memgraph/tests/concurrent/common.h

308 lines
9.7 KiB
C
Raw Normal View History

#include "stdio.h"
#include "stdlib.h"
#include "string.h"
#include <chrono>
#include <future>
#include <iostream>
#include <random>
#include <thread>
2016-08-03 00:05:10 +08:00
#include "data_structures/bitset/dynamic_bitset.hpp"
#include "data_structures/concurrent/concurrent_map.hpp"
#include "data_structures/concurrent/concurrent_multimap.hpp"
#include "data_structures/concurrent/concurrent_multiset.hpp"
#include "data_structures/concurrent/concurrent_set.hpp"
#include "data_structures/concurrent/skiplist.hpp"
2016-09-14 00:53:40 +08:00
#include "data_structures/concurrent/concurrent_list.hpp"
#include "data_structures/static_array.hpp"
#include "utils/assert.hpp"
#include "logging/default.hpp"
#include "logging/streams/stdout.hpp"
#include "utils/sysinfo/memory.hpp"
// Sets max number of threads that will be used in concurrent tests.
constexpr int max_no_threads=8;
using std::cout;
using std::endl;
using map_t = ConcurrentMap<int, int>;
using set_t = ConcurrentSet<int>;
using multiset_t = ConcurrentMultiSet<int>;
using multimap_t = ConcurrentMultiMap<int, int>;
using namespace std::chrono_literals;
2016-07-31 18:40:38 +08:00
// Returns uniform random size_t generator from range [0,n>
auto rand_gen(size_t n)
{
std::default_random_engine generator;
std::uniform_int_distribution<size_t> distribution(0, n - 1);
return std::bind(distribution, generator);
}
// Returns random bool generator with distribution of 1 true for n false.
auto rand_gen_bool(size_t n = 1)
{
auto gen = rand_gen(n + 1);
return [=]() mutable { return gen() == 0; };
}
2016-07-31 18:40:38 +08:00
// Checks for all owned keys if there data is data.
template <typename S>
void check_present_same(typename S::Accessor &acc, size_t data,
std::vector<size_t> &owned)
{
for (auto num : owned) {
permanent_assert(acc.find(num)->second == data,
"My data is present and my");
}
}
// Checks for all owned.second keys if there data is owned.first.
template <typename S>
void check_present_same(typename S::Accessor &acc,
std::pair<size_t, std::vector<size_t>> &owned)
{
check_present_same<S>(acc, owned.first, owned.second);
}
2016-07-31 18:40:38 +08:00
// Checks if reported size and traversed size are equal to given size.
template <typename S>
2016-09-14 00:53:40 +08:00
void check_size_list(S &acc, long long size)
{
// check size
permanent_assert(acc.size() == size, "Size should be " << size
<< ", but size is "
<< acc.size());
// check count
size_t iterator_counter = 0;
for (auto elem : acc) {
++iterator_counter;
}
permanent_assert(iterator_counter == size, "Iterator count should be "
<< size << ", but size is "
<< iterator_counter);
}
template <typename S>
void check_size(typename S::Accessor &acc, long long size)
{
// check size
permanent_assert(acc.size() == size, "Size should be " << size
<< ", but size is "
<< acc.size());
// check count
size_t iterator_counter = 0;
for (auto elem : acc) {
++iterator_counter;
}
permanent_assert(iterator_counter == size, "Iterator count should be "
<< size << ", but size is "
<< iterator_counter);
}
2016-09-14 00:53:40 +08:00
// Checks if order in list is maintened. It expects map
template <typename S>
void check_order(typename S::Accessor &acc)
{
if (acc.begin() != acc.end()) {
auto last = acc.begin()->first;
for (auto elem : acc) {
if (!(last <= elem))
std::cout << "Order isn't maintained. Before was: " << last
<< " next is " << elem.first << "\n";
last = elem.first;
}
}
}
void check_zero(size_t key_range, long array[], const char *str)
{
for (int i = 0; i < key_range; i++) {
permanent_assert(array[i] == 0,
str << " doesn't hold it's guarantees. It has "
<< array[i] << " extra elements.");
}
}
2016-08-03 00:05:10 +08:00
void check_set(DynamicBitset<> &db, std::vector<bool> &set)
{
for (int i = 0; i < set.size(); i++) {
permanent_assert(!(set[i] ^ db.at(i)),
"Set constraints aren't fullfilled.");
}
}
// Checks multiIterator and iterator guarantees
void check_multi_iterator(multimap_t::Accessor &accessor, size_t key_range,
long set[])
{
for (int i = 0; i < key_range; i++) {
auto it = accessor.find(i);
auto it_m = accessor.find_multi(i);
permanent_assert(
!(it_m != accessor.end(i) && it == accessor.end()),
"MultiIterator ended before Iterator. Set: " << set[i]);
permanent_assert(
!(it_m == accessor.end(i) && it != accessor.end()),
"Iterator ended before MultiIterator. Set: " << set[i]);
permanent_assert((it_m == accessor.end(i) && it == accessor.end()) ||
it->second == it_m->second,
"MultiIterator didn't found the same "
"first element. Set: "
<< set[i]);
if (set[i] > 0) {
for (int j = 0; j < set[i]; j++) {
permanent_assert(
it->second == it_m->second,
"MultiIterator and iterator aren't on the same "
"element.");
permanent_assert(it_m->first == i,
"MultiIterator is showing illegal data") it++;
it_m++;
}
}
permanent_assert(
it_m == accessor.end(i),
"There is more data than it should be in MultiIterator. "
<< it_m->first << "\n");
}
}
2016-07-31 18:40:38 +08:00
// Runs given function in threads_no threads and returns vector of futures for
// there
// results.
template <class R, typename S>
std::vector<std::future<std::pair<size_t, R>>>
run(size_t threads_no, S &skiplist,
std::function<R(typename S::Accessor, size_t)> f)
{
std::vector<std::future<std::pair<size_t, R>>> futures;
for (size_t thread_i = 0; thread_i < threads_no; ++thread_i) {
std::packaged_task<std::pair<size_t, R>()> task(
[&skiplist, f, thread_i]() {
return std::pair<size_t, R>(thread_i,
f(skiplist.access(), thread_i));
}); // wrap the function
futures.push_back(task.get_future()); // get a future
std::thread(std::move(task)).detach();
}
return futures;
}
2016-08-03 00:05:10 +08:00
// Runs given function in threads_no threads and returns vector of futures for
// there
// results.
template <class R>
std::vector<std::future<std::pair<size_t, R>>> run(size_t threads_no,
std::function<R(size_t)> f)
{
std::vector<std::future<std::pair<size_t, R>>> futures;
for (size_t thread_i = 0; thread_i < threads_no; ++thread_i) {
std::packaged_task<std::pair<size_t, R>()> task([f, thread_i]() {
return std::pair<size_t, R>(thread_i, f(thread_i));
}); // wrap the function
futures.push_back(task.get_future()); // get a future
std::thread(std::move(task)).detach();
}
return futures;
}
2016-07-31 18:40:38 +08:00
// Collects all data from futures.
template <class R>
auto collect(std::vector<std::future<R>> &collect)
{
std::vector<R> collection;
for (auto &fut : collect) {
collection.push_back(fut.get());
}
return collection;
}
2016-08-03 00:05:10 +08:00
std::vector<bool> collect_set(
std::vector<std::future<std::pair<size_t, std::vector<bool>>>> &&futures)
{
std::vector<bool> set;
for (auto &data : collect(futures)) {
set.resize(data.second.size());
for (int i = 0; i < data.second.size(); i++) {
set[i] = set[i] | data.second[i];
}
}
return set;
}
2016-07-31 18:40:38 +08:00
// Returns object which tracs in owned which (key,data) where added and
// downcounts.
template <class K, class D, class S>
auto insert_try(typename S::Accessor &acc, long long &downcount,
std::vector<K> &owned)
{
return [&](K key, D data) mutable {
if (acc.insert(key, data).second) {
downcount--;
owned.push_back(key);
}
};
}
2016-07-31 18:40:38 +08:00
// Helper function.
int parseLine(char *line)
{
// This assumes that a digit will be found and the line ends in " Kb".
int i = strlen(line);
const char *p = line;
while (*p < '0' || *p > '9')
p++;
line[i - 3] = '\0';
i = atoi(p);
return i;
}
2016-07-31 18:40:38 +08:00
// Returns currentlz used memory in kB.
int currently_used_memory()
{ // Note: this value is in KB!
FILE *file = fopen("/proc/self/status", "r");
int result = -1;
char line[128];
while (fgets(line, 128, file) != NULL) {
if (strncmp(line, "VmSize:", 7) == 0) {
result = parseLine(line);
break;
}
}
fclose(file);
return result;
}
2016-07-31 18:40:38 +08:00
// Performs memory check to determine if memory usage before calling given
// function
// is aproximately equal to memory usage after function. Memory usage is thread
// senstive so no_threads spawned in function is necessary.
void memory_check(size_t no_threads, std::function<void()> f)
{
long long start = currently_used_memory();
f();
long long leaked =
currently_used_memory() - start -
no_threads * 73732; // OS sensitive, 73732 size allocated for thread
std::cout << "leaked: " << leaked << "\n";
permanent_assert(leaked <= 0, "Memory leak check");
}
//Initializes loging faccilityes
void init_log(){
logging::init_async();
logging::log->pipe(std::make_unique<Stdout>());
}