given Stream).
*/
class Results {
friend Interpreter;
Results(DbAccessor *db_accessor, const query::Parameters &parameters,
std::shared_ptr<CachedPlan> plan,
std::vector<Symbol> output_symbols, std::vector<std::string> header,
std::map<std::string, TypedValue> summary,
std::vector<AuthQuery::Privilege> privileges,
utils::MemoryResource *execution_memory,
bool is_profile_query = false, bool should_abort_query = false)
: ctx_{db_accessor},
plan_(plan),
cursor_(plan_->plan().MakeCursor(execution_memory)),
frame_(plan_->symbol_table().max_position(), execution_memory),
output_symbols_(std::move(output_symbols)),
header_(std::move(header)),
summary_(std::move(summary)),
privileges_(std::move(privileges)),
should_abort_query_(should_abort_query) {
ctx_.is_profile_query = is_profile_query;
ctx_.symbol_table = plan_->symbol_table();
ctx_.evaluation_context.timestamp =
std::chrono::duration_cast<std::chrono::milliseconds>(
std::chrono::system_clock::now().time_since_epoch())
.count();
ctx_.evaluation_context.parameters = parameters;
ctx_.evaluation_context.properties =
NamesToProperties(plan_->ast_storage().properties_, db_accessor);
ctx_.evaluation_context.labels =
NamesToLabels(plan_->ast_storage().labels_, db_accessor);
}
public:
Results(const Results &) = delete;
Results(Results &&) = default;
Results &operator=(const Results &) = delete;
Results &operator=(Results &&) = default;
/**
* Make the interpreter perform a single Pull. Results (if they exists) are
* pushed into the given stream. On first Pull the header is written to the
* stream, on last the summary.
*
* @param stream - The stream to push the header, results and summary into.
* @return - If this Results is eligible for another Pull. If Pulling
* after `false` has been returned, the behavior is undefined.
* @tparam TStream - Stream type.
*/
template <typename TStream>
bool Pull(TStream &stream) {
utils::Timer timer;
// Setup temporary memory for a single Pull. Initial memory should come
// from stack, 256 KiB should fit on the stack and should be more than
// enough for a single Pull.
constexpr size_t stack_size = 256 * 1024;
char stack_data[stack_size];
utils::MonotonicBufferResource monotonic_memory(&stack_data[0], stack_size);
// TODO (mferencevic): Tune the parameters accordingly.
utils::PoolResource pool_memory(128, 1024, &monotonic_memory);
ctx_.evaluation_context.memory = &pool_memory;
// We can now Pull a result.
bool return_value = cursor_->Pull(frame_, ctx_);
if (return_value && !output_symbols_.empty()) {
// TODO: The streamed values should also probably use the above memory.
std::vector<TypedValue> values;
values.reserve(output_symbols_.size());
for (const auto &symbol : output_symbols_) {
values.emplace_back(frame_[symbol]);
}
stream.Result(values);
}
execution_time_ += timer.Elapsed().count();
if (!return_value) {
summary_["plan_execution_time"] = execution_time_;
if (ctx_.is_profile_query) {
summary_["profile"] =
ProfilingStatsToJson(ctx_.stats, ctx_.profile_execution_time)
.dump();
}
cursor_->Shutdown();
}
return return_value;
}
/** Calls Pull() until exhausted. */
template <typename TStream>
void PullAll(TStream &stream) {
while (Pull(stream)) continue;
}
const std::vector<std::string> &header() const & { return header_; }
std::vector<std::string> &&header() && { return std::move(header_); }
const std::map<std::string, TypedValue> &summary() const & {
return summary_;
}
std::map<std::string, TypedValue> &&summary() && {
return std::move(summary_);
}
const std::vector<AuthQuery::Privilege> &privileges() {
return privileges_;
}
bool ShouldAbortQuery() const { return should_abort_query_; }
private:
ExecutionContext ctx_;
std::shared_ptr<CachedPlan> plan_;
query::plan::UniqueCursorPtr cursor_;
Frame frame_;
std::vector<Symbol> output_symbols_;
std::vector<std::string> header_;
std::map<std::string, TypedValue> summary_;
double execution_time_{0};
std::vector<AuthQuery::Privilege> privileges_;
bool should_abort_query_;
};
explicit Interpreter(InterpreterContext *interpreter_context);
Interpreter(const Interpreter &) = delete;
Interpreter &operator=(const Interpreter &) = delete;
Interpreter(Interpreter &&) = delete;
Interpreter &operator=(Interpreter &&) = delete;
virtual ~Interpreter() { Abort(); }
~Interpreter() { Abort(); }
std::pair<std::vector<std::string>, std::vector<query::AuthQuery::Privilege>>
Interpret(const std::string &query,
const std::map<std::string, PropertyValue> &params);
/**
* Generates an Results object for the parameters. The resulting object
* can be Pulled with its results written to an arbitrary stream.
* Prepare a query for execution.
*
* To prepare a query for execution means to preprocess the query and adjust
* the state of the `Interpreter` in such a way so that the next call to
* `PullAll` executes the query.
*
* @throw raft::CantExecuteQueries if the Memgraph instance is not a Raft
* leader and a query other than an Info Raft query was given
* @throw query::QueryException
*/
virtual Results Prepare(const std::string &query,
const std::map<std::string, PropertyValue> &params,
DbAccessor *db_accessor);
void Prepare(const std::string &query,
const std::map<std::string, PropertyValue> &params);
/**
* Execute the last prepared query and stream *all* of the results into the
* given stream.
*
* TStream should be a type implementing the `Stream` concept, i.e. it should
* contain the member function `void Result(const std::vector<TypedValue> &)`.
* The provided vector argument is valid only for the duration of the call to
* `Result`. The stream should make an explicit copy if it wants to use it
* further.
*
* @throw utils::BasicException
* @throw query::QueryException
*/
template <typename TStream>
std::map<std::string, TypedValue> PullAll(TStream *result_stream) {
// If we don't have any results (eg. a transaction command preceeded),
// return an empty summary.
if (UNLIKELY(!results_)) return {};
// Stream all results and return the summary.
try {
results_->PullAll(*result_stream);
// Make a copy of the summary because the `Commit` call will destroy the
// `results_` object.
auto summary = results_->summary();
if (!in_explicit_transaction_) {
if (results_->ShouldAbortQuery()) {
Abort();
} else {
Commit();
}
}
return summary;
#ifdef MG_SINGLE_NODE_HA
} catch (const query::HintedAbortError &) {
AbortCommand();
throw utils::BasicException("Transaction was asked to abort.");
#endif
} catch (const utils::BasicException &) {
AbortCommand();
throw;
}
}
std::map<std::string, TypedValue> PullAll(TStream *result_stream);
/**
* Abort the current multicommand transaction.
*/
void Abort();
protected:
// high level tree -> logical plan
// AstStorage and SymbolTable may be modified during planning. The created
// LogicalPlan must take ownership of AstStorage and SymbolTable.
virtual std::unique_ptr<LogicalPlan> MakeLogicalPlan(CypherQuery *,
AstStorage,
const Parameters &,
DbAccessor *);
virtual void PrettyPrintPlan(const DbAccessor &,
const plan::LogicalOperator *, std::ostream *);
virtual std::string PlanToJson(const DbAccessor &,
const plan::LogicalOperator *);
private:
InterpreterContext *interpreter_context_;
std::optional<PreparedQuery> prepared_query_;
std::map<std::string, TypedValue> summary_;
#ifdef MG_SINGLE_NODE_V2
std::optional<storage::Storage::Accessor> db_accessor_;
@ -345,11 +248,6 @@ class Interpreter {
std::optional<database::GraphDbAccessor> db_accessor_;
#endif
std::optional<DbAccessor> execution_db_accessor_;
// The `query::Interpreter::Results` object MUST be destroyed before the
// `database::GraphDbAccessor` is destroyed because the `Results` object holds
// references to the `GraphDb` object and will crash the database when
// destructed if you are not careful.
std::optional<Results> results_;
bool in_explicit_transaction_{false};
bool expect_rollback_{false};
utils::MonotonicBufferResource execution_memory_{kExecutionMemoryBlockSize};
@ -357,13 +255,38 @@ class Interpreter {
void Commit();
void AdvanceCommand();
void AbortCommand();
// high level tree -> CachedPlan
std::shared_ptr<CachedPlan> CypherQueryToPlan(HashType query_hash,
CypherQuery *query,
AstStorage ast_storage,
const Parameters &parameters,
DbAccessor *db_accessor);
};
template <typename TStream>
std::map<std::string, TypedValue> Interpreter::PullAll(TStream *result_stream) {
// If we don't have any results (eg. a transaction command preceeded),
// return an empty summary.
if (!prepared_query_) return {};
try {
// Wrap the (statically polymorphic) stream type into a common type which
// the handler knows.
AnyStream stream{result_stream, &execution_memory_};
bool commit = prepared_query_->query_handler(&stream);
if (!in_explicit_transaction_) {
if (commit) {
Commit();
} else {
Abort();
}
}
return summary_;
#ifdef MG_SINGLE_NODE_HA
} catch (const query::HintedAbortError &) {
AbortCommand();
throw utils::BasicException("Transaction was asked to abort.");
#endif
} catch (const utils::BasicException &) {
AbortCommand();
throw;
}
}
} // namespace query