Add basic type checking to SymbolGenerator

Summary:
Test for simple type mismatch of node/edge types.
Add basic type checking of variables.
Check for edge type when creating an edge.
Add documentation to private structs and methods.

Reviewers: mislav.bradac, buda, florijan

Reviewed By: mislav.bradac

Subscribers: pullbot

Differential Revision: https://phabricator.memgraph.io/D148
This commit is contained in:
Teon Banek 2017-03-22 09:42:43 +01:00
parent 8e7ccf6e83
commit b33a654137
3 changed files with 137 additions and 32 deletions

View File

@ -3,6 +3,8 @@
#include "utils/exceptions/basic_exception.hpp"
#include "utils/exceptions/stacktrace_exception.hpp"
#include <fmt/format.h>
namespace query {
class SyntaxException : public BasicException {
@ -34,10 +36,19 @@ class UnboundVariableError : public SemanticException {
class RedeclareVariableError : public SemanticException {
public:
RedeclareVariableError(const std::string& name)
RedeclareVariableError(const std::string &name)
: SemanticException("Redeclaring variable: " + name) {}
};
class TypeMismatchError : public SemanticException {
public:
TypeMismatchError(const std::string &name, const std::string &datum,
const std::string &expected)
: SemanticException(fmt::format(
"Type mismatch: '{}' already defined as '{}', but expected '{}'.",
name, datum, expected)) {}
};
class CppCodeGeneratorException : public StacktraceException {
public:
using StacktraceException::StacktraceException;
@ -62,5 +73,4 @@ class QueryEngineException : public StacktraceException {
public:
using StacktraceException::StacktraceException;
};
}

View File

@ -25,7 +25,7 @@ class SymbolGenerator : public TreeVisitorBase {
for (auto &named_expr : ret.named_expressions_) {
// Named expressions establish bindings for expressions which come after
// return, but not for the expressions contained inside.
symbol_table_[*named_expr] = CreateSymbol(named_expr->name_);
symbol_table_[*named_expr] = CreateVariable(named_expr->name_).symbol;
}
}
@ -46,20 +46,24 @@ class SymbolGenerator : public TreeVisitorBase {
// Additionally, we will support edge referencing in pattern:
// `MATCH (n) - [r] -> (n) - [r] -> (n) RETURN r`, which would
// usually raise redeclaration of `r`.
if (scope_.in_property_map && !HasSymbol(ident.name_)) {
if (scope_.in_property_map && !HasVariable(ident.name_)) {
// Case 1)
throw UnboundVariableError(ident.name_);
} else if ((scope_.in_create_node || scope_.in_create_edge) &&
HasSymbol(ident.name_)) {
HasVariable(ident.name_)) {
// Case 2)
throw RedeclareVariableError(ident.name_);
}
symbol = GetOrCreateSymbol(ident.name_);
auto type = Variable::Type::Vertex;
if (scope_.in_edge_atom) {
type = Variable::Type::Edge;
}
symbol = GetOrCreateVariable(ident.name_, type).symbol;
} else {
// Everything else references a bound symbol.
if (!HasSymbol(ident.name_))
if (!HasVariable(ident.name_))
throw UnboundVariableError(ident.name_);
symbol = scope_.variables[ident.name_];
symbol = scope_.variables[ident.name_].symbol;
}
symbol_table_[ident] = symbol;
}
@ -75,52 +79,96 @@ class SymbolGenerator : public TreeVisitorBase {
}
void PostVisit(Pattern &pattern) override {
scope_.in_pattern = false;
scope_.in_create_node = false;
}
void Visit(NodeAtom &node_atom) override {
scope_.in_node_atom = true;
scope_.in_property_map = true;
for (auto kv : node_atom.properties_) {
kv.second->Accept(*this);
}
scope_.in_property_map = false;
}
void PostVisit(NodeAtom &node_atom) override {
scope_.in_node_atom = false;
}
void Visit(EdgeAtom &edge_atom) override {
scope_.in_edge_atom = true;
if (scope_.in_create) {
scope_.in_create_edge = true;
if (edge_atom.edge_types_.size() != 1) {
throw SemanticException("A single relationship type must be specified "
"when creating an edge.");
}
}
}
void PostVisit(EdgeAtom &edge_atom) override {
scope_.in_edge_atom = false;
scope_.in_create_edge = false;
}
private:
// A variable stores the associated symbol and its type.
struct Variable {
// This is similar to TypedValue::Type, but this has `Any` type.
enum class Type : unsigned {
Any, Vertex, Edge, Path
};
Symbol symbol;
Type type{Type::Any};
};
std::string TypeToString(Variable::Type type) {
const char *enum_string[] = {"Any", "Vertex", "Edge", "Path"};
return enum_string[static_cast<int>(type)];
}
// Scope stores the state of where we are when visiting the AST and a map of
// names to variables.
struct Scope {
bool in_pattern{false};
bool in_create{false};
// in_create_node is true if we are creating *only* a node. Therefore, it
// is *not* equivalent to in_create && in_node_atom.
bool in_create_node{false};
// True if creating an edge; shortcut for in_create && in_edge_atom.
bool in_create_edge{false};
bool in_node_atom{false};
bool in_edge_atom{false};
bool in_property_map{false};
std::map<std::string, Symbol> variables;
std::map<std::string, Variable> variables;
};
bool HasSymbol(const std::string &name) {
bool HasVariable(const std::string &name) {
return scope_.variables.find(name) != scope_.variables.end();
}
Symbol CreateSymbol(const std::string &name) {
// Returns a new variable with a freshly generated symbol. Previous mapping
// of the same name to a different variable is replaced with the new one.
Variable CreateVariable(
const std::string &name, Variable::Type type = Variable::Type::Any) {
auto symbol = symbol_table_.CreateSymbol(name);
scope_.variables[name] = symbol;
return symbol;
auto variable = Variable{symbol, type};
scope_.variables[name] = variable;
return variable;
}
Symbol GetOrCreateSymbol(const std::string &name) {
// Returns the variable by name. If the mapping already exists, checks if the
// types match. Otherwise, returns a new variable.
Variable GetOrCreateVariable(
const std::string &name, Variable::Type type = Variable::Type::Any) {
auto search = scope_.variables.find(name);
if (search != scope_.variables.end()) {
auto variable = search->second;
if (type != Variable::Type::Any && type != variable.type) {
throw TypeMismatchError(name, TypeToString(variable.type),
TypeToString(type));
}
return search->second;
}
return CreateSymbol(name);
return CreateVariable(name, type);
}
SymbolTable &symbol_table_;

View File

@ -191,20 +191,6 @@ Query *MatchCreateRedeclareNode(AstTreeStorage &storage) {
return query;
}
// AST with redeclaring a match edge variable in create:
// MATCH (n) -[r]-> (m) CREATE (n) -[r] -> (l)
Query *MatchCreateRedeclareEdge(AstTreeStorage &storage) {
auto match = storage.Create<Match>();
match->patterns_.emplace_back(GetPattern(storage, {"n", "r", "m"}));
auto query = storage.query();
query->clauses_.emplace_back(match);
auto create = storage.Create<Create>();
create->patterns_.emplace_back(GetPattern(storage, {"n", "r", "l"}));
query->clauses_.emplace_back(create);
return query;
}
TEST(TestSymbolGenerator, MatchNodeReturn) {
SymbolTable symbol_table;
AstTreeStorage storage;
@ -333,9 +319,70 @@ TEST(TestSymbolGenerator, MatchCreateRedeclareNode) {
TEST(TestSymbolGenerator, MatchCreateRedeclareEdge) {
SymbolTable symbol_table;
AstTreeStorage storage;
auto query_ast = MatchCreateRedeclareEdge(storage);
// AST with redeclaring a match edge variable in create:
// MATCH (n) -[r]-> (m) CREATE (n) -[r] -> (l)
auto match = storage.Create<Match>();
match->patterns_.emplace_back(GetPattern(storage, {"n", "r", "m"}));
auto query = storage.query();
query->clauses_.emplace_back(match);
auto create = storage.Create<Create>();
auto pattern = GetPattern(storage, {"n", "r", "l"});
auto edge_atom = dynamic_cast<EdgeAtom*>(pattern->atoms_[1]);
std::string relationship("relationship");
edge_atom->edge_types_.emplace_back(&relationship);
create->patterns_.emplace_back(pattern);
query->clauses_.emplace_back(create);
SymbolGenerator symbol_generator(symbol_table);
EXPECT_THROW(query_ast->Accept(symbol_generator), RedeclareVariableError);
EXPECT_THROW(query->Accept(symbol_generator), RedeclareVariableError);
}
TEST(TestSymbolGenerator, MatchTypeMismatch) {
AstTreeStorage storage;
// Using an edge variable as a node causes a type mismatch.
// MATCH (n) -[r]-> (r)
auto match = storage.Create<Match>();
match->patterns_.emplace_back(GetPattern(storage, {"n", "r", "r"}));
auto query = storage.query();
query->clauses_.emplace_back(match);
SymbolTable symbol_table;
SymbolGenerator symbol_generator(symbol_table);
EXPECT_THROW(query->Accept(symbol_generator), TypeMismatchError);
}
TEST(TestSymbolGenerator, MatchCreateTypeMismatch) {
AstTreeStorage storage;
// Using an edge variable as a node causes a type mismatch.
// MATCH (n1) -[r1]- (n2) CREATE (r1) -[r2]- (n2)
auto match = storage.Create<Match>();
match->patterns_.emplace_back(GetPattern(storage, {"n1", "r1", "n2"}));
auto query = storage.query();
query->clauses_.emplace_back(match);
auto create = storage.Create<Create>();
create->patterns_.emplace_back(GetPattern(storage, {"r1", "r2", "n2"}));
query->clauses_.emplace_back(create);
SymbolTable symbol_table;
SymbolGenerator symbol_generator(symbol_table);
EXPECT_THROW(query->Accept(symbol_generator), TypeMismatchError);
}
TEST(TestSymbolGenerator, CreateMultipleEdgeType) {
AstTreeStorage storage;
// Multiple edge relationship are not allowed when creating edges.
// CREATE (n) -[r :rel1 | :rel2]- (m)
auto pattern = GetPattern(storage, {"n", "r", "m"});
auto edge_atom = dynamic_cast<EdgeAtom*>(pattern->atoms_[1]);
std::string rel1("rel1");
edge_atom->edge_types_.emplace_back(&rel1);
std::string rel2("rel2");
edge_atom->edge_types_.emplace_back(&rel2);
auto create = storage.Create<Create>();
create->patterns_.emplace_back(pattern);
auto query = storage.query();
query->clauses_.emplace_back(create);
SymbolTable symbol_table;
SymbolGenerator symbol_generator(symbol_table);
EXPECT_THROW(query->Accept(symbol_generator), SemanticException);
}
}