Migrate timer to use walltime, instead of cputime

Summary:
 - Move some stuff to poc
 - Use steady_clock instead of system_clock

Reviewers: buda

Reviewed By: buda

Subscribers: pullbot

Differential Revision: https://phabricator.memgraph.io/D555
This commit is contained in:
Mislav Bradac 2017-07-14 19:33:45 +02:00
parent 7b7aad196a
commit 50cd53e5c9
10 changed files with 192 additions and 173 deletions

View File

@ -4,8 +4,8 @@
#include <glog/logging.h>
#include <gtest/gtest.h>
#include "timer.hpp"
#include "utils/assert.hpp"
#include "utils/timer.hpp"
using namespace std::chrono_literals;
using namespace utils;

157
poc/timer.hpp Normal file
View File

@ -0,0 +1,157 @@
#pragma once
#include <atomic>
#include <chrono>
#include <memory>
#include <set>
#include <thread>
#include <glog/logging.h>
namespace utils {
/**
* @class Timer
*
* @brief The timer contains counter and handler which is executed when the time
* exceedes.
*
* With every clock interval the counter should be decreased for
* delta count. Delta count is one for now but it should be a variable in the
* near future. The handler is function that will be called when counter
* becomes zero or smaller than zero.
*/
struct Timer {
using sptr = std::shared_ptr<Timer>;
using handler_t = std::function<void(void)>;
Timer(int64_t counter, handler_t handler)
: counter(counter), handler(handler) {}
bool operator--() {
if (--counter <= 0)
return true;
else
return false;
}
int64_t counter;
handler_t handler;
};
/**
* Timer container knows how to add a new timer and remove the
* existing container from itself. Also, time container object
* has the process method whose responsibility is to iterate
* over existing timers and call the appropriate handler function.
* The handler method could be called on the same thread, on a
* separate thread or on a thread pool, that is implementation detail of
* the process method.
*/
/**
* @class TimerSet
*
* @brief Trivial timer container implementation.
*
* Internal data stucture for storage of timers is std::set. So, the
* related timer complexities are:
* insertion: O(log(n))
* deletion: O(log(n))
* process: O(n)
*/
class TimerSet {
public:
void add(Timer::sptr timer) { timers.insert(timer); }
void remove(Timer::sptr timer) { timers.erase(timer); }
uint64_t size() const { return timers.size(); }
void process() {
for (auto it = timers.begin(); it != timers.end();) {
auto timer = *it;
if (--*timer) {
timer->handler();
it = timers.erase(it);
continue;
}
++it;
}
}
private:
std::set<std::shared_ptr<Timer>> timers;
};
/**
* @class TimerScheduler
*
* @brief TimerScheduler is a manager class and its responsibility is to
* take care of the time and call the timer_container process method in the
* appropriate time.
*
* @tparam timer_container_type implements a strategy how the timers
* are processed
* @tparam delta_time_type type of a time distance between two events
* @tparam delta_time granularity between the two events, default value is 1
*/
template <typename timer_container_type, typename delta_time_type,
uint64_t delta_time = 1>
class TimerScheduler {
public:
/**
* Adds a timer.
*
* @param timer shared pointer to the timer object \ref Timer
*/
void add(Timer::sptr timer) { timer_container.add(timer); }
/**
* Removes a timer.
*
* @param timer shared pointer to the timer object \ref Timer
*/
void remove(Timer::sptr timer) { timer_container.remove(timer); }
/**
* Provides the number of pending timers. The exact number has to be
* provided by a timer_container.
*
* @return uint64_t the number of pending timers.
*/
uint64_t size() const { return timer_container.size(); }
/**
* Runs a separate thread which responsibility is to run the process method
* at the appropriate time (every delta_time from the beginning of
* processing.
*/
void run() {
is_running.store(true);
run_thread = std::thread([this]() {
while (is_running.load()) {
std::this_thread::sleep_for(delta_time_type(delta_time));
timer_container.process();
DLOG(INFO) << "timer_container.process()";
}
});
}
/**
* Stops the whole processing.
*/
void stop() { is_running.store(false); }
/**
* Joins the processing thread.
*/
~TimerScheduler() { run_thread.join(); }
private:
timer_container_type timer_container;
std::thread run_thread;
std::atomic<bool> is_running;
};
}

View File

@ -72,7 +72,7 @@ GraphDb::GraphDb(const std::string &name, const fs::path &snapshot_db_dir)
tx_engine_.ForEachActiveTransaction([](tx::Transaction &t) {
if (t.creation_time() +
std::chrono::seconds(FLAGS_query_execution_time_sec) <
std::chrono::system_clock::now()) {
std::chrono::steady_clock::now()) {
t.set_should_abort();
};
});

View File

@ -14,6 +14,7 @@ namespace fs = std::experimental::filesystem;
#include "query/plan_interface.hpp"
#include "utils/datetime/timestamp.hpp"
#include "utils/dynamic_lib.hpp"
#include "utils/timer.hpp"
DECLARE_bool(interpret);
DECLARE_string(compile_directory);
@ -71,13 +72,18 @@ class QueryEngine {
return true;
}
clock_t start_time = clock();
utils::Timer parsing_timer;
query::StrippedQuery stripped(query);
clock_t end_parsing_time = clock();
auto parsing_time = parsing_timer.Elapsed();
utils::Timer planning_timer;
auto plan = LoadCypher(stripped);
clock_t end_planning_time = clock();
auto planning_time = planning_timer.Elapsed();
utils::Timer execution_timer;
auto result = plan->run(db_accessor, stripped.literals(), stream);
clock_t end_execution_time = clock();
auto execution_time = execution_timer.Elapsed();
if (UNLIKELY(!result)) {
// info because it might be something like deadlock in which
// case one thread is stopped and user has try again
@ -91,13 +97,11 @@ class QueryEngine {
};
std::map<std::string, query::TypedValue> summary;
summary["query_parsing_time"] = time_second(start_time, end_parsing_time);
summary["query_parsing_time"] = parsing_time.count();
// This doesn't do any actual planning, but benchmarking harness knows how
// to work with this field.
summary["query_planning_time"] =
time_second(end_parsing_time, end_planning_time);
summary["query_plan_execution_time"] =
time_second(end_planning_time, end_execution_time);
summary["query_planning_time"] = planning_time.count();
summary["query_plan_execution_time"] = execution_time.count();
summary["type"] = "rw";
stream.Summary(summary);

View File

@ -15,6 +15,7 @@
#include "query/interpret/frame.hpp"
#include "query/plan/cost_estimator.hpp"
#include "query/plan/planner.hpp"
#include "utils/timer.hpp"
// TODO: Remove ast_cache flag and add flag that limits cache size.
DECLARE_bool(ast_cache);
@ -28,8 +29,7 @@ class Interpreter {
template <typename Stream>
void Interpret(const std::string &query, GraphDbAccessor &db_accessor,
Stream &stream) {
clock_t start_time = clock();
utils::Timer frontend_timer;
Config config;
Context ctx(config, db_accessor);
std::map<std::string, TypedValue> summary;
@ -69,9 +69,9 @@ class Interpreter {
}
return it->second.Plug(stripped.literals(), stripped.named_expressions());
}();
auto frontend_time = frontend_timer.Elapsed();
clock_t frontend_end_time = clock();
utils::Timer planning_timer;
// symbol table fill
SymbolTable symbol_table;
SymbolGenerator symbol_generator(symbol_table);
@ -106,9 +106,9 @@ class Interpreter {
// generate frame based on symbol table max_position
Frame frame(symbol_table.max_position());
auto planning_time = planning_timer.Elapsed();
clock_t planning_end_time = clock();
utils::Timer execution_timer;
std::vector<std::string> header;
std::vector<Symbol> output_symbols(
logical_plan->OutputSymbols(symbol_table));
@ -144,19 +144,16 @@ class Interpreter {
} else {
throw QueryRuntimeException("Unknown top level LogicalOperator");
}
clock_t execution_end_time = clock();
auto execution_time = execution_timer.Elapsed();
// helper function for calculating time in seconds
auto time_second = [](clock_t start, clock_t end) {
return TypedValue(double(end - start) / CLOCKS_PER_SEC);
};
summary["query_parsing_time"] = time_second(start_time, frontend_end_time);
summary["query_planning_time"] =
time_second(frontend_end_time, planning_end_time);
summary["query_plan_execution_time"] =
time_second(planning_end_time, execution_end_time);
summary["query_parsing_time"] = frontend_time.count();
summary["query_planning_time"] = planning_time.count();
summary["query_plan_execution_time"] = execution_time.count();
summary["query_cost_estimate"] = query_plan_cost_estimation;
// TODO: set summary['type'] based on transaction metadata

View File

@ -10,7 +10,7 @@
#include <unistd.h>
#include "threading/sync/lock_timeout_exception.hpp"
#include "utils/cpu_relax.hpp"
#include "threading/sync/cpu_relax.hpp"
namespace sys {
inline int futex(void *addr1, int op, int val1, const struct timespec *timeout,

View File

@ -3,7 +3,7 @@
#include <unistd.h>
#include <atomic>
#include "utils/cpu_relax.hpp"
#include "threading/sync/cpu_relax.hpp"
/**
* @class SpinLock

View File

@ -83,7 +83,7 @@ class Transaction {
// should stop execution, it is only a hint, transaction can disobey.
std::atomic<bool> should_abort_{false};
// Creation time.
const std::chrono::time_point<std::chrono::system_clock> creation_time_{
std::chrono::system_clock::now()};
const std::chrono::time_point<std::chrono::steady_clock> creation_time_{
std::chrono::steady_clock::now()};
};
}

View File

@ -1,157 +1,18 @@
#pragma once
#include <atomic>
#include <chrono>
#include <memory>
#include <set>
#include <thread>
#include <glog/logging.h>
namespace utils {
/**
* @class Timer
*
* @brief The timer contains counter and handler which is executed when the time
* exceedes.
*
* With every clock interval the counter should be decreased for
* delta count. Delta count is one for now but it should be a variable in the
* near future. The handler is function that will be called when counter
* becomes zero or smaller than zero.
*/
struct Timer {
using sptr = std::shared_ptr<Timer>;
using handler_t = std::function<void(void)>;
Timer(int64_t counter, handler_t handler)
: counter(counter), handler(handler) {}
bool operator--() {
if (--counter <= 0)
return true;
else
return false;
}
int64_t counter;
handler_t handler;
};
/**
* Timer container knows how to add a new timer and remove the
* existing container from itself. Also, time container object
* has the process method whose responsibility is to iterate
* over existing timers and call the appropriate handler function.
* The handler method could be called on the same thread, on a
* separate thread or on a thread pool, that is implementation detail of
* the process method.
*/
/**
* @class TimerSet
*
* @brief Trivial timer container implementation.
*
* Internal data stucture for storage of timers is std::set. So, the
* related timer complexities are:
* insertion: O(log(n))
* deletion: O(log(n))
* process: O(n)
*/
class TimerSet {
class Timer {
public:
void add(Timer::sptr timer) { timers.insert(timer); }
void remove(Timer::sptr timer) { timers.erase(timer); }
uint64_t size() const { return timers.size(); }
void process() {
for (auto it = timers.begin(); it != timers.end();) {
auto timer = *it;
if (--*timer) {
timer->handler();
it = timers.erase(it);
continue;
}
++it;
}
/** Time elapsed since creation. */
std::chrono::duration<double> Elapsed() {
return std::chrono::steady_clock::now() - start_time_;
}
private:
std::set<std::shared_ptr<Timer>> timers;
std::chrono::time_point<std::chrono::steady_clock> start_time_ =
std::chrono::steady_clock::now();
};
/**
* @class TimerScheduler
*
* @brief TimerScheduler is a manager class and its responsibility is to
* take care of the time and call the timer_container process method in the
* appropriate time.
*
* @tparam timer_container_type implements a strategy how the timers
* are processed
* @tparam delta_time_type type of a time distance between two events
* @tparam delta_time granularity between the two events, default value is 1
*/
template <typename timer_container_type, typename delta_time_type,
uint64_t delta_time = 1>
class TimerScheduler {
public:
/**
* Adds a timer.
*
* @param timer shared pointer to the timer object \ref Timer
*/
void add(Timer::sptr timer) { timer_container.add(timer); }
/**
* Removes a timer.
*
* @param timer shared pointer to the timer object \ref Timer
*/
void remove(Timer::sptr timer) { timer_container.remove(timer); }
/**
* Provides the number of pending timers. The exact number has to be
* provided by a timer_container.
*
* @return uint64_t the number of pending timers.
*/
uint64_t size() const { return timer_container.size(); }
/**
* Runs a separate thread which responsibility is to run the process method
* at the appropriate time (every delta_time from the beginning of
* processing.
*/
void run() {
is_running.store(true);
run_thread = std::thread([this]() {
while (is_running.load()) {
std::this_thread::sleep_for(delta_time_type(delta_time));
timer_container.process();
DLOG(INFO) << "timer_container.process()";
}
});
}
/**
* Stops the whole processing.
*/
void stop() { is_running.store(false); }
/**
* Joins the processing thread.
*/
~TimerScheduler() { run_thread.join(); }
private:
timer_container_type timer_container;
std::thread run_thread;
std::atomic<bool> is_running;
};
}