Add dgp integration test
Reviewers: msantl, mferencevic Reviewed By: msantl Subscribers: pullbot Differential Revision: https://phabricator.memgraph.io/D1586
This commit is contained in:
parent
96ece11cdd
commit
8a3f3b6c88
@ -13,10 +13,10 @@ digraph {
|
||||
"distributed::TokenSharingRpcServer" -> "communication::rpc::Server";
|
||||
"distributed::TokenSharingRpcServer" -> "distributed::Coordination";
|
||||
"distributed::TokenSharingRpcServer" -> "distributed::TokenSharingRpcClients";
|
||||
"distributed::TokenSharingRpcServer" -> "storage::dgp::Partitioner";
|
||||
"distributed::TokenSharingRpcServer" -> "distributed::dgp::Partitioner";
|
||||
|
||||
"storage::dgp::Partitioner" -> "distributed::DistributedGraphDb" [style=dashed];
|
||||
"distributed::dgp::Partitioner" -> "distributed::DistributedGraphDb" [style=dashed];
|
||||
|
||||
"storage::dgp::Partitioner" -> "storage::dgp::VertexMigrator";
|
||||
"storage::dgp::VertexMigrator" -> "database::GraphDbAccessor" [style=dashed];
|
||||
"distributed::dgp::Partitioner" -> "distributed::dgp::VertexMigrator";
|
||||
"distributed::dgp::VertexMigrator" -> "database::GraphDbAccessor" [style=dashed];
|
||||
}
|
||||
|
@ -29,6 +29,8 @@ set(memgraph_src_files
|
||||
distributed/data_manager.cpp
|
||||
distributed/data_rpc_clients.cpp
|
||||
distributed/data_rpc_server.cpp
|
||||
distributed/dgp/partitioner.cpp
|
||||
distributed/dgp/vertex_migrator.cpp
|
||||
distributed/durability_rpc_master.cpp
|
||||
distributed/durability_rpc_worker.cpp
|
||||
distributed/index_rpc_server.cpp
|
||||
@ -65,8 +67,6 @@ set(memgraph_src_files
|
||||
query/typed_value.cpp
|
||||
storage/concurrent_id_mapper_master.cpp
|
||||
storage/concurrent_id_mapper_worker.cpp
|
||||
storage/dynamic_graph_partitioner/dgp.cpp
|
||||
storage/dynamic_graph_partitioner/vertex_migrator.cpp
|
||||
storage/edge_accessor.cpp
|
||||
storage/locking/record_lock.cpp
|
||||
storage/property_value.cpp
|
||||
|
@ -68,6 +68,9 @@ DEFINE_VALIDATED_int32(recovering_cluster_size, 0,
|
||||
"Number of workers (including master) in the "
|
||||
"previously snapshooted/wal cluster.",
|
||||
FLAG_IN_RANGE(0, INT32_MAX));
|
||||
// TODO (buda): Implement openCypher query because it completely make sense
|
||||
// to being able to start and stop DGP on the fly.
|
||||
// The implementation should be straightforward.
|
||||
DEFINE_bool(dynamic_graph_partitioner_enabled, false,
|
||||
"If the dynamic graph partitioner should be enabled.");
|
||||
#endif
|
||||
|
@ -687,7 +687,7 @@ Master::Master(Config config)
|
||||
|
||||
// Start the dynamic graph partitioner inside token sharing server
|
||||
if (impl_->config_.dynamic_graph_partitioner_enabled) {
|
||||
impl_->token_sharing_server_.StartTokenSharing();
|
||||
impl_->token_sharing_server_.Start();
|
||||
}
|
||||
|
||||
if (impl_->config_.durability_enabled) {
|
||||
|
@ -1,4 +1,4 @@
|
||||
#include "storage/dynamic_graph_partitioner/dgp.hpp"
|
||||
#include "distributed/dgp/partitioner.hpp"
|
||||
|
||||
#include <algorithm>
|
||||
#include <unordered_map>
|
||||
@ -8,10 +8,11 @@
|
||||
#include "database/graph_db_accessor.hpp"
|
||||
#include "distributed/updates_rpc_clients.hpp"
|
||||
#include "query/exceptions.hpp"
|
||||
#include "storage/dynamic_graph_partitioner/vertex_migrator.hpp"
|
||||
#include "distributed/dgp/vertex_migrator.hpp"
|
||||
#include "utils/flag_validation.hpp"
|
||||
#include "utils/thread/sync.hpp"
|
||||
|
||||
// TODO (buda): Implement openCypher commands to control these parameters.
|
||||
DEFINE_VALIDATED_int32(
|
||||
dgp_improvement_threshold, 10,
|
||||
"How much better should specific node score be to consider "
|
||||
@ -19,25 +20,28 @@ DEFINE_VALIDATED_int32(
|
||||
"between new score that the vertex will have when migrated and the old one "
|
||||
"such that it's migrated.",
|
||||
FLAG_IN_RANGE(1, 100));
|
||||
// TODO (buda): The default here should be int_max because that will allow us to
|
||||
// partition large dataset faster. It should be used for our tests where we can
|
||||
// run the partitioning up front.
|
||||
DEFINE_VALIDATED_int32(dgp_max_batch_size, 2000,
|
||||
"Maximal amount of vertices which should be migrated in "
|
||||
"one dynamic graph partitioner step.",
|
||||
FLAG_IN_RANGE(1, std::numeric_limits<int32_t>::max()));
|
||||
|
||||
DynamicGraphPartitioner::DynamicGraphPartitioner(
|
||||
database::DistributedGraphDb *db)
|
||||
: db_(db) {}
|
||||
namespace distributed::dgp {
|
||||
|
||||
void DynamicGraphPartitioner::Run() {
|
||||
Partitioner::Partitioner(database::DistributedGraphDb *db) : db_(db) {}
|
||||
|
||||
std::pair<double, bool> Partitioner::Partition() {
|
||||
auto dba = db_->Access();
|
||||
VLOG(21) << "Starting DynamicGraphPartitioner in tx: "
|
||||
<< dba->transaction().id_;
|
||||
|
||||
auto migrations = FindMigrations(*dba);
|
||||
auto data = FindMigrations(*dba);
|
||||
|
||||
try {
|
||||
VertexMigrator migrator(dba.get());
|
||||
for (auto &migration : migrations) {
|
||||
for (auto &migration : data.migrations) {
|
||||
migrator.MigrateVertex(migration.first, migration.second);
|
||||
}
|
||||
|
||||
@ -63,19 +67,25 @@ void DynamicGraphPartitioner::Run() {
|
||||
}
|
||||
|
||||
dba->Commit();
|
||||
VLOG(21) << "Sucesfully migrated " << migrations.size() << " vertices..";
|
||||
VLOG(21) << "Sucesfully migrated " << data.migrations.size()
|
||||
<< " vertices..";
|
||||
return std::make_pair(data.score, true);
|
||||
} catch (const utils::BasicException &e) {
|
||||
VLOG(21) << "Didn't succeed in relocating; " << e.what();
|
||||
dba->Abort();
|
||||
// Returning VertexAccessors after Abort might not be a good idea. + The
|
||||
// returned migrations are entirely useless because the engine didn't
|
||||
// succeed to migrate anything.
|
||||
return std::make_pair(data.score, false);
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<std::pair<VertexAccessor, int>>
|
||||
DynamicGraphPartitioner::FindMigrations(database::GraphDbAccessor &dba) {
|
||||
MigrationsData Partitioner::FindMigrations(database::GraphDbAccessor &dba) {
|
||||
// Find workers vertex count
|
||||
std::unordered_map<int, int64_t> worker_vertex_count =
|
||||
db_->data_clients().VertexCounts(dba.transaction().id_);
|
||||
|
||||
// TODO (buda): Add total edge count as an option.
|
||||
int64_t total_vertex_count = 0;
|
||||
for (auto worker_vertex_count_pair : worker_vertex_count) {
|
||||
total_vertex_count += worker_vertex_count_pair.second;
|
||||
@ -83,6 +93,9 @@ DynamicGraphPartitioner::FindMigrations(database::GraphDbAccessor &dba) {
|
||||
|
||||
double average_vertex_count =
|
||||
total_vertex_count * 1.0 / worker_vertex_count.size();
|
||||
if (average_vertex_count == 0) return MigrationsData(0);
|
||||
|
||||
double local_graph_score = 0;
|
||||
|
||||
// Considers all migrations which maximally improve single vertex score
|
||||
std::vector<std::pair<VertexAccessor, int>> migrations;
|
||||
@ -90,7 +103,7 @@ DynamicGraphPartitioner::FindMigrations(database::GraphDbAccessor &dba) {
|
||||
auto label_counts = CountLabels(vertex);
|
||||
std::unordered_map<int, double> per_label_score;
|
||||
size_t degree = vertex.in_degree() + vertex.out_degree();
|
||||
|
||||
if (degree == 0) continue;
|
||||
for (auto worker_vertex_count_pair : worker_vertex_count) {
|
||||
int worker = worker_vertex_count_pair.first;
|
||||
int64_t worker_vertex_count = worker_vertex_count_pair.second;
|
||||
@ -103,9 +116,12 @@ DynamicGraphPartitioner::FindMigrations(database::GraphDbAccessor &dba) {
|
||||
const std::pair<int, double> &p2) {
|
||||
return p1.second < p2.second;
|
||||
};
|
||||
|
||||
auto best_label = std::max_element(per_label_score.begin(),
|
||||
per_label_score.end(), label_cmp);
|
||||
|
||||
local_graph_score += best_label->second;
|
||||
|
||||
// Consider as a migration only if the improvement is high enough
|
||||
if (best_label != per_label_score.end() &&
|
||||
best_label->first != db_->WorkerId() &&
|
||||
@ -118,10 +134,12 @@ DynamicGraphPartitioner::FindMigrations(database::GraphDbAccessor &dba) {
|
||||
if (migrations.size() >= FLAGS_dgp_max_batch_size) break;
|
||||
}
|
||||
|
||||
return migrations;
|
||||
DLOG(INFO) << "Local graph score: " << local_graph_score;
|
||||
|
||||
return MigrationsData(local_graph_score, std::move(migrations));
|
||||
}
|
||||
|
||||
std::unordered_map<int, int64_t> DynamicGraphPartitioner::CountLabels(
|
||||
std::unordered_map<int, int64_t> Partitioner::CountLabels(
|
||||
const VertexAccessor &vertex) const {
|
||||
std::unordered_map<int, int64_t> label_count;
|
||||
for (auto edge : vertex.in()) {
|
||||
@ -136,3 +154,4 @@ std::unordered_map<int, int64_t> DynamicGraphPartitioner::CountLabels(
|
||||
}
|
||||
return label_count;
|
||||
}
|
||||
} // namespace distributed::dgp
|
89
src/distributed/dgp/partitioner.hpp
Normal file
89
src/distributed/dgp/partitioner.hpp
Normal file
@ -0,0 +1,89 @@
|
||||
/// @file
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <thread>
|
||||
|
||||
#include "distributed/data_rpc_clients.hpp"
|
||||
#include "distributed/token_sharing_rpc_messages.hpp"
|
||||
#include "distributed/dgp/vertex_migrator.hpp"
|
||||
#include "storage/vertex_accessor.hpp"
|
||||
|
||||
namespace database {
|
||||
class DistributedGraphDb;
|
||||
class GraphDbAccessor;
|
||||
}; // namespace database
|
||||
|
||||
namespace distributed::dgp {
|
||||
|
||||
/// Contains a set of vertices and where they should be migrated
|
||||
/// (machine/instance id) + score how good the partitioning is.
|
||||
struct MigrationsData {
|
||||
private:
|
||||
using Migrations = std::vector<std::pair<VertexAccessor, int>>;
|
||||
|
||||
public:
|
||||
MigrationsData(double score, Migrations migrations = Migrations())
|
||||
: score(std::move(score)), migrations(std::move(migrations)) {}
|
||||
|
||||
/// Disable copying because the number of migrations could be huge. The
|
||||
/// expected number is 1k, but a user can configure the database in a way
|
||||
/// where the number of migrations could be much higher.
|
||||
MigrationsData(const MigrationsData &other) = delete;
|
||||
MigrationsData &operator=(const MigrationsData &other) = delete;
|
||||
|
||||
MigrationsData(MigrationsData &&other) = default;
|
||||
MigrationsData &operator=(MigrationsData &&other) = default;
|
||||
|
||||
double score;
|
||||
Migrations migrations;
|
||||
};
|
||||
|
||||
/// Handles dynamic graph partitions, migrates vertices from one worker to
|
||||
/// another based on available scoring which takes into account neighbours of a
|
||||
/// vertex and tries to put it where most of its neighbours are located. Also
|
||||
/// takes into account the number of vertices on the destination and source
|
||||
/// machine.
|
||||
class Partitioner {
|
||||
public:
|
||||
/// The partitioner needs GraphDb because each partition step is a new
|
||||
/// database transactions (database accessor has to be created).
|
||||
/// TODO (buda): Consider passing GraphDbAccessor directly.
|
||||
explicit Partitioner(database::DistributedGraphDb *db);
|
||||
|
||||
Partitioner(const Partitioner &other) = delete;
|
||||
Partitioner(Partitioner &&other) = delete;
|
||||
Partitioner &operator=(const Partitioner &other) = delete;
|
||||
Partitioner &operator=(Partitioner &&other) = delete;
|
||||
|
||||
/// Runs one dynamic graph partitioning cycle (step). In case of any error,
|
||||
/// the transaction will be aborted.
|
||||
///
|
||||
/// @return Calculated partitioning score and were the migrations successful.
|
||||
std::pair<double, bool> Partition();
|
||||
|
||||
/// Returns a vector of pairs of `vertex` and `destination` of where should
|
||||
/// some vertex be relocated from the view of `dba` accessor.
|
||||
//
|
||||
/// Each vertex is located on some worker (which in context of migrations we
|
||||
/// call a vertex label). Each vertex has it's score for each different label
|
||||
/// (worker_id) evaluated. This score is calculated by considering
|
||||
/// neighbouring vertices labels. Simply put, each vertex is attracted to be
|
||||
/// located on the same worker as it's neighbouring vertices. Migrations which
|
||||
/// improve that scoring, which also takes into account saturation of other
|
||||
/// workers on which it's considering to migrate this vertex, are determined.
|
||||
MigrationsData FindMigrations(database::GraphDbAccessor &dba);
|
||||
|
||||
/// Counts number of each label (worker_id) on endpoints of edges (in/out) of
|
||||
/// `vertex`.
|
||||
///
|
||||
/// @return A map consisting of (label/machine/instance id, count) key-value
|
||||
/// pairs.
|
||||
std::unordered_map<int, int64_t> CountLabels(
|
||||
const VertexAccessor &vertex) const;
|
||||
|
||||
private:
|
||||
database::DistributedGraphDb *db_{nullptr};
|
||||
};
|
||||
|
||||
} // namespace distributed::dgp
|
@ -1,9 +1,11 @@
|
||||
#include "storage/dynamic_graph_partitioner/vertex_migrator.hpp"
|
||||
#include "distributed/dgp/vertex_migrator.hpp"
|
||||
|
||||
#include "database/distributed_graph_db.hpp"
|
||||
#include "database/graph_db_accessor.hpp"
|
||||
#include "query/typed_value.hpp"
|
||||
|
||||
namespace distributed::dgp {
|
||||
|
||||
VertexMigrator::VertexMigrator(database::GraphDbAccessor *dba) : dba_(dba) {}
|
||||
|
||||
void VertexMigrator::MigrateVertex(VertexAccessor &vertex, int destination) {
|
||||
@ -57,3 +59,4 @@ void VertexMigrator::MigrateVertex(VertexAccessor &vertex, int destination) {
|
||||
|
||||
dba_->DetachRemoveVertex(vertex);
|
||||
}
|
||||
} // namespace distributed::dgp
|
@ -1,3 +1,5 @@
|
||||
/// @file
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <thread>
|
||||
@ -10,6 +12,8 @@ namespace database {
|
||||
class GraphDbAccessor;
|
||||
}; // namespace database
|
||||
|
||||
namespace distributed::dgp {
|
||||
|
||||
/// Migrates vertices from one worker to another (updates edges as well).
|
||||
class VertexMigrator {
|
||||
public:
|
||||
@ -29,3 +33,5 @@ class VertexMigrator {
|
||||
database::GraphDbAccessor *dba_;
|
||||
std::unordered_map<gid::Gid, storage::VertexAddress> vertex_migrated_to_;
|
||||
};
|
||||
|
||||
} // namespace distributed::dgp
|
@ -1,7 +1,9 @@
|
||||
/// @file
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "distributed/rpc_worker_clients.hpp"
|
||||
#include "storage/dynamic_graph_partitioner/dgp.hpp"
|
||||
#include "distributed/dgp/partitioner.hpp"
|
||||
|
||||
namespace communication::rpc {
|
||||
class Server;
|
||||
@ -13,6 +15,12 @@ class DistributedGraphDb;
|
||||
|
||||
namespace distributed {
|
||||
|
||||
// TODO (buda): dgp_.Run() should be injected. This server shouldn't know
|
||||
// anything about the partitioning.
|
||||
// TODO (buda): It makes more sense to have centralized server which will assign
|
||||
// tokens because error handling would be much easier.
|
||||
// TODO (buda): Broken by design.
|
||||
|
||||
/// Shares the token between dynamic graph partitioners instances across workers
|
||||
/// by passing the token from one worker to another, in a circular fashion. This
|
||||
/// guarantees that no two workers will execute the dynamic graph partitioner
|
||||
@ -30,10 +38,20 @@ class TokenSharingRpcServer {
|
||||
dgp_(db) {
|
||||
server_->Register<distributed::TokenTransferRpc>(
|
||||
[this](const auto &req_reader, auto *res_builder) { token_ = true; });
|
||||
|
||||
// TODO (buda): It's not trivial to move this part in the Start method
|
||||
// because worker then doesn't run the step. Will resolve that with
|
||||
// a different implementation of the token assignment.
|
||||
runner_ = std::thread([this]() {
|
||||
while (true) {
|
||||
// Wait till we get the token
|
||||
while (!shutting_down_) {
|
||||
// If no other instances are connected just wait. It doesn't make sense
|
||||
// to migrate anything because only one machine is available.
|
||||
auto workers = coordination_->GetWorkerIds();
|
||||
if (!(workers.size() > 1)) {
|
||||
std::this_thread::sleep_for(std::chrono::seconds(1));
|
||||
continue;
|
||||
}
|
||||
|
||||
// Wait till we get the token.
|
||||
while (!token_) {
|
||||
if (shutting_down_) break;
|
||||
std::this_thread::sleep_for(std::chrono::seconds(1));
|
||||
@ -42,10 +60,9 @@ class TokenSharingRpcServer {
|
||||
if (shutting_down_) break;
|
||||
|
||||
token_ = false;
|
||||
dgp_.Run();
|
||||
dgp_.Partition();
|
||||
|
||||
// Transfer token to next
|
||||
auto workers = coordination_->GetWorkerIds();
|
||||
// Transfer token to next.
|
||||
sort(workers.begin(), workers.end());
|
||||
|
||||
int next_worker = -1;
|
||||
@ -63,7 +80,7 @@ class TokenSharingRpcServer {
|
||||
|
||||
/// Starts the token sharing server which in turn starts the dynamic graph
|
||||
/// partitioner.
|
||||
void StartTokenSharing() {
|
||||
void Start() {
|
||||
started_ = true;
|
||||
token_ = true;
|
||||
}
|
||||
@ -74,9 +91,9 @@ class TokenSharingRpcServer {
|
||||
if (started_ && worker_id_ == 0) {
|
||||
// Wait till we get the token back otherwise some worker might try to
|
||||
// migrate to another worker while that worker is shutting down or
|
||||
// something else bad might happen
|
||||
// TODO(dgleich): Solve this better in the future since this blocks
|
||||
// shutting down until spinner steps complete
|
||||
// something else bad might happen.
|
||||
// TODO (buda): Solve this better in the future since this blocks
|
||||
// shutting down until spinner steps complete.
|
||||
while (!token_) {
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(500));
|
||||
}
|
||||
@ -94,7 +111,7 @@ class TokenSharingRpcServer {
|
||||
std::atomic<bool> shutting_down_{false};
|
||||
std::thread runner_;
|
||||
|
||||
DynamicGraphPartitioner dgp_;
|
||||
distributed::dgp::Partitioner dgp_;
|
||||
};
|
||||
|
||||
} // namespace distributed
|
||||
|
@ -1,54 +0,0 @@
|
||||
#pragma once
|
||||
|
||||
#include <thread>
|
||||
|
||||
#include "distributed/data_rpc_clients.hpp"
|
||||
#include "distributed/token_sharing_rpc_messages.hpp"
|
||||
#include "storage/dynamic_graph_partitioner/vertex_migrator.hpp"
|
||||
#include "storage/vertex_accessor.hpp"
|
||||
|
||||
namespace database {
|
||||
class DistributedGraphDb;
|
||||
class GraphDbAccessor;
|
||||
}; // namespace database
|
||||
|
||||
/// Handles dynamic graph partitions, migrates vertices from one worker to
|
||||
/// another based on available scoring which takes into account neighbours of a
|
||||
/// vertex and tries to put it where most of its neighbours are located. Also
|
||||
/// takes into account the number of vertices on the destination and source
|
||||
/// machine.
|
||||
class DynamicGraphPartitioner {
|
||||
public:
|
||||
DynamicGraphPartitioner(const DynamicGraphPartitioner &other) = delete;
|
||||
DynamicGraphPartitioner(DynamicGraphPartitioner &&other) = delete;
|
||||
DynamicGraphPartitioner &operator=(const DynamicGraphPartitioner &other) =
|
||||
delete;
|
||||
DynamicGraphPartitioner &operator=(DynamicGraphPartitioner &&other) = delete;
|
||||
|
||||
explicit DynamicGraphPartitioner(database::DistributedGraphDb *db);
|
||||
|
||||
/// Runs one dynamic graph partitioning cycle (step).
|
||||
void Run();
|
||||
|
||||
/// Returns a vector of pairs of `vertex` and `destination` of where should
|
||||
/// some vertex be relocated from the view of `dba` accessor.
|
||||
//
|
||||
/// Each vertex is located on some worker (which in context of migrations we
|
||||
/// call a vertex label). Each vertex has it's score for each different label
|
||||
/// (worker_id) evaluated. This score is calculated by considering
|
||||
/// neighbouring vertices labels. Simply put, each vertex is attracted to be
|
||||
/// located on the same worker as it's neighbouring vertices. Migrations which
|
||||
/// improve that scoring, which also takes into account saturation of other
|
||||
/// workers on which it's considering to migrate this vertex, are determined.
|
||||
std::vector<std::pair<VertexAccessor, int>> FindMigrations(
|
||||
database::GraphDbAccessor &dba);
|
||||
|
||||
/// Counts number of each label (worker_id) on endpoints of edges (in/out) of
|
||||
/// `vertex`.
|
||||
/// Returns a map consisting of (label, count) key-value pairs.
|
||||
std::unordered_map<int, int64_t> CountLabels(
|
||||
const VertexAccessor &vertex) const;
|
||||
|
||||
private:
|
||||
database::DistributedGraphDb *db_{nullptr};
|
||||
};
|
1
tests/integration/dgp/.gitignore
vendored
Normal file
1
tests/integration/dgp/.gitignore
vendored
Normal file
@ -0,0 +1 @@
|
||||
output/
|
222
tests/integration/dgp/run.py
Executable file
222
tests/integration/dgp/run.py
Executable file
@ -0,0 +1,222 @@
|
||||
#!/usr/bin/python3
|
||||
|
||||
'''
|
||||
Test dynamic graph partitioner on Memgraph cluster
|
||||
with randomly generated graph (uniform distribution
|
||||
of nodes and edges). The partitioning goal is to
|
||||
minimize number of crossing edges while keeping
|
||||
the cluster balanced.
|
||||
'''
|
||||
|
||||
import argparse
|
||||
import atexit
|
||||
import logging
|
||||
import os
|
||||
import random
|
||||
import sys
|
||||
import subprocess
|
||||
import time
|
||||
|
||||
try:
|
||||
# graphviz==0.9
|
||||
from graphviz import Digraph
|
||||
except ImportError:
|
||||
print("graphviz module isn't available. "
|
||||
"Graph won't be generated but the checks will still work.")
|
||||
from neo4j.v1 import GraphDatabase, basic_auth
|
||||
|
||||
SCRIPT_DIR = os.path.dirname(os.path.realpath(__file__))
|
||||
PROJECT_DIR = os.path.normpath(os.path.join(SCRIPT_DIR, "..", "..", ".."))
|
||||
COMMON_ARGS = ["--durability-enabled=false",
|
||||
"--snapshot-on-exit=false",
|
||||
"--db-recover-on-startup=false"]
|
||||
MASTER_ARGS = ["--master",
|
||||
"--master-port", "10000",
|
||||
"--dynamic-graph-partitioner-enabled",
|
||||
"--durability-directory=durability_master"]
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
memgraph_processes = []
|
||||
|
||||
|
||||
def worker_args(worker_id):
|
||||
args = ["--worker",
|
||||
"--worker-id", str(worker_id),
|
||||
"--worker-port", str(10000 + worker_id),
|
||||
"--master-port", str(10000),
|
||||
"--durability-directory=durability_worker%s" % worker_id]
|
||||
return args
|
||||
|
||||
|
||||
def wait_for_server(port, delay=0.01):
|
||||
cmd = ["nc", "-z", "-w", "1", "127.0.0.1", port]
|
||||
while subprocess.call(cmd) != 0:
|
||||
time.sleep(delay)
|
||||
time.sleep(delay)
|
||||
|
||||
|
||||
def run_memgraph_process(binary, args):
|
||||
global memgraph_processes
|
||||
process = subprocess.Popen([binary] + args, cwd=os.path.dirname(binary))
|
||||
memgraph_processes.append(process)
|
||||
|
||||
|
||||
def run_distributed_memgraph(args):
|
||||
run_memgraph_process(args.memgraph, COMMON_ARGS + MASTER_ARGS)
|
||||
wait_for_server("10000")
|
||||
for i in range(1, int(args.machine_count)):
|
||||
run_memgraph_process(args.memgraph, COMMON_ARGS + worker_args(i))
|
||||
wait_for_server("7687")
|
||||
|
||||
|
||||
def terminate():
|
||||
global memgraph_processes
|
||||
for process in memgraph_processes:
|
||||
process.terminate()
|
||||
status = process.wait()
|
||||
if status != 0:
|
||||
raise Exception(
|
||||
"Memgraph binary returned non-zero ({})!".format(status))
|
||||
|
||||
|
||||
@atexit.register
|
||||
def cleanup():
|
||||
global memgraph_processes
|
||||
for proc in memgraph_processes:
|
||||
if proc.poll() is not None:
|
||||
continue
|
||||
proc.kill()
|
||||
proc.wait()
|
||||
|
||||
|
||||
def run_test(args):
|
||||
driver = GraphDatabase.driver(args.endpoint,
|
||||
auth=basic_auth(args.username,
|
||||
args.password),
|
||||
encrypted=args.encrypted)
|
||||
session = driver.session()
|
||||
|
||||
session.run("CREATE INDEX ON :Node(id)").consume()
|
||||
session.run(
|
||||
"UNWIND range(0, $num - 1) AS n CREATE (:Node {id: n})",
|
||||
num=args.node_count - 1).consume()
|
||||
|
||||
created_edges = 0
|
||||
while created_edges <= args.edge_count:
|
||||
# Retry block is here because DGP is running in background and
|
||||
# serialization errors may occure.
|
||||
try:
|
||||
session.run("MATCH (n:Node {id: $id1}), (m:Node {id:$id2}) "
|
||||
"CREATE (n)-[:Edge]->(m)",
|
||||
id1=random.randint(0, args.node_count - 1),
|
||||
id2=random.randint(0, args.node_count - 1)).consume()
|
||||
created_edges += 1
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
# Check cluster state periodically.
|
||||
crossing_edges_history = []
|
||||
load_history = []
|
||||
duration = 0
|
||||
for iteration in range(args.iteration_count):
|
||||
iteration_start_time = time.time()
|
||||
data = session.run(
|
||||
"MATCH (n)-[r]->(m) "
|
||||
"RETURN "
|
||||
" id(n) AS v1, id(m) AS v2, "
|
||||
" workerid(n) AS position_n, workerid(m) AS position_m").data()
|
||||
|
||||
# Visualize cluster state.
|
||||
if args.visualize and 'graphviz' in sys.modules:
|
||||
output_dir = os.path.join(SCRIPT_DIR, "output")
|
||||
if not os.path.exists(output_dir):
|
||||
os.makedirs(output_dir)
|
||||
cluster = Digraph(name="memgraph_cluster", format="png")
|
||||
cluster.attr(splines="false", rank="TB")
|
||||
subgraphs = [Digraph(name="cluster_worker%s" % i)
|
||||
for i in range(args.machine_count)]
|
||||
for index, subgraph in enumerate(subgraphs):
|
||||
subgraph.attr(label="worker%s" % index)
|
||||
edges = []
|
||||
for row in data:
|
||||
# start_id end_id machine_id
|
||||
edges.append((row["v1"], row["v2"], row["position_n"]))
|
||||
edges = sorted(edges, key=lambda x: x[0])
|
||||
for edge in edges:
|
||||
# machine_id start_id end_id
|
||||
subgraphs[edge[2]].edge(str(edge[0]), str(edge[1]))
|
||||
for subgraph in subgraphs:
|
||||
cluster.subgraph(subgraph)
|
||||
cluster.render("output/iteration_%s" % iteration)
|
||||
|
||||
# Collect data.
|
||||
num_of_crossing_edges = 0
|
||||
load = [0] * args.machine_count
|
||||
for edge in data:
|
||||
src_worker = int(edge["position_n"])
|
||||
dst_worker = int(edge["position_m"])
|
||||
if src_worker != dst_worker:
|
||||
num_of_crossing_edges = num_of_crossing_edges + 1
|
||||
load[src_worker] = load[src_worker] + 1
|
||||
crossing_edges_history.append(num_of_crossing_edges)
|
||||
load_history.append(load)
|
||||
iteration_delta_time = time.time() - iteration_start_time
|
||||
duration += iteration_delta_time
|
||||
log.info("Number of crossing edges %s" % num_of_crossing_edges)
|
||||
log.info("Cluster load %s" % load)
|
||||
|
||||
# Wait for DGP a bit.
|
||||
if iteration_delta_time < args.iteration_interval:
|
||||
time.sleep(args.iteration_interval - iteration_delta_time)
|
||||
duration += args.iteration_interval
|
||||
else:
|
||||
duration += iteration_delta_time
|
||||
# TODO (buda): Somehow align with DGP turns. Replace runtime param with
|
||||
# the query.
|
||||
|
||||
assert crossing_edges_history[-1] < crossing_edges_history[0], \
|
||||
"Number of crossing edges is equal or bigger."
|
||||
for machine in range(args.machine_count):
|
||||
assert load_history[-1][machine] > 0, "Machine %s is empty." % machine
|
||||
log.info("Config")
|
||||
log.info(" Machines: %s" % args.machine_count)
|
||||
log.info(" Nodes: %s" % args.node_count)
|
||||
log.info(" Edges: %s" % args.edge_count)
|
||||
log.info("Start")
|
||||
log.info(" Crossing Edges: %s" % crossing_edges_history[0])
|
||||
log.info(" Cluster Load: %s" % load_history[0])
|
||||
log.info("End")
|
||||
log.info(" Crossing Edges: %s" % crossing_edges_history[-1])
|
||||
log.info(" Cluster Load: %s" % load_history[-1])
|
||||
log.info("Stats")
|
||||
log.info(" Duration: %ss" % duration)
|
||||
|
||||
session.close()
|
||||
driver.close()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
|
||||
memgraph_binary = os.path.join(PROJECT_DIR, "build", "memgraph")
|
||||
if not os.path.exists(memgraph_binary):
|
||||
memgraph_binary = os.path.join(PROJECT_DIR, "build_debug", "memgraph")
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--memgraph", default=memgraph_binary)
|
||||
parser.add_argument("--endpoint", type=str,
|
||||
default="bolt://localhost:7687")
|
||||
parser.add_argument("--username", type=str, default="")
|
||||
parser.add_argument("--password", type=str, default="")
|
||||
parser.add_argument("--encrypted", type=bool, default=False)
|
||||
parser.add_argument("--visualize", type=bool, default=False)
|
||||
parser.add_argument("--machine-count", type=int, default=3)
|
||||
parser.add_argument("--node-count", type=int, default=1000000)
|
||||
parser.add_argument("--edge-count", type=int, default=1000000)
|
||||
parser.add_argument("--iteration-count", type=int, default=10)
|
||||
parser.add_argument("--iteration-interval", type=float, default=5)
|
||||
args = parser.parse_args()
|
||||
|
||||
run_distributed_memgraph(args)
|
||||
run_test(args)
|
||||
terminate()
|
@ -94,6 +94,13 @@ target_link_libraries(${test_prefix}distributed_serialization memgraph_lib kvsto
|
||||
add_unit_test(distributed_updates.cpp)
|
||||
target_link_libraries(${test_prefix}distributed_updates memgraph_lib kvstore_dummy_lib)
|
||||
|
||||
# TODO (buda): Replace token sharing with centralized solution and write an appropriate test.
|
||||
# add_unit_test(distributed_token_sharing.cpp)
|
||||
# target_link_libraries(${test_prefix}distributed_token_sharing memgraph_lib kvstore_dummy_lib)
|
||||
|
||||
add_unit_test(distributed_dgp_partitioner.cpp)
|
||||
target_link_libraries(${test_prefix}distributed_dgp_partitioner memgraph_lib kvstore_dummy_lib)
|
||||
|
||||
add_unit_test(durability.cpp)
|
||||
target_link_libraries(${test_prefix}durability memgraph_lib kvstore_dummy_lib)
|
||||
|
||||
|
252
tests/unit/distributed_dgp_partitioner.cpp
Normal file
252
tests/unit/distributed_dgp_partitioner.cpp
Normal file
@ -0,0 +1,252 @@
|
||||
#include "distributed_common.hpp"
|
||||
|
||||
#include <memory>
|
||||
#include <thread>
|
||||
#include <unordered_set>
|
||||
#include <vector>
|
||||
|
||||
#include "gtest/gtest.h"
|
||||
|
||||
#include "distributed/dgp/partitioner.hpp"
|
||||
#include "distributed/updates_rpc_clients.hpp"
|
||||
|
||||
using namespace distributed;
|
||||
using namespace database;
|
||||
|
||||
DECLARE_int32(dgp_max_batch_size);
|
||||
|
||||
class DistributedDynamicGraphPartitionerTest : public DistributedGraphDbTest {
|
||||
public:
|
||||
DistributedDynamicGraphPartitionerTest()
|
||||
: DistributedGraphDbTest("dynamic_graph_partitioner") {}
|
||||
|
||||
void LogClusterState() {
|
||||
LOG(INFO) << "master_v: " << VertexCount(master())
|
||||
<< " master_e: " << EdgeCount(master());
|
||||
LOG(INFO) << "worker1_v: " << VertexCount(worker(1))
|
||||
<< " worker1_e: " << EdgeCount(worker(1));
|
||||
LOG(INFO) << "worker2_v: " << VertexCount(worker(2))
|
||||
<< " worker2_e: " << EdgeCount(worker(2));
|
||||
}
|
||||
};
|
||||
|
||||
TEST_F(DistributedDynamicGraphPartitionerTest, CountLabels) {
|
||||
auto va = InsertVertex(master());
|
||||
auto vb = InsertVertex(worker(1));
|
||||
auto vc = InsertVertex(worker(2));
|
||||
for (int i = 0; i < 2; ++i) InsertEdge(va, va, "edge");
|
||||
for (int i = 0; i < 3; ++i) InsertEdge(va, vb, "edge");
|
||||
for (int i = 0; i < 4; ++i) InsertEdge(va, vc, "edge");
|
||||
for (int i = 0; i < 5; ++i) InsertEdge(vb, va, "edge");
|
||||
for (int i = 0; i < 6; ++i) InsertEdge(vc, va, "edge");
|
||||
|
||||
distributed::dgp::Partitioner dgp(&master());
|
||||
auto dba = master().Access();
|
||||
VertexAccessor v(va, *dba);
|
||||
auto count_labels = dgp.CountLabels(v);
|
||||
|
||||
// Self loops counted twice
|
||||
EXPECT_EQ(count_labels[master().WorkerId()], 2 * 2);
|
||||
|
||||
EXPECT_EQ(count_labels[worker(1).WorkerId()], 3 + 5);
|
||||
EXPECT_EQ(count_labels[worker(2).WorkerId()], 4 + 6);
|
||||
}
|
||||
|
||||
TEST_F(DistributedDynamicGraphPartitionerTest, FindMigrationsMoveVertex) {
|
||||
auto va = InsertVertex(master());
|
||||
auto vb = InsertVertex(worker(1));
|
||||
|
||||
// Balance the number of nodes on workers a bit
|
||||
InsertVertex(worker(2));
|
||||
InsertVertex(worker(2));
|
||||
|
||||
for (int i = 0; i < 100; ++i) InsertEdge(va, vb, "edge");
|
||||
distributed::dgp::Partitioner dgp(&master());
|
||||
auto dba = master().Access();
|
||||
auto data = dgp.FindMigrations(*dba);
|
||||
// Expect `va` to try to move to another worker, the one connected to it
|
||||
ASSERT_EQ(data.migrations.size(), 1);
|
||||
EXPECT_EQ(data.migrations[0].second, worker(1).WorkerId());
|
||||
}
|
||||
|
||||
TEST_F(DistributedDynamicGraphPartitionerTest, FindMigrationsNoChange) {
|
||||
InsertVertex(master());
|
||||
InsertVertex(worker(1));
|
||||
InsertVertex(worker(2));
|
||||
|
||||
// Everything is balanced, there should be no movement
|
||||
|
||||
distributed::dgp::Partitioner dgp(&master());
|
||||
auto dba = master().Access();
|
||||
auto data = dgp.FindMigrations(*dba);
|
||||
EXPECT_EQ(data.migrations.size(), 0);
|
||||
}
|
||||
|
||||
TEST_F(DistributedDynamicGraphPartitionerTest, FindMigrationsMultipleAndLimit) {
|
||||
auto va = InsertVertex(master());
|
||||
auto vb = InsertVertex(master());
|
||||
auto vc = InsertVertex(worker(1));
|
||||
|
||||
// Balance the number of nodes on workers a bit
|
||||
InsertVertex(worker(1));
|
||||
InsertVertex(worker(2));
|
||||
InsertVertex(worker(2));
|
||||
|
||||
for (int i = 0; i < 100; ++i) InsertEdge(va, vc, "edge");
|
||||
for (int i = 0; i < 100; ++i) InsertEdge(vb, vc, "edge");
|
||||
distributed::dgp::Partitioner dgp(&master());
|
||||
auto dba = master().Access();
|
||||
{
|
||||
auto data = dgp.FindMigrations(*dba);
|
||||
// Expect vertices to try to move to another worker
|
||||
ASSERT_EQ(data.migrations.size(), 2);
|
||||
}
|
||||
|
||||
// See if flag affects number of returned results
|
||||
{
|
||||
FLAGS_dgp_max_batch_size = 1;
|
||||
auto data = dgp.FindMigrations(*dba);
|
||||
// Expect vertices to try to move to another worker
|
||||
ASSERT_EQ(data.migrations.size(), 1);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_F(DistributedDynamicGraphPartitionerTest, Run) {
|
||||
// Emulate a bipartite graph with lots of connections on the left, and right
|
||||
// side, and some connections between the halfs
|
||||
std::vector<storage::VertexAddress> left;
|
||||
for (int i = 0; i < 10; ++i) {
|
||||
left.push_back(InsertVertex(master()));
|
||||
}
|
||||
std::vector<storage::VertexAddress> right;
|
||||
for (int i = 0; i < 10; ++i) {
|
||||
right.push_back(InsertVertex(master()));
|
||||
}
|
||||
|
||||
// Force the nodes of both sides to stay on one worker by inserting a lot of
|
||||
// edges in between them
|
||||
for (int i = 0; i < 1000; ++i) {
|
||||
InsertEdge(left[rand() % 10], left[rand() % 10], "edge");
|
||||
InsertEdge(right[rand() % 10], right[rand() % 10], "edge");
|
||||
}
|
||||
|
||||
// Insert edges between left and right side
|
||||
for (int i = 0; i < 50; ++i)
|
||||
InsertEdge(left[rand() % 10], right[rand() % 10], "edge");
|
||||
|
||||
// Balance it out so that the vertices count on workers don't influence the
|
||||
// partitioning too much
|
||||
for (int i = 0; i < 10; ++i) InsertVertex(worker(2));
|
||||
|
||||
distributed::dgp::Partitioner dgp(&master());
|
||||
// Transfer one by one to actually converge
|
||||
FLAGS_dgp_max_batch_size = 1;
|
||||
// Try a bit more transfers to see if we reached a steady state
|
||||
for (int i = 0; i < 15; ++i) {
|
||||
dgp.Partition();
|
||||
}
|
||||
|
||||
EXPECT_EQ(VertexCount(master()), 10);
|
||||
EXPECT_EQ(VertexCount(worker(1)), 10);
|
||||
|
||||
auto CountRemotes = [](GraphDbAccessor &dba) {
|
||||
int64_t cnt = 0;
|
||||
for (auto vertex : dba.Vertices(false)) {
|
||||
for (auto edge : vertex.in())
|
||||
if (edge.from_addr().is_remote()) ++cnt;
|
||||
for (auto edge : vertex.out())
|
||||
if (edge.to_addr().is_remote()) ++cnt;
|
||||
}
|
||||
return cnt;
|
||||
};
|
||||
|
||||
auto dba_m = master().Access();
|
||||
auto dba_w1 = worker(1).Access();
|
||||
EXPECT_EQ(CountRemotes(*dba_m), 50);
|
||||
EXPECT_EQ(CountRemotes(*dba_w1), 50);
|
||||
}
|
||||
|
||||
TEST_F(DistributedDynamicGraphPartitionerTest, Convergence) {
|
||||
auto seed = std::time(nullptr);
|
||||
LOG(INFO) << "Seed: " << seed;
|
||||
std::srand(seed);
|
||||
|
||||
// Generate random graph across cluster.
|
||||
std::vector<storage::VertexAddress> master_vertices;
|
||||
for (int i = 0; i < 1000; ++i) {
|
||||
master_vertices.push_back(InsertVertex(master()));
|
||||
}
|
||||
std::vector<storage::VertexAddress> worker1_vertices;
|
||||
for (int i = 0; i < 1000; ++i) {
|
||||
worker1_vertices.push_back(InsertVertex(worker(1)));
|
||||
}
|
||||
std::vector<storage::VertexAddress> worker2_vertices;
|
||||
for (int i = 0; i < 1000; ++i) {
|
||||
worker2_vertices.push_back(InsertVertex(worker(2)));
|
||||
}
|
||||
|
||||
// Generate random edges between machines.
|
||||
for (int i = 0; i < 1000; ++i) {
|
||||
InsertEdge(master_vertices[rand() % 1000], worker1_vertices[rand() % 1000],
|
||||
"edge");
|
||||
InsertEdge(master_vertices[rand() % 1000], worker2_vertices[rand() % 1000],
|
||||
"edge");
|
||||
InsertEdge(worker1_vertices[rand() % 1000], master_vertices[rand() % 1000],
|
||||
"edge");
|
||||
InsertEdge(worker1_vertices[rand() % 1000], worker2_vertices[rand() % 1000],
|
||||
"edge");
|
||||
InsertEdge(worker2_vertices[rand() % 1000], master_vertices[rand() % 1000],
|
||||
"edge");
|
||||
InsertEdge(worker2_vertices[rand() % 1000], worker1_vertices[rand() % 1000],
|
||||
"edge");
|
||||
}
|
||||
|
||||
// Run the partitioning algorithm, after some time it should stop doing
|
||||
// migrations.
|
||||
distributed::dgp::Partitioner dgp_master(&master());
|
||||
std::vector<double> master_scores;
|
||||
distributed::dgp::Partitioner dgp_worker1(&worker(1));
|
||||
std::vector<double> worker1_scores;
|
||||
distributed::dgp::Partitioner dgp_worker2(&worker(2));
|
||||
std::vector<double> worker2_scores;
|
||||
FLAGS_dgp_max_batch_size = 10;
|
||||
for (int i = 0; i < 100; ++i) {
|
||||
LOG(INFO) << "Iteration: " << i;
|
||||
|
||||
auto data_master = dgp_master.Partition();
|
||||
LOG(INFO) << "Master score: " << data_master.first;
|
||||
master_scores.push_back(data_master.first);
|
||||
LogClusterState();
|
||||
|
||||
auto data_worker1 = dgp_worker1.Partition();
|
||||
LOG(INFO) << "Worker1 score: " << data_worker1.first;
|
||||
worker1_scores.push_back(data_worker1.first);
|
||||
LogClusterState();
|
||||
|
||||
auto data_worker2 = dgp_worker2.Partition();
|
||||
LOG(INFO) << "Worker2 score: " << data_worker2.first;
|
||||
worker2_scores.push_back(data_worker2.first);
|
||||
LogClusterState();
|
||||
}
|
||||
|
||||
// Check that the last N scores from each instance are the same.
|
||||
int scores_to_validate = 10;
|
||||
auto score_equality = [](double x, double y) {
|
||||
return std::abs(x - y) < 10e-1;
|
||||
};
|
||||
ASSERT_TRUE(std::all_of(master_scores.end() - scores_to_validate,
|
||||
master_scores.end(),
|
||||
[&score_equality, &master_scores](double elem) {
|
||||
return score_equality(elem, master_scores.back());
|
||||
}));
|
||||
ASSERT_TRUE(std::all_of(worker1_scores.end() - scores_to_validate,
|
||||
worker1_scores.end(),
|
||||
[&score_equality, &worker1_scores](double elem) {
|
||||
return score_equality(elem, worker1_scores.back());
|
||||
}));
|
||||
ASSERT_TRUE(std::all_of(worker2_scores.end() - scores_to_validate,
|
||||
worker2_scores.end(),
|
||||
[&score_equality, &worker2_scores](double elem) {
|
||||
return score_equality(elem, worker2_scores.back());
|
||||
}));
|
||||
}
|
@ -7,7 +7,7 @@
|
||||
#include "gtest/gtest.h"
|
||||
|
||||
#include "distributed/updates_rpc_clients.hpp"
|
||||
#include "storage/dynamic_graph_partitioner/vertex_migrator.hpp"
|
||||
#include "distributed/dgp/vertex_migrator.hpp"
|
||||
|
||||
using namespace distributed;
|
||||
using namespace database;
|
||||
@ -67,7 +67,7 @@ class DistributedVertexMigratorTest : public DistributedGraphDbTest {
|
||||
void MigrateVertexAndCommit(database::GraphDbAccessor *from_dba,
|
||||
int64_t cypher_id, int to_worker_id) {
|
||||
auto vacc = FindVertex(from_dba, cypher_id);
|
||||
VertexMigrator migrator(from_dba);
|
||||
distributed::dgp::VertexMigrator migrator(from_dba);
|
||||
migrator.MigrateVertex(*vacc, to_worker_id);
|
||||
MasterApplyUpdatesAndCommit(from_dba);
|
||||
}
|
||||
@ -176,7 +176,7 @@ TEST_F(DistributedVertexMigratorTest, MigrationofLabelsEdgeTypesAndProperties) {
|
||||
|
||||
{
|
||||
auto dba = master().Access();
|
||||
VertexMigrator migrator(dba.get());
|
||||
distributed::dgp::VertexMigrator migrator(dba.get());
|
||||
for (auto &vertex : dba->Vertices(false)) {
|
||||
migrator.MigrateVertex(vertex, worker(1).WorkerId());
|
||||
}
|
||||
|
@ -1,33 +0,0 @@
|
||||
#include "distributed_common.hpp"
|
||||
|
||||
#include <memory>
|
||||
#include <thread>
|
||||
#include <unordered_set>
|
||||
#include <vector>
|
||||
|
||||
#include "gtest/gtest.h"
|
||||
|
||||
DECLARE_bool(dynamic_graph_partitioner_enabled);
|
||||
DECLARE_int32(dgp_max_batch_size);
|
||||
|
||||
using namespace distributed;
|
||||
using namespace database;
|
||||
|
||||
class TokenSharingTest : public DistributedGraphDbTest {
|
||||
void SetUp() override {
|
||||
FLAGS_dynamic_graph_partitioner_enabled = true;
|
||||
FLAGS_dgp_max_batch_size = 1;
|
||||
DistributedGraphDbTest::SetUp();
|
||||
}
|
||||
};
|
||||
|
||||
TEST_F(TokenSharingTest, Integration) {
|
||||
auto vb = InsertVertex(worker(1));
|
||||
for (int i = 0; i < 100; ++i) {
|
||||
auto v = InsertVertex(master());
|
||||
InsertEdge(vb, v, "edge");
|
||||
}
|
||||
std::this_thread::sleep_for(std::chrono::seconds(3));
|
||||
// Migrate at least something from or to here
|
||||
EXPECT_NE(VertexCount(master()), 100);
|
||||
}
|
Loading…
Reference in New Issue
Block a user