Initial version of new bolt encoder.

Reviewers: dgleich, buda

Reviewed By: buda

Subscribers: pullbot

Differential Revision: https://phabricator.memgraph.io/D104
This commit is contained in:
Matej Ferencevic 2017-03-22 15:53:30 +01:00
parent f505c76189
commit 3bf0bd40a7
11 changed files with 912 additions and 210 deletions

View File

@ -255,6 +255,8 @@ option(MANUAL_TESTS "Add manual test binaries" OFF)
message(STATUS "Add manual test binaries: ${MANUAL_TESTS}")
option(UNIT_TESTS "Add unit test binaries" OFF)
message(STATUS "Add unit test binaries: ${UNIT_TESTS}")
option(HARDCODED_TARGETS "Make hardcoded query targets" ON)
message(STATUS "Make hardcoded query targets: ${HARDCODED_TARGETS}")
option(TEST_COVERAGE "Generate coverage reports from unit tests" OFF)
message(STATUS "Generate coverage from unit tests: ${TEST_COVERAGE}")
# -----------------------------------------------------------------------------
@ -451,21 +453,23 @@ set_target_properties(__refactor_target PROPERTIES EXCLUDE_FROM_ALL 1)
# 2. query plan execution agains empty database and injected OutputStream
# 3. integration tests for all pilot/clients written in cucumber
# the following targets address only the first phase
file(GLOB __HARDCODED_SOURCES
${CMAKE_SOURCE_DIR}/tests/integration/hardcoded_query/*.cpp)
foreach(file_path ${__HARDCODED_SOURCES})
get_filename_component(file_name ${file_path} NAME_WE)
set(target_name __${file_name}_hardcoded_target)
add_executable(${target_name} ${CMAKE_SOURCE_DIR}/libs/__main.cpp
${file_path})
target_link_libraries(${target_name} memgraph_lib)
target_link_libraries(${target_name} fmt)
target_link_libraries(${target_name} Threads::Threads)
set_property(TARGET ${target_name} PROPERTY CXX_STANDARD ${cxx_standard})
set_target_properties(${target_name}
PROPERTIES RUNTIME_OUTPUT_DIRECTORY
"${CMAKE_BINARY_DIR}/__hardcoded_targets")
endforeach()
if(HARDCODED_TARGETS)
file(GLOB __HARDCODED_SOURCES
${CMAKE_SOURCE_DIR}/tests/integration/hardcoded_query/*.cpp)
foreach(file_path ${__HARDCODED_SOURCES})
get_filename_component(file_name ${file_path} NAME_WE)
set(target_name __${file_name}_hardcoded_target)
add_executable(${target_name} ${CMAKE_SOURCE_DIR}/libs/__main.cpp
${file_path})
target_link_libraries(${target_name} memgraph_lib)
target_link_libraries(${target_name} fmt)
target_link_libraries(${target_name} Threads::Threads)
set_property(TARGET ${target_name} PROPERTY CXX_STANDARD ${cxx_standard})
set_target_properties(${target_name}
PROPERTIES RUNTIME_OUTPUT_DIRECTORY
"${CMAKE_BINARY_DIR}/__hardcoded_targets")
endforeach()
endif()
get_target_cxx_flags(memgraph_lib compile_flags)
set(plan_compiler_flags_file ${build_include_dir}/query/plan_compiler_flags.hpp)

View File

@ -19,7 +19,7 @@ all_coverage_info=""
for dir in $binary_path/*.dir; do
pushd ${dir}
lcov --gcov-tool ${working_dir}/llvm-gcov -c -d . -o ${coverage_file}
lcov -r ${coverage_file} '/usr/*' '*/libs/*' -o ${coverage_file}
lcov -r ${coverage_file} '/usr/*' '*/libs/*' '*/tests/*' -o ${coverage_file}
all_coverage_info+=" -a ${working_dir}/${dir}/${coverage_file}"
popd
done

View File

@ -0,0 +1,80 @@
#pragma once
#include <cstring>
#include <memory>
#include <vector>
#include <algorithm>
#include "communication/bolt/v1/config.hpp"
#include "logging/default.hpp"
#include "utils/types/byte.hpp"
#include "utils/bswap.hpp"
namespace communication::bolt {
// maximum chunk size = 65536 bytes data
static constexpr size_t CHUNK_SIZE = 65536;
/**
* Bolt chunked buffer.
* Has methods for writing and flushing data.
* Writing data stores data in the internal buffer and flushing data sends
* the currently stored data to the Socket with prepended data length and
* appended chunk tail (0x00 0x00).
*
* @tparam Socket the output socket that should be used
*/
template <class Socket>
class ChunkedBuffer {
public:
ChunkedBuffer(Socket &socket) : socket_(socket), logger_(logging::log->logger("Chunked Buffer")) {}
void Write(const uint8_t* values, size_t n) {
logger_.trace("Write {} bytes", n);
// total size of the buffer is now bigger for n
size_ += n;
// reserve enough space for the new data
buffer_.reserve(size_);
// copy new data
std::copy(values, values + n, std::back_inserter(buffer_));
}
void Flush() {
size_t size = buffer_.size(), n = 0, pos = 0;
uint16_t head;
while (size > 0) {
head = n = std::min(CHUNK_SIZE, size);
head = bswap(head);
logger_.trace("Flushing chunk of {} bytes", n);
// TODO: implement better flushing strategy!
socket_.Write(reinterpret_cast<const uint8_t *>(&head), sizeof(head));
socket_.Write(buffer_.data() + pos, n);
head = 0;
socket_.Write(reinterpret_cast<const uint8_t *>(&head), sizeof(head));
size -= n;
pos += n;
}
// GC
// TODO: impelement a better strategy
buffer_.clear();
// clear size
size_ = 0;
}
private:
Socket& socket_;
Logger logger_;
std::vector<uint8_t> buffer_;
size_t size_{0};
};
}

View File

@ -0,0 +1,312 @@
#pragma once
#include "database/graph_db_accessor.hpp"
#include "logging/default.hpp"
#include "query/backend/cpp/typed_value.hpp"
#include "utils/bswap.hpp"
#include <string>
namespace communication::bolt {
static constexpr uint8_t TSTRING = 0, TLIST = 1, TMAP = 2;
static constexpr uint8_t type_tiny_marker[3] = { 0x80, 0x90, 0xA0 };
static constexpr uint8_t type_8_marker[3] = { 0xD0, 0xD4, 0xD8 };
static constexpr uint8_t type_16_marker[3] = { 0xD1, 0xD5, 0xD9 };
static constexpr uint8_t type_32_marker[3] = { 0xD2, 0xD6, 0xDA };
/**
* Bolt Encoder.
* Has public interfaces for writing Bolt specific response messages.
* Supported messages are: Record, Success, Failure and Ignored.
*
* @tparam Buffer the output buffer that should be used
* @tparam Socket the output socket that should be used
*/
template <typename Buffer, typename Socket>
class Encoder {
public:
Encoder(Socket& socket) : socket_(socket), buffer_(socket), logger_(logging::log->logger("communication::bolt::Encoder")) {}
/**
* Sends a Record message.
*
* From the Bolt v1 documentation:
* RecordMessage (signature=0x71) {
* List<Value> fields
* }
*
* @param values the fields list object that should be sent
*/
void MessageRecord(const std::vector<TypedValue>& values) {
// 0xB1 = struct 1; 0x71 = record signature
WriteRAW("\xB1\x71", 2);
WriteList(values);
buffer_.Flush();
}
/**
* Sends a Success message.
*
* From the Bolt v1 documentation:
* SuccessMessage (signature=0x70) {
* Map<String,Value> metadata
* }
*
* @param metadata the metadata map object that should be sent
*/
void MessageSuccess(const std::map<std::string, TypedValue>& metadata) {
// 0xB1 = struct 1; 0x70 = success signature
WriteRAW("\xB1\x70", 2);
WriteMap(metadata);
buffer_.Flush();
}
/**
* Sends a Failure message.
*
* From the Bolt v1 documentation:
* FailureMessage (signature=0x7F) {
* Map<String,Value> metadata
* }
*
* @param metadata the metadata map object that should be sent
*/
void MessageFailure(const std::map<std::string, TypedValue>& metadata) {
// 0xB1 = struct 1; 0x7F = failure signature
WriteRAW("\xB1\x7F", 2);
WriteMap(metadata);
buffer_.Flush();
}
/**
* Sends an Ignored message.
*
* From the bolt v1 documentation:
* IgnoredMessage (signature=0x7E) {
* Map<String,Value> metadata
* }
*
* @param metadata the metadata map object that should be sent
*/
void MessageIgnored(const std::map<std::string, TypedValue>& metadata) {
// 0xB1 = struct 1; 0x7E = ignored signature
WriteRAW("\xB1\x7E", 2);
WriteMap(metadata);
buffer_.Flush();
}
/**
* Sends an Ignored message.
*
* This function sends an ignored message without additional metadata.
*/
void MessageIgnored() {
// 0xB0 = struct 0; 0x7E = ignored signature
WriteRAW("\xB0\x7E", 2);
buffer_.Flush();
}
private:
Socket& socket_;
Buffer buffer_;
Logger logger_;
void WriteRAW(const uint8_t* data, uint64_t len) {
buffer_.Write(data, len);
}
void WriteRAW(const char* data, uint64_t len) {
WriteRAW((const uint8_t*) data, len);
}
void WriteRAW(const uint8_t data) {
WriteRAW(&data, 1);
}
template <class T>
void WriteValue(T value) {
value = bswap(value);
WriteRAW(reinterpret_cast<const uint8_t *>(&value), sizeof(value));
}
void WriteNull() {
// 0xC0 = null marker
WriteRAW(0xC0);
}
void WriteBool(const bool& value) {
if (value) {
// 0xC3 = true marker
WriteRAW(0xC3);
} else {
// 0xC2 = false marker
WriteRAW(0xC2);
}
}
void WriteInt(const int64_t& value) {
if (value >= -16L && value < 128L) {
WriteRAW(static_cast<uint8_t>(value));
} else if (value >= -128L && value < -16L) {
// 0xC8 = int8 marker
WriteRAW(0xC8);
WriteRAW(static_cast<uint8_t>(value));
} else if (value >= -32768L && value < 32768L) {
// 0xC9 = int16 marker
WriteRAW(0xC9);
WriteValue(static_cast<int16_t>(value));
} else if (value >= -2147483648L && value < 2147483648L) {
// 0xCA = int32 marker
WriteRAW(0xCA);
WriteValue(static_cast<int32_t>(value));
} else {
// 0xCB = int64 marker
WriteRAW(0xCB);
WriteValue(value);
}
}
void WriteDouble(const double& value) {
// 0xC1 = float64 marker
WriteRAW(0xC1);
WriteValue(*reinterpret_cast<const int64_t *>(&value));
}
void WriteTypeSize(const size_t size, const uint8_t typ) {
if (size <= 15) {
uint8_t len = size;
len &= 0x0F;
// tiny marker (+len)
WriteRAW(type_tiny_marker[typ] + len);
} else if (size <= 255) {
uint8_t len = size;
// 8 marker
WriteRAW(type_8_marker[typ]);
WriteRAW(len);
} else if (size <= 65536) {
uint16_t len = size;
// 16 marker
WriteRAW(type_16_marker[typ]);
WriteValue(len);
} else {
uint32_t len = size;
// 32 marker
WriteRAW(type_32_marker[typ]);
WriteValue(len);
}
}
void WriteString(const std::string& value) {
WriteTypeSize(value.size(), TSTRING);
WriteRAW(value.c_str(), value.size());
}
void WriteList(const std::vector<TypedValue>& value) {
WriteTypeSize(value.size(), TLIST);
for (auto& x: value) WriteTypedValue(x);
}
void WriteMap(const std::map<std::string, TypedValue>& value) {
WriteTypeSize(value.size(), TMAP);
for (auto& x: value) {
WriteString(x.first);
WriteTypedValue(x.second);
}
}
void WriteVertex(const VertexAccessor& vertex) {
// 0xB3 = struct 3; 0x4E = vertex signature
WriteRAW("\xB3\x4E", 2);
// IMPORTANT: here we write a hardcoded 0 because we don't
// use internal IDs, but need to give something to Bolt
// note that OpenCypher has no id(x) function, so the client
// should not be able to do anything with this value anyway
WriteInt(0);
// write labels
const auto& labels = vertex.labels();
WriteTypeSize(labels.size(), TLIST);
for (const auto& label : labels)
WriteString(vertex.db_accessor().label_name(label));
// write properties
const auto& props = vertex.Properties();
WriteTypeSize(props.size(), TMAP);
for (const auto& prop : props) {
WriteString(vertex.db_accessor().property_name(prop.first));
WriteTypedValue(prop.second);
}
}
void WriteEdge(const EdgeAccessor& edge) {
// 0xB5 = struct 5; 0x52 = edge signature
WriteRAW("\xB5\x52", 2);
// IMPORTANT: here we write a hardcoded 0 because we don't
// use internal IDs, but need to give something to Bolt
// note that OpenCypher has no id(x) function, so the client
// should not be able to do anything with this value anyway
WriteInt(0);
WriteInt(0);
WriteInt(0);
// write type
WriteString(edge.db_accessor().edge_type_name(edge.edge_type()));
// write properties
const auto& props = edge.Properties();
WriteTypeSize(props.size(), TMAP);
for (const auto& prop : props) {
WriteString(edge.db_accessor().property_name(prop.first));
WriteTypedValue(prop.second);
}
}
void WritePath() {
// TODO: this isn't implemented in the backend!
}
void WriteTypedValue(const TypedValue& value) {
switch(value.type()) {
case TypedValue::Type::Null:
WriteNull();
break;
case TypedValue::Type::Bool:
WriteBool(value.Value<bool>());
break;
case TypedValue::Type::Int:
WriteInt(value.Value<int64_t>());
break;
case TypedValue::Type::Double:
WriteDouble(value.Value<double>());
break;
case TypedValue::Type::String:
WriteString(value.Value<std::string>());
break;
case TypedValue::Type::List:
WriteList(value.Value<std::vector<TypedValue>>());
break;
case TypedValue::Type::Map:
WriteMap(value.Value<std::map<std::string, TypedValue>>());
break;
case TypedValue::Type::Vertex:
WriteVertex(value.Value<VertexAccessor>());
break;
case TypedValue::Type::Edge:
WriteEdge(value.Value<EdgeAccessor>());
break;
case TypedValue::Type::Path:
// TODO: this is not implemeted yet!
WritePath();
break;
}
}
};
}

View File

@ -0,0 +1,82 @@
#pragma once
#include "communication/bolt/v1/encoder/encoder.hpp"
#include "communication/bolt/v1/encoder/chunked_buffer.hpp"
#include "query/backend/cpp/typed_value.hpp"
#include "logging/default.hpp"
namespace communication::bolt {
/**
* A high level API for streaming a Bolt response. Exposes
* functionalities used by the compiler and query plans (which
* should not use any lower level API).
*
* @tparam Socket Socket used.
*/
template <typename Socket>
class ResultStream {
private:
using encoder_t = Encoder<ChunkedBuffer<Socket>, Socket>;
public:
// TODO add logging to this class
ResultStream(encoder_t &encoder) :
encoder_(encoder) {}
/**
* Writes a header. Typically a header is something like:
* [
* "Header1",
* "Header2",
* "Header3"
* ]
*
* @param fields the header fields that should be sent.
*/
void Header(const std::vector<std::string> &fields) {
std::vector<TypedValue> vec;
std::map<std::string, TypedValue> data;
for (auto& i : fields)
vec.push_back(TypedValue(i));
data.insert(std::make_pair(std::string("fields"), TypedValue(vec)));
encoder_.MessageSuccess(data);
}
/**
* Writes a result. Typically a result is something like:
* [
* Value1,
* Value2,
* Value3
* ]
* NOTE: The result fields should be in the same ordering that the header
* fields were sent in.
*
* @param values the values that should be sent
*/
void Result(std::vector<TypedValue> &values) {
encoder_.MessageRecord(values);
}
/**
* Writes a summary. Typically a summary is something like:
* {
* "type" : "r" | "rw" | ...,
* "stats": {
* "nodes_created": 12,
* "nodes_deleted": 0
* }
* }
*
* @param summary the summary map object that should be sent
*/
void Summary(const std::map<std::string, TypedValue> &summary) {
encoder_.MessageSuccess(summary);
}
private:
encoder_t& encoder_;
};
}

View File

@ -1,137 +0,0 @@
#pragma once
#include "communication/bolt/v1/serialization/bolt_serializer.hpp"
#include "query/backend/cpp/typed_value.hpp"
#include "logging/default.hpp"
namespace bolt {
/**
* A high level API for streaming a Bolt response. Exposes
* functionalities used by the compiler and query plans (which
* should not use any lower level API).
*
* @tparam TChunkedEncoder Type of chunked encoder used.
*/
// TODO templatisation on TChunkedEncoder might not be desired
// but makes the code a bit easer to understand because we know
// that this class uses a BoltEncoder (and not some arbitrary template)
// it helps the programmer, the compiler and the IDE
template <typename TChunkedEncoder>
class RecordStream {
public:
// TODO add logging to this class
RecordStream(BoltEncoder<TChunkedEncoder> &bolt_encoder)
: bolt_encoder_(bolt_encoder), serializer_(bolt_encoder) {}
void Header(const std::vector<std::string> &fields) {
bolt_encoder_.message_success();
bolt_encoder_.write_map_header(1);
bolt_encoder_.write_string("fields");
bolt_encoder_.write_list_header(fields.size());
for (auto &name : fields) {
bolt_encoder_.write_string(name);
}
Chunk();
Send();
}
void Result(std::vector<TypedValue> &values) {
bolt_encoder_.message_record();
Write(values);
Chunk();
Send();
}
/**
* Writes a summary. Typically a summary is something like:
* {
* "type" : "r" | "rw" | ...,
* "stats": {
* "nodes_created": 12,
* "nodes_deleted": 0
* }
* }
*
* @param value
*/
void Summary(const std::map<std::string, TypedValue> &summary) {
bolt_encoder_.message_success();
Write(summary);
Chunk();
}
private:
BoltEncoder<TChunkedEncoder> bolt_encoder_;
BoltSerializer<BoltEncoder<TChunkedEncoder>> serializer_;
/**
* Writes a TypedValue. Resolves it's type and uses
* encoder primitives to write exactly typed values.
*/
void Write(const TypedValue &value) {
switch (value.type()) {
case TypedValue::Type::Null:
bolt_encoder_.write_null();
break;
case TypedValue::Type::Bool:
bolt_encoder_.write(value.Value<bool>());
break;
case TypedValue::Type::Int:
bolt_encoder_.write(value.Value<int64_t>());
break;
case TypedValue::Type::Double:
bolt_encoder_.write(value.Value<double>());
break;
case TypedValue::Type::String:
bolt_encoder_.write(value.Value<std::string>());
break;
case TypedValue::Type::List:
Write(value.Value<std::vector<TypedValue>>());
break;
case TypedValue::Type::Map:
Write(value.Value<std::map<std::string, TypedValue>>());
break;
case TypedValue::Type::Vertex:
serializer_.write(value.Value<VertexAccessor>());
break;
case TypedValue::Type::Edge:
serializer_.write(value.Value<EdgeAccessor>());
break;
default:
throw std::runtime_error(
"Serialization not implemented for given type");
}
}
void Write(const std::vector<TypedValue> &values) {
bolt_encoder_.write_list_header(values.size());
for (const auto &value : values) Write(value);
}
void Write(const std::map<std::string, TypedValue> &values) {
bolt_encoder_.write_map_header(values.size());
for (const auto &kv : values) {
bolt_encoder_.write(kv.first);
Write(kv.second);
}
}
void Send() {
// TODO expose these low level functions in the encoder
// be careful! ChunkedEncoder seems to have a 'flush()' function
// but that is different from it's underlying ChunkedBuffer's
// 'flush()' method
bolt_encoder_.flush();
}
void Chunk() {
// TODO expose these low level functions in the encoder
bolt_encoder_.write_chunk();
}
};
}

View File

@ -0,0 +1,46 @@
#define NDEBUG
#include "bolt_common.hpp"
#include "communication/bolt/v1/encoder/chunked_buffer.hpp"
constexpr const int SIZE = 131072;
uint8_t data[SIZE];
void verify_output(std::vector<uint8_t>& output, const uint8_t* data, uint64_t size) {
uint64_t len = 0, pos = 0;
uint8_t tail[2] = { 0, 0 };
uint16_t head;
while (size > 0) {
head = len = std::min(size, communication::bolt::CHUNK_SIZE);
head = bswap(head);
check_output(output, reinterpret_cast<uint8_t *>(&head), sizeof(head), false);
check_output(output, data + pos, len, false);
check_output(output, tail, 2, false);
size -= len;
pos += len;
}
check_output(output, nullptr, 0, true);
}
TEST(Bolt, ChunkedBuffer) {
TestSocket socket(10);
communication::bolt::ChunkedBuffer<TestSocket> chunked_buffer(socket);
std::vector<uint8_t>& output = socket.output;
for (int i = 0; i <= SIZE; i += 16) {
chunked_buffer.Write(data, i);
chunked_buffer.Flush();
verify_output(output, data, i);
}
}
int main(int argc, char** argv) {
initialize_data(data, SIZE);
logging::init_sync();
logging::log->pipe(std::make_unique<Stdout>());
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}

View File

@ -0,0 +1,72 @@
#include <array>
#include <cassert>
#include <cstring>
#include <iostream>
#include <vector>
#include "gtest/gtest.h"
#include "logging/default.hpp"
#include "logging/streams/stdout.hpp"
#include "dbms/dbms.hpp"
class TestSocket {
public:
TestSocket(int socket) : socket(socket) {}
TestSocket(const TestSocket& s) : socket(s.id()){};
TestSocket(TestSocket&& other) { *this = std::forward<TestSocket>(other); }
TestSocket& operator=(TestSocket&& other) {
this->socket = other.socket;
other.socket = -1;
return *this;
}
void Close() { socket = -1; }
bool IsOpen() { return socket != -1; }
int id() const { return socket; }
int Write(const std::string& str) { return Write(str.c_str(), str.size()); }
int Write(const char* data, size_t len) {
return Write(reinterpret_cast<const uint8_t*>(data), len);
}
int Write(const uint8_t* data, size_t len) {
for (int i = 0; i < len; ++i) output.push_back(data[i]);
return len;
}
std::vector<uint8_t> output;
protected:
int socket;
};
void print_output(std::vector<uint8_t>& output) {
fprintf(stderr, "output: ");
for (int i = 0; i < output.size(); ++i) {
fprintf(stderr, "%02X ", output[i]);
}
fprintf(stderr, "\n");
}
void check_output(std::vector<uint8_t>& output, const uint8_t* data,
uint64_t len, bool clear = true) {
if (clear) ASSERT_EQ(len, output.size());
else ASSERT_LE(len, output.size());
for (int i = 0; i < len; ++i)
EXPECT_EQ(output[i], data[i]);
if (clear) output.clear();
else output.erase(output.begin(), output.begin() + len);
}
void initialize_data(uint8_t* data, size_t size) {
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<> dis(0, 255);
for (int i = 0; i < size; ++i) {
data[i] = dis(gen);
}
}

249
tests/unit/bolt_encoder.cpp Normal file
View File

@ -0,0 +1,249 @@
#include "bolt_common.hpp"
#include "communication/bolt/v1/encoder/encoder.hpp"
#include "database/graph_db.hpp"
#include "database/graph_db_accessor.hpp"
#include "query/backend/cpp/typed_value.hpp"
class TestBuffer {
public:
TestBuffer(TestSocket& socket) : socket_(socket) {}
void Write(const uint8_t* data, size_t n) {
socket_.Write(data, n);
}
void Flush() {}
private:
TestSocket& socket_;
};
const int64_t int_input[] = { 0, -1, -8, -16, 1, 63, 127, -128, -20, -17, -32768, -12345, -129, 128, 12345, 32767, -2147483648L, -12345678L, -32769L, 32768L, 12345678L, 2147483647L, -9223372036854775807L, -12345678912345L, -2147483649L, 2147483648L, 12345678912345L, 9223372036854775807 };
const uint8_t int_output[][10] = { "\x00", "\xFF", "\xF8", "\xF0", "\x01", "\x3F", "\x7F", "\xC8\x80", "\xC8\xEC", "\xC8\xEF", "\xC9\x80\x00", "\xC9\xCF\xC7", "\xC9\xFF\x7F", "\xC9\x00\x80", "\xC9\x30\x39", "\xC9\x7F\xFF", "\xCA\x80\x00\x00\x00", "\xCA\xFF\x43\x9E\xB2", "\xCA\xFF\xFF\x7F\xFF", "\xCA\x00\x00\x80\x00", "\xCA\x00\xBC\x61\x4E", "\xCA\x7F\xFF\xFF\xFF", "\xCB\x80\x00\x00\x00\x00\x00\x00\x01", "\xCB\xFF\xFF\xF4\xC5\x8C\x31\xA4\xA7", "\xCB\xFF\xFF\xFF\xFF\x7F\xFF\xFF\xFF", "\xCB\x00\x00\x00\x00\x80\x00\x00\x00", "\xCB\x00\x00\x0B\x3A\x73\xCE\x5B\x59", "\xCB\x7F\xFF\xFF\xFF\xFF\xFF\xFF\xFF" };
const uint32_t int_output_len[] = { 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5, 9, 9, 9, 9, 9, 9 };
const double double_input[] = { 5.834, 108.199, 43677.9882, 254524.5851 };
const uint8_t double_output[][10] = { "\xC1\x40\x17\x56\x04\x18\x93\x74\xBC", "\xC1\x40\x5B\x0C\xBC\x6A\x7E\xF9\xDB", "\xC1\x40\xE5\x53\xBF\x9F\x55\x9B\x3D", "\xC1\x41\x0F\x11\xE4\xAE\x48\xE8\xA7"};
const uint8_t vertexedge_output[] = "\xB1\x71\x93\xB3\x4E\x00\x92\x86\x6C\x61\x62\x65\x6C\x31\x86\x6C\x61\x62\x65\x6C\x32\xA2\x85\x70\x72\x6F\x70\x31\x0C\x85\x70\x72\x6F\x70\x32\xC9\x00\xC8\xB3\x4E\x00\x90\xA0\xB5\x52\x00\x00\x00\x88\x65\x64\x67\x65\x74\x79\x70\x65\xA2\x85\x70\x72\x6F\x70\x33\x2A\x85\x70\x72\x6F\x70\x34\xC9\x04\xD2";
constexpr const int SIZE = 131072;
uint8_t data[SIZE];
const uint64_t sizes[] = { 0, 1, 5, 15, 16, 120, 255, 256, 12345, 65535, 65536, 100000 };
const uint64_t sizes_num = 12;
constexpr const int STRING = 0, LIST = 1, MAP = 2;
const uint8_t type_tiny_magic[] = { 0x80, 0x90, 0xA0 };
const uint8_t type_8_magic[] = { 0xD0, 0xD4, 0xD8 };
const uint8_t type_16_magic[] = { 0xD1, 0xD5, 0xD9 };
const uint8_t type_32_magic[] = { 0xD2, 0xD6, 0xDA };
void check_type_size(std::vector<uint8_t>& v, int typ, uint64_t size) {
if (size <= 15) {
uint8_t len = size;
len &= 0x0F;
len += type_tiny_magic[typ];
check_output(v, &len, 1, false);
} else if (size <= 255) {
uint8_t len = size;
check_output(v, &type_8_magic[typ], 1, false);
check_output(v, &len, 1, false);
} else if (size <= 65536) {
uint16_t len = size;
len = bswap(len);
check_output(v, &type_16_magic[typ], 1, false);
check_output(v, reinterpret_cast<const uint8_t*> (&len), 2, false);
} else {
uint32_t len = size;
len = bswap(len);
check_output(v, &type_32_magic[typ], 1, false);
check_output(v, reinterpret_cast<const uint8_t*> (&len), 4, false);
}
}
void check_record_header(std::vector<uint8_t>& v, uint64_t size) {
check_output(v, (const uint8_t*) "\xB1\x71", 2, false);
check_type_size(v, LIST, size);
}
TestSocket socket(10);
communication::bolt::Encoder<TestBuffer, TestSocket> bolt_encoder(socket);
std::vector<uint8_t>& output = socket.output;
TEST(BoltEncoder, NullAndBool) {
std::vector<TypedValue> vals;
vals.push_back(TypedValue::Null);
vals.push_back(TypedValue(true));
vals.push_back(TypedValue(false));
bolt_encoder.MessageRecord(vals);
check_record_header(output, 3);
check_output(output, (const uint8_t*) "\xC0\xC3\xC2", 3);
}
TEST(BoltEncoder, Int) {
int N = 28;
std::vector<TypedValue> vals;
for (int i = 0; i < N; ++i)
vals.push_back(TypedValue(int_input[i]));
bolt_encoder.MessageRecord(vals);
check_record_header(output, N);
for (int i = 0; i < N; ++i)
check_output(output, int_output[i], int_output_len[i], false);
check_output(output, nullptr, 0);
}
TEST(BoltEncoder, Double) {
int N = 4;
std::vector<TypedValue> vals;
for (int i = 0; i < N; ++i)
vals.push_back(TypedValue(double_input[i]));
bolt_encoder.MessageRecord(vals);
check_record_header(output, N);
for (int i = 0; i < N; ++i)
check_output(output, double_output[i], 9, false);
check_output(output, nullptr, 0);
}
TEST(BoltEncoder, String) {
std::vector<TypedValue> vals;
for (int i = 0; i < sizes_num; ++i)
vals.push_back(TypedValue(std::string((const char*) data, sizes[i])));
bolt_encoder.MessageRecord(vals);
check_record_header(output, vals.size());
for (int i = 0; i < sizes_num; ++i) {
check_type_size(output, STRING, sizes[i]);
check_output(output, data, sizes[i], false);
}
check_output(output, nullptr, 0);
}
TEST(BoltEncoder, List) {
std::vector<TypedValue> vals;
for (int i = 0; i < sizes_num; ++i) {
std::vector<TypedValue> val;
for (int j = 0; j < sizes[i]; ++j)
val.push_back(TypedValue(std::string((const char*) &data[j], 1)));
vals.push_back(TypedValue(val));
}
bolt_encoder.MessageRecord(vals);
check_record_header(output, vals.size());
for (int i = 0; i < sizes_num; ++i) {
check_type_size(output, LIST, sizes[i]);
for (int j = 0; j < sizes[i]; ++j) {
check_type_size(output, STRING, 1);
check_output(output, &data[j], 1, false);
}
}
check_output(output, nullptr, 0);
}
TEST(BoltEncoder, Map) {
std::vector<TypedValue> vals;
uint8_t buff[10];
for (int i = 0; i < sizes_num; ++i) {
std::map<std::string, TypedValue> val;
for (int j = 0; j < sizes[i]; ++j) {
sprintf((char*) buff, "%05X", j);
std::string tmp((char*) buff, 5);
val.insert(std::make_pair(tmp, TypedValue(tmp)));
}
vals.push_back(TypedValue(val));
}
bolt_encoder.MessageRecord(vals);
check_record_header(output, vals.size());
for (int i = 0; i < sizes_num; ++i) {
check_type_size(output, MAP, sizes[i]);
for (int j = 0; j < sizes[i]; ++j) {
sprintf((char*) buff, "%05X", j);
check_type_size(output, STRING, 5);
check_output(output, buff, 5, false);
check_type_size(output, STRING, 5);
check_output(output, buff, 5, false);
}
}
check_output(output, nullptr, 0);
}
TEST(BoltEncoder, VertexAndEdge) {
// create vertex
Dbms dbms;
auto db_accessor = dbms.active();
auto va1 = db_accessor.insert_vertex();
auto va2 = db_accessor.insert_vertex();
std::string l1("label1"), l2("label2");
va1.add_label(&l1);
va1.add_label(&l2);
std::string p1("prop1"), p2("prop2");
PropertyValue pv1(12), pv2(200);
va1.PropsSet(&p1, pv1);
va1.PropsSet(&p2, pv2);
// create edge
std::string et("edgetype");
auto ea = db_accessor.insert_edge(va1, va2, &et);
std::string p3("prop3"), p4("prop4");
PropertyValue pv3(42), pv4(1234);
ea.PropsSet(&p3, pv3);
ea.PropsSet(&p4, pv4);
// check everything
std::vector<TypedValue> vals;
vals.push_back(TypedValue(va1));
vals.push_back(TypedValue(va2));
vals.push_back(TypedValue(ea));
bolt_encoder.MessageRecord(vals);
check_output(output, vertexedge_output, 74);
}
TEST(BoltEncoder, BoltV1ExampleMessages) {
// this test checks example messages from: http://boltprotocol.org/v1/
// record message
std::vector<TypedValue> rvals;
for (int i = 1; i < 4; ++i) rvals.push_back(TypedValue(i));
bolt_encoder.MessageRecord(rvals);
check_output(output, (const uint8_t*) "\xB1\x71\x93\x01\x02\x03", 6);
// success message
std::string sv1("name"), sv2("age"), sk("fields");
std::vector<TypedValue> svec;
svec.push_back(TypedValue(sv1));
svec.push_back(TypedValue(sv2));
TypedValue slist(svec);
std::map<std::string, TypedValue> svals;
svals.insert(std::make_pair(sk, slist));
bolt_encoder.MessageSuccess(svals);
check_output(output, (const uint8_t*) "\xB1\x70\xA1\x86\x66\x69\x65\x6C\x64\x73\x92\x84\x6E\x61\x6D\x65\x83\x61\x67\x65", 20);
// failure message
std::string fv1("Neo.ClientError.Statement.SyntaxError"), fv2("Invalid syntax.");
std::string fk1("code"), fk2("message");
TypedValue ftv1(fv1), ftv2(fv2);
std::map<std::string, TypedValue> fvals;
fvals.insert(std::make_pair(fk1, ftv1));
fvals.insert(std::make_pair(fk2, ftv2));
bolt_encoder.MessageFailure(fvals);
check_output(output, (const uint8_t*) "\xB1\x7F\xA2\x84\x63\x6F\x64\x65\xD0\x25\x4E\x65\x6F\x2E\x43\x6C\x69\x65\x6E\x74\x45\x72\x72\x6F\x72\x2E\x53\x74\x61\x74\x65\x6D\x65\x6E\x74\x2E\x53\x79\x6E\x74\x61\x78\x45\x72\x72\x6F\x72\x87\x6D\x65\x73\x73\x61\x67\x65\x8F\x49\x6E\x76\x61\x6C\x69\x64\x20\x73\x79\x6E\x74\x61\x78\x2E", 71);
// ignored message
bolt_encoder.MessageIgnored();
check_output(output, (const uint8_t*) "\xB0\x7E", 2);
}
int main(int argc, char** argv) {
initialize_data(data, SIZE);
logging::init_sync();
logging::log->pipe(std::make_unique<Stdout>());
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}

View File

@ -0,0 +1,50 @@
#include "bolt_common.hpp"
#include "communication/bolt/v1/encoder/chunked_buffer.hpp"
#include "communication/bolt/v1/encoder/encoder.hpp"
#include "communication/bolt/v1/encoder/result_stream.hpp"
#include "query/backend/cpp/typed_value.hpp"
using buffer_t = communication::bolt::ChunkedBuffer<TestSocket>;
using encoder_t = communication::bolt::Encoder<buffer_t, TestSocket>;
using result_stream_t = communication::bolt::ResultStream<TestSocket>;
const uint8_t header_output[] = "\x00\x29\xB1\x70\xA1\x86\x66\x69\x65\x6C\x64\x73\x9A\x82\x61\x61\x82\x62\x62\x82\x63\x63\x82\x64\x64\x82\x65\x65\x82\x66\x66\x82\x67\x67\x82\x68\x68\x82\x69\x69\x82\x6A\x6A\x00\x00";
const uint8_t result_output[] = "\x00\x0A\xB1\x71\x92\x05\x85\x68\x65\x6C\x6C\x6F\x00\x00";
const uint8_t summary_output[] = "\x00\x0C\xB1\x70\xA1\x87\x63\x68\x61\x6E\x67\x65\x64\x0A\x00\x00";
TEST(Bolt, ResultStream) {
TestSocket socket(10);
encoder_t encoder(socket);
result_stream_t result_stream(encoder);
std::vector<uint8_t>& output = socket.output;
std::vector<std::string> headers;
for (int i = 0; i < 10; ++i) headers.push_back(std::string(2, (char)('a' + i)));
result_stream.Header(headers);
print_output(output);
check_output(output, header_output, 45);
std::vector<TypedValue> result{TypedValue(5), TypedValue(std::string("hello"))};
result_stream.Result(result);
print_output(output);
check_output(output, result_output, 14);
std::map<std::string, TypedValue> summary;
summary.insert(std::make_pair(std::string("changed"), TypedValue(10)));
result_stream.Summary(summary);
print_output(output);
check_output(output, summary_output, 16);
}
int main(int argc, char** argv) {
logging::init_sync();
logging::log->pipe(std::make_unique<Stdout>());
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}

View File

@ -1,49 +1,9 @@
#include <array>
#include <cassert>
#include <cstring>
#include <iostream>
#include <vector>
#include "gtest/gtest.h"
#include "logging/streams/stdout.hpp"
#include "bolt_common.hpp"
#include "communication/bolt/v1/serialization/record_stream.hpp"
#include "communication/bolt/v1/session.hpp"
#include "dbms/dbms.hpp"
#include "query/engine.hpp"
class TestSocket {
public:
TestSocket(int socket) : socket(socket) {}
TestSocket(const TestSocket& s) : socket(s.id()){};
TestSocket(TestSocket&& other) { *this = std::forward<TestSocket>(other); }
TestSocket& operator=(TestSocket&& other) {
this->socket = other.socket;
other.socket = -1;
return *this;
}
void Close() { socket = -1; }
bool IsOpen() { return socket != -1; }
int id() const { return socket; }
int Write(const std::string& str) { return Write(str.c_str(), str.size()); }
int Write(const char* data, size_t len) {
return Write(reinterpret_cast<const uint8_t*>(data), len);
}
int Write(const uint8_t* data, size_t len) {
for (int i = 0; i < len; ++i) output.push_back(data[i]);
return len;
}
std::vector<uint8_t> output;
protected:
int socket;
};
const uint8_t handshake_req[] =
"\x60\x60\xb0\x17\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
@ -60,22 +20,6 @@ const uint8_t run_req[] =
"\x61\x6d\x65\x3a\x20\x32\x39\x33\x38\x33\x7d\x29\x20\x52\x45\x54\x55\x52"
"\x4e\x20\x6e\xa0\x00\x00";
void print_output(std::vector<uint8_t>& output) {
fprintf(stderr, "output: ");
for (int i = 0; i < output.size(); ++i) {
fprintf(stderr, "%02X ", output[i]);
}
fprintf(stderr, "\n");
}
void check_output(std::vector<uint8_t>& output, const uint8_t* data,
uint64_t len) {
EXPECT_EQ(len, output.size());
for (int i = 0; i < len; ++i) {
EXPECT_EQ(output[i], data[i]);
}
output.clear();
}
TEST(Bolt, Session) {
Dbms dbms;