Add planning CreateExpand operator

Summary: Add planning CreateExpand operator. This is quite similar to planning Expand, but I wouldn't abstract the duplicated parts yet. Also, raise semantic error if creating bidirectional edges

Reviewers: buda, mislav.bradac, florijan

Reviewed By: mislav.bradac

Subscribers: pullbot

Differential Revision: https://phabricator.memgraph.io/D155
This commit is contained in:
Teon Banek 2017-03-22 13:09:38 +01:00
parent 83c20fd47f
commit 8da6ce67c0
4 changed files with 189 additions and 92 deletions

View File

@ -9,41 +9,69 @@ namespace query {
namespace {
static LogicalOperator *GenCreate(
Create& create, std::shared_ptr<LogicalOperator> input_op)
{
if (input_op) {
// TODO: Support clauses before CREATE, e.g. `MATCH (n) CREATE (m)`
throw NotYetImplemented();
}
if (create.patterns_.size() != 1) {
// TODO: Support creating multiple patterns, e.g. `CREATE (n), (m)`
throw NotYetImplemented();
}
auto &pattern = create.patterns_[0];
if (pattern->atoms_.size() != 1) {
// TODO: Support creating edges.
throw NotYetImplemented();
}
auto *node_atom = dynamic_cast<NodeAtom*>(pattern->atoms_[0]);
debug_assert(node_atom, "First pattern atom is not a node");
return new CreateOp(node_atom);
}
// Returns false if the symbol was already bound, otherwise binds it and
// returns true.
bool BindSymbol(std::unordered_set<int> &bound_symbols, const Symbol &symbol)
{
bool BindSymbol(std::unordered_set<int> &bound_symbols, const Symbol &symbol) {
auto insertion = bound_symbols.insert(symbol.position_);
return insertion.second;
}
LogicalOperator *GenMatch(
Match& match,
std::shared_ptr<LogicalOperator> input_op,
const SymbolTable &symbol_table,
std::unordered_set<int> &bound_symbols)
{
LogicalOperator *GenCreateForPattern(Pattern &pattern,
LogicalOperator *input_op,
const SymbolTable &symbol_table,
std::unordered_set<int> bound_symbols) {
auto atoms_it = pattern.atoms_.begin();
auto last_node = dynamic_cast<NodeAtom *>(*atoms_it++);
debug_assert(last_node, "First pattern atom is not a node");
auto last_op = input_op;
if (BindSymbol(bound_symbols, symbol_table.at(*last_node->identifier_))) {
// TODO: Pass last_op when CreateOp gets support for it. This will
// support e.g. `MATCH (n) CREATE (m)` and `CREATE (n), (m)`.
if (last_op) {
throw NotYetImplemented();
}
last_op = new CreateOp(last_node);
}
// Remaining atoms need to follow sequentially as (EdgeAtom, NodeAtom)*
while (atoms_it != pattern.atoms_.end()) {
auto edge = dynamic_cast<EdgeAtom *>(*atoms_it++);
debug_assert(edge, "Expected an edge atom in pattern.");
debug_assert(atoms_it != pattern.atoms_.end(),
"Edge atom should not end the pattern.");
// Store the symbol from the first node as the input to CreateExpand.
auto input_symbol = symbol_table.at(*last_node->identifier_);
last_node = dynamic_cast<NodeAtom *>(*atoms_it++);
debug_assert(last_node, "Expected a node atom in pattern.");
// If the expand node was already bound, then we need to indicate this,
// so that CreateExpand only creates an edge.
bool node_existing = false;
if (!BindSymbol(bound_symbols, symbol_table.at(*last_node->identifier_))) {
node_existing = true;
}
if (!BindSymbol(bound_symbols, symbol_table.at(*edge->identifier_))) {
permanent_fail("Symbols used for created edges cannot be redeclared.");
}
last_op = new CreateExpand(last_node, edge,
std::shared_ptr<LogicalOperator>(last_op),
input_symbol, node_existing);
}
return last_op;
}
LogicalOperator *GenCreate(Create &create, LogicalOperator *input_op,
const SymbolTable &symbol_table,
std::unordered_set<int> bound_symbols) {
auto last_op = input_op;
for (auto pattern : create.patterns_) {
last_op =
GenCreateForPattern(*pattern, last_op, symbol_table, bound_symbols);
}
return last_op;
}
LogicalOperator *GenMatch(Match &match, LogicalOperator *input_op,
const SymbolTable &symbol_table,
std::unordered_set<int> &bound_symbols) {
if (input_op) {
// TODO: Support clauses before match.
throw NotYetImplemented();
@ -55,7 +83,7 @@ LogicalOperator *GenMatch(
auto &pattern = match.patterns_[0];
debug_assert(!pattern->atoms_.empty(), "Missing atoms in pattern");
auto atoms_it = pattern->atoms_.begin();
auto last_node = dynamic_cast<NodeAtom*>(*atoms_it++);
auto last_node = dynamic_cast<NodeAtom *>(*atoms_it++);
debug_assert(last_node, "First pattern atom is not a node");
// First atom always binds a symbol, and we don't care if it already existed,
// because we create a ScanAll which writes that symbol. This may need to
@ -63,67 +91,60 @@ LogicalOperator *GenMatch(
BindSymbol(bound_symbols, symbol_table.at(*last_node->identifier_));
LogicalOperator *last_op = new ScanAll(last_node);
if (!last_node->labels_.empty() || !last_node->properties_.empty()) {
last_op = new NodeFilter(std::shared_ptr<LogicalOperator>(last_op),
symbol_table.at(*last_node->identifier_),
last_node);
last_op =
new NodeFilter(std::shared_ptr<LogicalOperator>(last_op),
symbol_table.at(*last_node->identifier_), last_node);
}
EdgeAtom *last_edge = nullptr;
// Remaining atoms need to follow sequentially as (EdgeAtom, NodeAtom)*
for ( ; atoms_it != pattern->atoms_.end(); ++atoms_it) {
if (last_edge) {
// Store the symbol from the first node as the input to Expand.
auto input_symbol = symbol_table.at(*last_node->identifier_);
last_node = dynamic_cast<NodeAtom*>(*atoms_it);
debug_assert(last_node, "Expected a node atom in pattern.");
// If the expand symbols were already bound, then we need to indicate
// this as a cycle. The Expand will then check whether the pattern holds
// instead of writing the expansion to symbols.
auto node_cycle = false;
auto edge_cycle = false;
if (!BindSymbol(bound_symbols, symbol_table.at(*last_node->identifier_))) {
node_cycle = true;
}
if (!BindSymbol(bound_symbols, symbol_table.at(*last_edge->identifier_))) {
edge_cycle = true;
}
last_op = new Expand(last_node, last_edge,
std::shared_ptr<LogicalOperator>(last_op),
input_symbol, node_cycle, edge_cycle);
if (!last_edge->edge_types_.empty()) {
last_op = new EdgeFilter(std::shared_ptr<LogicalOperator>(last_op),
symbol_table.at(*last_edge->identifier_),
last_edge);
}
if (!last_node->labels_.empty() || !last_node->properties_.empty()) {
last_op = new NodeFilter(std::shared_ptr<LogicalOperator>(last_op),
symbol_table.at(*last_node->identifier_),
last_node);
}
// Don't forget to clear the edge, because we expect the next
// (EdgeAtom, NodeAtom) sequence.
last_edge = nullptr;
} else {
last_edge = dynamic_cast<EdgeAtom*>(*atoms_it);
debug_assert(last_edge, "Expected an edge atom in pattern.");
while (atoms_it != pattern->atoms_.end()) {
auto edge = dynamic_cast<EdgeAtom *>(*atoms_it++);
debug_assert(edge, "Expected an edge atom in pattern.");
debug_assert(atoms_it != pattern->atoms_.end(),
"Edge atom should not end the pattern.");
// Store the symbol from the first node as the input to Expand.
auto input_symbol = symbol_table.at(*last_node->identifier_);
last_node = dynamic_cast<NodeAtom *>(*atoms_it++);
debug_assert(last_node, "Expected a node atom in pattern.");
// If the expand symbols were already bound, then we need to indicate
// this as a cycle. The Expand will then check whether the pattern holds
// instead of writing the expansion to symbols.
auto node_cycle = false;
auto edge_cycle = false;
if (!BindSymbol(bound_symbols, symbol_table.at(*last_node->identifier_))) {
node_cycle = true;
}
if (!BindSymbol(bound_symbols, symbol_table.at(*edge->identifier_))) {
edge_cycle = true;
}
last_op =
new Expand(last_node, edge, std::shared_ptr<LogicalOperator>(last_op),
input_symbol, node_cycle, edge_cycle);
if (!edge->edge_types_.empty() || !edge->properties_.empty()) {
last_op = new EdgeFilter(std::shared_ptr<LogicalOperator>(last_op),
symbol_table.at(*edge->identifier_), edge);
}
if (!last_node->labels_.empty() || !last_node->properties_.empty()) {
last_op =
new NodeFilter(std::shared_ptr<LogicalOperator>(last_op),
symbol_table.at(*last_node->identifier_), last_node);
}
}
debug_assert(!last_edge, "Edge atom should not end the pattern.");
return last_op;
}
Produce *GenReturn(Return& ret, std::shared_ptr<LogicalOperator> input_op)
{
Produce *GenReturn(Return &ret, LogicalOperator *input_op) {
if (!input_op) {
// TODO: Support standalone RETURN clause (e.g. RETURN 2)
throw NotYetImplemented();
}
return new Produce(input_op, ret.named_expressions_);
}
return new Produce(std::shared_ptr<LogicalOperator>(input_op),
ret.named_expressions_);
}
} // namespace
std::unique_ptr<LogicalOperator> MakeLogicalPlan(
Query& query, const SymbolTable &symbol_table)
{
Query &query, const SymbolTable &symbol_table) {
// TODO: Extract functions and state into a class with methods. Possibly a
// visitor or similar to avoid all those dynamic casts.
LogicalOperator *input_op = nullptr;
@ -134,13 +155,12 @@ std::unique_ptr<LogicalOperator> MakeLogicalPlan(
std::unordered_set<int> bound_symbols;
for (auto &clause : query.clauses_) {
auto *clause_ptr = clause;
if (auto *match = dynamic_cast<Match*>(clause_ptr)) {
input_op = GenMatch(*match, std::shared_ptr<LogicalOperator>(input_op),
symbol_table, bound_symbols);
} else if (auto *ret = dynamic_cast<Return*>(clause_ptr)) {
input_op = GenReturn(*ret, std::shared_ptr<LogicalOperator>(input_op));
} else if (auto *create = dynamic_cast<Create*>(clause_ptr)) {
input_op = GenCreate(*create, std::shared_ptr<LogicalOperator>(input_op));
if (auto *match = dynamic_cast<Match *>(clause_ptr)) {
input_op = GenMatch(*match, input_op, symbol_table, bound_symbols);
} else if (auto *ret = dynamic_cast<Return *>(clause_ptr)) {
input_op = GenReturn(*ret, input_op);
} else if (auto *create = dynamic_cast<Create *>(clause_ptr)) {
input_op = GenCreate(*create, input_op, symbol_table, bound_symbols);
} else {
throw NotYetImplemented();
}
@ -148,4 +168,4 @@ std::unique_ptr<LogicalOperator> MakeLogicalPlan(
return std::unique_ptr<LogicalOperator>(input_op);
}
}
} // namespace query

View File

@ -101,6 +101,10 @@ class SymbolGenerator : public TreeVisitorBase {
throw SemanticException("A single relationship type must be specified "
"when creating an edge.");
}
if (edge_atom.direction_ == EdgeAtom::Direction::BOTH) {
throw SemanticException("Bidirectional relationship are not supported "
"when creating an edge");
}
}
}
void PostVisit(EdgeAtom &edge_atom) override {
@ -112,9 +116,7 @@ class SymbolGenerator : public TreeVisitorBase {
// A variable stores the associated symbol and its type.
struct Variable {
// This is similar to TypedValue::Type, but this has `Any` type.
enum class Type : unsigned {
Any, Vertex, Edge, Path
};
enum class Type { Any, Vertex, Edge, Path };
Symbol symbol;
Type type{Type::Any};

View File

@ -21,6 +21,7 @@ class PlanChecker : public LogicalOperatorVisitor {
PlanChecker(std::list<size_t> types) : types_(types) {}
void Visit(CreateOp &op) override { AssertType(op); }
void Visit(CreateExpand &op) override { AssertType(op); }
void Visit(ScanAll &op) override { AssertType(op); }
void Visit(Expand &op) override { AssertType(op); }
void Visit(NodeFilter &op) override { AssertType(op); }
@ -102,6 +103,55 @@ TEST(TestLogicalPlanner, CreateNodeReturn) {
plan->Accept(plan_checker);
}
TEST(TestLogicalPlanner, CreateExpand) {
// Test CREATE (n) -[r :rel1]-> (m)
AstTreeStorage storage;
auto create = storage.Create<Create>();
auto pattern = GetPattern(storage, {"n", "r", "m"});
create->patterns_.emplace_back(pattern);
auto edge_atom = dynamic_cast<EdgeAtom*>(pattern->atoms_[1]);
edge_atom->direction_ = EdgeAtom::Direction::RIGHT;
std::string relationship("relationship");
edge_atom->edge_types_.emplace_back(&relationship);
auto query = storage.query();
query->clauses_.emplace_back(create);
SymbolTable symbol_table;
SymbolGenerator symbol_generator(symbol_table);
query->Accept(symbol_generator);
auto plan = MakeLogicalPlan(*query, symbol_table);
std::list<size_t> expected_types;
expected_types.emplace_back(typeid(CreateOp).hash_code());
expected_types.emplace_back(typeid(CreateExpand).hash_code());
PlanChecker plan_checker(expected_types);
plan->Accept(plan_checker);
}
TEST(TestLogicalPlanner, MatchCreateExpand) {
// Test MATCH (n) CREATE (n) -[r :rel1]-> (m)
AstTreeStorage storage;
auto match = storage.Create<Match>();
match->patterns_.emplace_back(GetPattern(storage, {"n"}));
auto query = storage.query();
query->clauses_.emplace_back(match);
auto create = storage.Create<Create>();
auto pattern = GetPattern(storage, {"n", "r", "m"});
create->patterns_.emplace_back(pattern);
auto edge_atom = dynamic_cast<EdgeAtom*>(pattern->atoms_[1]);
edge_atom->direction_ = EdgeAtom::Direction::RIGHT;
std::string relationship("relationship");
edge_atom->edge_types_.emplace_back(&relationship);
query->clauses_.emplace_back(create);
SymbolTable symbol_table;
SymbolGenerator symbol_generator(symbol_table);
query->Accept(symbol_generator);
auto plan = MakeLogicalPlan(*query, symbol_table);
std::list<size_t> expected_types;
expected_types.emplace_back(typeid(ScanAll).hash_code());
expected_types.emplace_back(typeid(CreateExpand).hash_code());
PlanChecker plan_checker(expected_types);
plan->Accept(plan_checker);
}
TEST(TestLogicalPlanner, MatchLabeledNodes) {
// Test MATCH (n :label) RETURN n AS n
AstTreeStorage storage;

View File

@ -320,7 +320,7 @@ TEST(TestSymbolGenerator, MatchCreateRedeclareEdge) {
SymbolTable symbol_table;
AstTreeStorage storage;
// AST with redeclaring a match edge variable in create:
// MATCH (n) -[r]-> (m) CREATE (n) -[r] -> (l)
// MATCH (n) -[r]- (m) CREATE (n) -[r] -> (l)
auto match = storage.Create<Match>();
match->patterns_.emplace_back(GetPattern(storage, {"n", "r", "m"}));
auto query = storage.query();
@ -329,6 +329,7 @@ TEST(TestSymbolGenerator, MatchCreateRedeclareEdge) {
auto create = storage.Create<Create>();
auto pattern = GetPattern(storage, {"n", "r", "l"});
auto edge_atom = dynamic_cast<EdgeAtom*>(pattern->atoms_[1]);
edge_atom->direction_ = EdgeAtom::Direction::RIGHT;
std::string relationship("relationship");
edge_atom->edge_types_.emplace_back(&relationship);
create->patterns_.emplace_back(pattern);
@ -353,13 +354,16 @@ TEST(TestSymbolGenerator, MatchTypeMismatch) {
TEST(TestSymbolGenerator, MatchCreateTypeMismatch) {
AstTreeStorage storage;
// Using an edge variable as a node causes a type mismatch.
// MATCH (n1) -[r1]- (n2) CREATE (r1) -[r2]- (n2)
// MATCH (n1) -[r1]- (n2) CREATE (r1) -[r2]-> (n2)
auto match = storage.Create<Match>();
match->patterns_.emplace_back(GetPattern(storage, {"n1", "r1", "n2"}));
auto query = storage.query();
query->clauses_.emplace_back(match);
auto create = storage.Create<Create>();
create->patterns_.emplace_back(GetPattern(storage, {"r1", "r2", "n2"}));
auto pattern = GetPattern(storage, {"r1", "r2", "n2"});
create->patterns_.emplace_back(pattern);
auto edge_atom = dynamic_cast<EdgeAtom*>(pattern->atoms_[1]);
edge_atom->direction_ = EdgeAtom::Direction::RIGHT;
query->clauses_.emplace_back(create);
SymbolTable symbol_table;
SymbolGenerator symbol_generator(symbol_table);
@ -369,9 +373,30 @@ TEST(TestSymbolGenerator, MatchCreateTypeMismatch) {
TEST(TestSymbolGenerator, CreateMultipleEdgeType) {
AstTreeStorage storage;
// Multiple edge relationship are not allowed when creating edges.
// CREATE (n) -[r :rel1 | :rel2]- (m)
// CREATE (n) -[r :rel1 | :rel2]-> (m)
auto pattern = GetPattern(storage, {"n", "r", "m"});
auto edge_atom = dynamic_cast<EdgeAtom*>(pattern->atoms_[1]);
edge_atom->direction_ = EdgeAtom::Direction::RIGHT;
std::string rel1("rel1");
edge_atom->edge_types_.emplace_back(&rel1);
std::string rel2("rel2");
edge_atom->edge_types_.emplace_back(&rel2);
auto create = storage.Create<Create>();
create->patterns_.emplace_back(pattern);
auto query = storage.query();
query->clauses_.emplace_back(create);
SymbolTable symbol_table;
SymbolGenerator symbol_generator(symbol_table);
EXPECT_THROW(query->Accept(symbol_generator), SemanticException);
}
TEST(TestSymbolGenerator, CreateBidirectionalEdge) {
AstTreeStorage storage;
// Bidirectional relationships are not allowed when creating edges.
// CREATE (n) -[r :rel1]- (m)
auto pattern = GetPattern(storage, {"n", "r", "m"});
auto edge_atom = dynamic_cast<EdgeAtom*>(pattern->atoms_[1]);
edge_atom->direction_ = EdgeAtom::Direction::BOTH;
std::string rel1("rel1");
edge_atom->edge_types_.emplace_back(&rel1);
std::string rel2("rel2");