finished implementing a basic lock free skiplist
This commit is contained in:
parent
255079fc84
commit
7bbfe867be
@ -7,7 +7,7 @@ size_t new_height(int max_height)
|
||||
{
|
||||
// get 64 random bits (coin tosses)
|
||||
uint64_t rand = xorshift::next();
|
||||
size_t height = 0;
|
||||
size_t height = 1;
|
||||
|
||||
// for every head (1) increase the tower height by one until the tail (0)
|
||||
// comes. this gives the following probabilities for tower heights:
|
||||
|
@ -8,75 +8,252 @@
|
||||
#include "new_height.hpp"
|
||||
#include "skipnode.hpp"
|
||||
|
||||
template <class K, class T>
|
||||
// concurrent skiplist based on the implementation described in
|
||||
// "A Provably Correct Scalable Concurrent Skip List"
|
||||
// https://www.cs.tau.ac.il/~shanir/nir-pubs-web/Papers/OPODIS2006-BA.pdf
|
||||
|
||||
template <class K,
|
||||
class T,
|
||||
size_t MAX_HEIGHT = 24,
|
||||
class compare=std::less<K>,
|
||||
class lock_type=SpinLock>
|
||||
class SkipList
|
||||
{
|
||||
using Node = SkipNode<K, T>;
|
||||
using Node = SkipNode<K, T, lock_type>;
|
||||
|
||||
public:
|
||||
SkipList(size_t max_height);
|
||||
SkipList()
|
||||
: size_(0),
|
||||
header(Node::create(MAX_HEIGHT, nullptr, nullptr)) {}
|
||||
|
||||
T* get(const K* const key);
|
||||
void put(const K* key, T* item);
|
||||
void del(const K* const key);
|
||||
~SkipList()
|
||||
{
|
||||
for(Node* current = header.load(std::memory_order_relaxed); current;)
|
||||
{
|
||||
Node* next = current->forward(0);
|
||||
Node::destroy(current);
|
||||
current = next;
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
size_t level;
|
||||
Node* header;
|
||||
size_t size() const
|
||||
{
|
||||
return size_.load(std::memory_order_relaxed);
|
||||
}
|
||||
|
||||
uint8_t height() const
|
||||
{
|
||||
return MAX_HEIGHT;
|
||||
}
|
||||
|
||||
//private:
|
||||
|
||||
bool greater(const K* const key, const Node* node)
|
||||
{
|
||||
return node && compare()(*node->key, *key);
|
||||
}
|
||||
|
||||
bool less(const K* const key, const Node* node)
|
||||
{
|
||||
return (node == nullptr) || compare()(*key, *node->key);
|
||||
}
|
||||
|
||||
size_t increment_size(size_t delta)
|
||||
{
|
||||
return size_.fetch_add(delta, std::memory_order_relaxed) + delta;
|
||||
}
|
||||
|
||||
int find_path(Node* from,
|
||||
int start_level,
|
||||
const K* const key,
|
||||
Node* preds[],
|
||||
Node* succs[])
|
||||
{
|
||||
int lfound = -1;
|
||||
Node* pred = from;
|
||||
|
||||
for(int level = start_level; level >= 0; --level)
|
||||
{
|
||||
Node* node = pred->forward(level);
|
||||
|
||||
while(greater(key, node))
|
||||
pred = node, node = pred->forward(level);
|
||||
|
||||
|
||||
if(lfound == -1 && !less(key, node))
|
||||
lfound = level;
|
||||
|
||||
preds[level] = pred;
|
||||
succs[level] = node; // TODO what's FB doing here?
|
||||
}
|
||||
|
||||
//std::cout << "lfound = " << lfound << std::endl;
|
||||
|
||||
return lfound;
|
||||
}
|
||||
|
||||
Node* find(const K* const key)
|
||||
{
|
||||
Node* pred = header.load(std::memory_order_consume);
|
||||
Node* node = nullptr;
|
||||
|
||||
uint8_t level = pred->height;
|
||||
bool found = false;
|
||||
|
||||
while(!found)
|
||||
{
|
||||
// descend down first, facebook says it works better xD but make
|
||||
// some tests when you have time to determine the best strategy
|
||||
for(; level > 0 &&
|
||||
less(key, node = pred->forward(level - 1)); --level) {}
|
||||
|
||||
if(level == 0)
|
||||
return nullptr;
|
||||
|
||||
--level;
|
||||
|
||||
while(greater(key, node))
|
||||
pred = node, node = node->forward(level);
|
||||
|
||||
found = !less(key, node);
|
||||
}
|
||||
|
||||
return node;
|
||||
}
|
||||
|
||||
template <bool ADDING>
|
||||
bool lock_nodes(uint8_t height,
|
||||
std::unique_lock<lock_type> guards[MAX_HEIGHT],
|
||||
Node* preds[MAX_HEIGHT],
|
||||
Node* succs[MAX_HEIGHT])
|
||||
{
|
||||
Node *prepred, *pred, *succ = nullptr;
|
||||
bool valid = true;
|
||||
|
||||
for(int level = 0; valid && level < height; ++level)
|
||||
{
|
||||
pred = preds[level], succ = succs[level];
|
||||
|
||||
if(pred != prepred)
|
||||
guards[level] = pred->guard(), prepred = pred;
|
||||
|
||||
valid = !pred->marked() && pred->forward(level) == succ;
|
||||
|
||||
if(ADDING)
|
||||
valid = valid && (succ == nullptr || !succ->marked());
|
||||
}
|
||||
|
||||
return valid;
|
||||
}
|
||||
|
||||
bool insert(K* key, T* item)
|
||||
{
|
||||
Node *preds[MAX_HEIGHT], *succs[MAX_HEIGHT];
|
||||
|
||||
while(true)
|
||||
{
|
||||
auto head = header.load(std::memory_order_consume);
|
||||
auto lfound = find_path(head, MAX_HEIGHT - 1, key, preds, succs);
|
||||
|
||||
if(lfound != -1)
|
||||
{
|
||||
auto found = succs[lfound];
|
||||
|
||||
if(!found->marked())
|
||||
{
|
||||
while(!found->fully_linked()) {}
|
||||
return false;
|
||||
}
|
||||
|
||||
continue;
|
||||
}
|
||||
|
||||
auto node_height = new_height(MAX_HEIGHT);
|
||||
std::unique_lock<lock_type> guards[MAX_HEIGHT];
|
||||
|
||||
// try to acquire the locks for predecessors up to the height of
|
||||
// the new node. release the locks and try again if someone else
|
||||
// has the locks
|
||||
if(!lock_nodes<true>(node_height, guards, preds, succs))
|
||||
continue;
|
||||
|
||||
// you have the locks, create a new node
|
||||
auto new_node = Node::create(node_height, key, item);
|
||||
|
||||
// link the predecessors and successors, e.g.
|
||||
//
|
||||
// 4 HEAD ... P ------------------------> S ... NULL
|
||||
// 3 HEAD ... ... P -----> NEW ---------> S ... NULL
|
||||
// 2 HEAD ... ... P -----> NEW -----> S ... ... NULL
|
||||
// 1 HEAD ... ... ... P -> NEW -> S ... ... ... NULL
|
||||
for(uint8_t level = 0; level < node_height; ++level)
|
||||
{
|
||||
new_node->forward(level, succs[level]);
|
||||
preds[level]->forward(level, new_node);
|
||||
}
|
||||
|
||||
new_node->set_fully_linked();
|
||||
increment_size(1);
|
||||
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
bool ok_delete(Node* node, int level)
|
||||
{
|
||||
return node->fully_linked()
|
||||
&& node->height - 1 == level
|
||||
&& !node->marked();
|
||||
}
|
||||
|
||||
bool remove(const K* const key)
|
||||
{
|
||||
Node* node = nullptr;
|
||||
std::unique_lock<lock_type> node_guard;
|
||||
bool marked = false;
|
||||
int node_height = 0;
|
||||
|
||||
Node* preds[MAX_HEIGHT], *succs[MAX_HEIGHT];
|
||||
|
||||
while(true)
|
||||
{
|
||||
auto head = header.load(std::memory_order_consume);
|
||||
auto lfound = find_path(head, MAX_HEIGHT - 1, key, preds, succs);
|
||||
|
||||
if(!marked && (lfound == -1 || !ok_delete(succs[lfound], lfound)))
|
||||
return false;
|
||||
|
||||
if(!marked)
|
||||
{
|
||||
node = succs[lfound];
|
||||
node_height = node->height;
|
||||
node_guard = node->guard();
|
||||
|
||||
if(node->marked())
|
||||
return false;
|
||||
|
||||
node->set_marked();
|
||||
}
|
||||
|
||||
std::unique_lock<lock_type> guards[MAX_HEIGHT];
|
||||
|
||||
if(!lock_nodes<false>(node_height, guards, preds, succs))
|
||||
continue;
|
||||
|
||||
for(int level = node_height - 1; level >= 0; --level)
|
||||
preds[level]->forward(level, node->forward(level));
|
||||
|
||||
increment_size(-1);
|
||||
break;
|
||||
}
|
||||
|
||||
// TODO recyclee(node);
|
||||
return true;
|
||||
}
|
||||
|
||||
std::atomic<size_t> size_;
|
||||
std::atomic<Node*> header;
|
||||
};
|
||||
|
||||
|
||||
template <class K, class T>
|
||||
SkipList<K, T>::SkipList(size_t level)
|
||||
: level(level)
|
||||
{
|
||||
header = new Node(level);
|
||||
auto sentinel = new Node();
|
||||
|
||||
for(int i = 0; i < level; ++i)
|
||||
header->forward[i] = sentinel;
|
||||
}
|
||||
|
||||
template <class K, class T>
|
||||
T* SkipList<K, T>::get(const K* const key)
|
||||
{
|
||||
Node* current = header;
|
||||
|
||||
for(int i = level - 1; i >= 0; --i)
|
||||
{
|
||||
Node* next = current->forward[i];
|
||||
|
||||
while(next->key != nullptr && *next->key < *key)
|
||||
current = current->forward[i];
|
||||
}
|
||||
|
||||
return current->item;
|
||||
}
|
||||
|
||||
template <class K, class T>
|
||||
void SkipList<K, T>::put(const K* key, T* item)
|
||||
{
|
||||
auto height = new_height(level);
|
||||
auto node = new Node(key, item, height);
|
||||
|
||||
// needed to update higher level forward pointers
|
||||
int trace[level];
|
||||
|
||||
Node* current = header;
|
||||
|
||||
for(int i = level - 1; i >= 0; --i)
|
||||
{
|
||||
Node* next = current->forward[i];
|
||||
|
||||
while(next->key != nullptr && *next->key < *key)
|
||||
current = current->forward[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <class K, class T>
|
||||
void SkipList<K, T>::del(const K* const key)
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@ -3,6 +3,7 @@
|
||||
|
||||
#include <cstdlib>
|
||||
#include <atomic>
|
||||
#include <mutex>
|
||||
|
||||
#include "utils/sync/spinlock.hpp"
|
||||
|
||||
@ -10,27 +11,116 @@
|
||||
// "A Provably Correct Scalable Concurrent Skip List"
|
||||
// https://www.cs.tau.ac.il/~shanir/nir-pubs-web/Papers/OPODIS2006-BA.pdf
|
||||
|
||||
template <class K, class T>
|
||||
template <class K,
|
||||
class T,
|
||||
class lock_type=SpinLock>
|
||||
struct SkipNode
|
||||
{
|
||||
using Node = SkipNode<K, T, lock_type>;
|
||||
|
||||
enum flags {
|
||||
MARKED_FOR_REMOVAL = 1,
|
||||
FULLY_LINKED = 1 << 1
|
||||
MARKED = 1,
|
||||
FULLY_LINKED = 1 << 1
|
||||
};
|
||||
|
||||
static SkipNode* create();
|
||||
static SkipNode* destroy();
|
||||
|
||||
private:
|
||||
SkipNode();
|
||||
~SkipNode();
|
||||
|
||||
// key against the value is sorted in the skiplist. must be comparable
|
||||
K* key;
|
||||
|
||||
// item on the heap this node points
|
||||
T* item;
|
||||
|
||||
const uint8_t height;
|
||||
|
||||
// use this for creating new nodes. DON'T use the constructor (it's
|
||||
// private anyway)
|
||||
static SkipNode* create(int height, K* key, T* item)
|
||||
{
|
||||
size_t size = sizeof(Node) + height * sizeof(std::atomic<Node*>);
|
||||
|
||||
auto* node = static_cast<SkipNode*>(malloc(size));
|
||||
new (node) Node(height, key, item);
|
||||
|
||||
return node;
|
||||
}
|
||||
|
||||
// acquire an exclusive guard on this node, use for concurrent access
|
||||
std::unique_lock<lock_type> guard()
|
||||
{
|
||||
return std::unique_lock<lock_type>(lock);
|
||||
}
|
||||
|
||||
// use this for destroying nodes after you don't need them any more
|
||||
static void destroy(Node* node)
|
||||
{
|
||||
node->~SkipNode();
|
||||
free(node);
|
||||
}
|
||||
|
||||
bool marked() const
|
||||
{
|
||||
return fget() & MARKED;
|
||||
}
|
||||
|
||||
void set_marked()
|
||||
{
|
||||
fset(fget() | MARKED);
|
||||
}
|
||||
|
||||
bool fully_linked() const
|
||||
{
|
||||
return fget() & FULLY_LINKED;
|
||||
}
|
||||
|
||||
void set_fully_linked()
|
||||
{
|
||||
fset(fget() | FULLY_LINKED);
|
||||
}
|
||||
|
||||
Node* forward(uint8_t level)
|
||||
{
|
||||
return forward_[level].load(std::memory_order_consume);
|
||||
}
|
||||
|
||||
void forward(uint8_t level, Node* next)
|
||||
{
|
||||
forward_[level].store(next, std::memory_order_release);
|
||||
}
|
||||
|
||||
private:
|
||||
SkipNode(uint8_t height, K* key, T* item)
|
||||
: key(key), item(item), height(height)
|
||||
{
|
||||
// set the flags to zero at the beginning
|
||||
fset(0);
|
||||
|
||||
// we need to explicitly call the placement new operator over memory
|
||||
// allocated for forward_ pointers, see the notes below
|
||||
for (uint8_t i = 0; i < height; ++i)
|
||||
new (&forward_[i]) std::atomic<Node*>(nullptr);
|
||||
}
|
||||
|
||||
~SkipNode()
|
||||
{
|
||||
for (uint8_t i = 0; i < height; ++i)
|
||||
forward_[i].~atomic();
|
||||
}
|
||||
|
||||
uint8_t fget() const
|
||||
{
|
||||
// do an atomic load of the flags. if you need to use this value
|
||||
// more than one time in a function it's a good idea to store it
|
||||
// in a stack variable (non atomic) to optimize for performance
|
||||
return flags.load(std::memory_order_consume);
|
||||
}
|
||||
|
||||
void fset(uint8_t value)
|
||||
{
|
||||
// atomically set new flags
|
||||
flags.store(value, std::memory_order_release);
|
||||
}
|
||||
|
||||
std::atomic<uint8_t> flags;
|
||||
const uint8_t level;
|
||||
SpinLock lock;
|
||||
lock_type lock;
|
||||
|
||||
// this creates an array of the size zero locally inside the SkipNode
|
||||
// struct. we can't put any sensible value here since we don't know
|
||||
@ -40,28 +130,9 @@ private:
|
||||
|
||||
// we're gonna cheat here. we'll make this a zero length list and then
|
||||
// allocate enough memory for the SkipNode struct to store more than zero
|
||||
// elements (precisely *level* elements). c++ does not check bounds so we
|
||||
// elements (precisely *height* elements). c++ does not check bounds so we
|
||||
// can access anything we want!
|
||||
std::atomic<SkipNode<K, T>*> forward[0];
|
||||
std::atomic<Node*> forward_[0];
|
||||
};
|
||||
|
||||
template <class K, class T>
|
||||
SkipNode<K, T>::SkipNode(size_t level)
|
||||
{
|
||||
forward = new SkipNode*[level];
|
||||
}
|
||||
|
||||
template <class K, class T>
|
||||
SkipNode<K, T>::SkipNode(K* key, T* item, size_t level)
|
||||
: key(key), item(item)
|
||||
{
|
||||
forward = new SkipNode*[level];
|
||||
}
|
||||
|
||||
template <class K, class T>
|
||||
SkipNode<K, T>::~SkipNode()
|
||||
{
|
||||
delete forward;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@ -23,10 +23,10 @@ TEST_CASE("New height distribution must be approx. 1/2 1/4 1/8 ...")
|
||||
|
||||
// generate a tower and put it in a box with his same-height brothers
|
||||
for(int i = 0; i < N; ++i)
|
||||
heights[new_height(max_height)]++;
|
||||
heights[new_height(max_height) - 1]++;
|
||||
|
||||
// evaluate the number of towers in all of the boxes
|
||||
for(int i = 0; i < max_height; ++i)
|
||||
for(int i = 1; i < max_height; ++i)
|
||||
{
|
||||
// compute how much towers should be in this box
|
||||
int x = N / (2 << i);
|
||||
|
@ -1,17 +1,18 @@
|
||||
#include <thread>
|
||||
#include <chrono>
|
||||
#include <vector>
|
||||
#include <mutex>
|
||||
#include <atomic>
|
||||
|
||||
#include "catch.hpp"
|
||||
#include "utils/sync/spinlock.hpp"
|
||||
|
||||
TEST_CASE("a thread can acquire and release the lock", "[spinlock]")
|
||||
{
|
||||
SpinLock lock;
|
||||
|
||||
lock.acquire();
|
||||
// i have a lock
|
||||
lock.release();
|
||||
{
|
||||
std::unique_lock<SpinLock> lock;
|
||||
// I HAS A LOCK!
|
||||
}
|
||||
|
||||
REQUIRE(true);
|
||||
}
|
||||
@ -24,14 +25,15 @@ void test_lock()
|
||||
{
|
||||
using namespace std::literals;
|
||||
|
||||
lock.acquire();
|
||||
x++;
|
||||
{
|
||||
std::unique_lock<SpinLock> guard(lock);
|
||||
x++;
|
||||
|
||||
REQUIRE(x < 2);
|
||||
std::this_thread::sleep_for(25ms);
|
||||
std::this_thread::sleep_for(25ms);
|
||||
|
||||
x--;
|
||||
lock.release();
|
||||
REQUIRE(x < 2);
|
||||
x--;
|
||||
}
|
||||
}
|
||||
|
||||
TEST_CASE("only one thread at a time can own the lock", "[spinlock]")
|
||||
|
@ -22,6 +22,10 @@ namespace xorshift
|
||||
|
||||
void init()
|
||||
{
|
||||
// TODO
|
||||
// not sure if this thread local means anything for other threads
|
||||
// fix this!!!!
|
||||
|
||||
// use a slow, more complex rnd generator to initialize a fast one
|
||||
// make sure to call this before requesting any random numbers!
|
||||
std::random_device rd;
|
||||
|
@ -17,6 +17,8 @@ private:
|
||||
|
||||
void SpinLock::lock()
|
||||
{
|
||||
// TODO add asm pause and counter first before sleeping
|
||||
// might be faster, but test this and see
|
||||
while(lock_flag.test_and_set(std::memory_order_acquire))
|
||||
usleep(250);
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user