memgraph/tests/unit/distributed_updates.cpp

583 lines
18 KiB
C++
Raw Normal View History

#include <functional>
#include <unordered_map>
#include <gtest/gtest.h>
#include "database/graph_db_accessor.hpp"
#include "distributed/updates_rpc_clients.hpp"
#include "distributed/updates_rpc_server.hpp"
#include "query/typed_value.hpp"
#include "storage/property_value.hpp"
#include "distributed_common.hpp"
class DistributedUpdateTest : public DistributedGraphDbTest {
protected:
DistributedUpdateTest() : DistributedGraphDbTest("update") {}
std::unique_ptr<database::GraphDbAccessor> dba1;
std::unique_ptr<database::GraphDbAccessor> dba2;
storage::Label label;
std::unique_ptr<VertexAccessor> v1_dba1;
std::unique_ptr<VertexAccessor> v1_dba2;
void SetUp() override {
DistributedGraphDbTest::SetUp();
database::GraphDbAccessor dba_tx1{worker(1)};
auto v = dba_tx1.InsertVertex();
auto v_ga = v.GlobalAddress();
dba_tx1.Commit();
dba1 = std::make_unique<database::GraphDbAccessor>(worker(1));
dba2 = std::make_unique<database::GraphDbAccessor>(worker(2),
dba1->transaction_id());
v1_dba1 = std::make_unique<VertexAccessor>(v_ga, *dba1);
v1_dba2 = std::make_unique<VertexAccessor>(v_ga, *dba2);
ASSERT_FALSE(v1_dba2->address().is_local());
label = dba1->Label("l");
v1_dba2->add_label(label);
}
void TearDown() override {
dba2 = nullptr;
dba1 = nullptr;
DistributedGraphDbTest::TearDown();
}
};
#define EXPECT_LABEL(var, old_result, new_result) \
{ \
var->SwitchOld(); \
EXPECT_EQ(var->has_label(label), old_result); \
var->SwitchNew(); \
EXPECT_EQ(var->has_label(label), new_result); \
}
TEST_F(DistributedUpdateTest, UpdateLocalOnly) {
EXPECT_LABEL(v1_dba2, false, true);
EXPECT_LABEL(v1_dba1, false, false);
}
TEST_F(DistributedUpdateTest, UpdateApply) {
EXPECT_LABEL(v1_dba1, false, false);
worker(1).updates_server().Apply(dba1->transaction_id());
EXPECT_LABEL(v1_dba1, false, true);
}
#undef EXPECT_LABEL
class DistributedGraphDbSimpleUpdatesTest : public DistributedGraphDbTest {
public:
DistributedGraphDbSimpleUpdatesTest()
: DistributedGraphDbTest("simple_updates") {}
};
TEST_F(DistributedGraphDbSimpleUpdatesTest, CreateVertex) {
gid::Gid gid;
{
database::GraphDbAccessor dba{worker(1)};
auto v = dba.InsertVertexIntoRemote(2, {}, {});
gid = v.gid();
dba.Commit();
}
{
database::GraphDbAccessor dba{worker(2)};
auto v = dba.FindVertexOptional(gid, false);
ASSERT_TRUE(v);
}
}
TEST_F(DistributedGraphDbSimpleUpdatesTest, CreateVertexWithUpdate) {
gid::Gid gid;
storage::Property prop;
{
database::GraphDbAccessor dba{worker(1)};
auto v = dba.InsertVertexIntoRemote(2, {}, {});
gid = v.gid();
prop = dba.Property("prop");
v.PropsSet(prop, 42);
worker(2).updates_server().Apply(dba.transaction_id());
dba.Commit();
}
{
database::GraphDbAccessor dba{worker(2)};
auto v = dba.FindVertexOptional(gid, false);
ASSERT_TRUE(v);
EXPECT_EQ(v->PropsAt(prop).Value<int64_t>(), 42);
}
}
TEST_F(DistributedGraphDbSimpleUpdatesTest, CreateVertexWithData) {
gid::Gid gid;
storage::Label l1;
storage::Label l2;
storage::Property prop;
{
database::GraphDbAccessor dba{worker(1)};
l1 = dba.Label("l1");
l2 = dba.Label("l2");
prop = dba.Property("prop");
auto v = dba.InsertVertexIntoRemote(2, {l1, l2}, {{prop, 42}});
gid = v.gid();
// Check local visibility before commit.
EXPECT_TRUE(v.has_label(l1));
EXPECT_TRUE(v.has_label(l2));
EXPECT_EQ(v.PropsAt(prop).Value<int64_t>(), 42);
worker(2).updates_server().Apply(dba.transaction_id());
dba.Commit();
}
{
database::GraphDbAccessor dba{worker(2)};
auto v = dba.FindVertexOptional(gid, false);
ASSERT_TRUE(v);
// Check remote data after commit.
EXPECT_TRUE(v->has_label(l1));
EXPECT_TRUE(v->has_label(l2));
EXPECT_EQ(v->PropsAt(prop).Value<int64_t>(), 42);
}
}
// Checks if expiring a local record for a local update before applying a remote
// update delta causes a problem
TEST_F(DistributedGraphDbSimpleUpdatesTest, UpdateVertexRemoteAndLocal) {
gid::Gid gid;
storage::Label l1;
storage::Label l2;
{
database::GraphDbAccessor dba{worker(1)};
auto v = dba.InsertVertex();
gid = v.gid();
l1 = dba.Label("label1");
l2 = dba.Label("label2");
dba.Commit();
}
{
database::GraphDbAccessor dba0{master()};
database::GraphDbAccessor dba1{worker(1), dba0.transaction_id()};
auto v_local = dba1.FindVertex(gid, false);
auto v_remote = VertexAccessor(storage::VertexAddress(gid, 1), dba0);
v_remote.add_label(l2);
v_local.add_label(l1);
auto result = worker(1).updates_server().Apply(dba0.transaction_id());
EXPECT_EQ(result, distributed::UpdateResult::DONE);
}
}
TEST_F(DistributedGraphDbSimpleUpdatesTest, AddSameLabelRemoteAndLocal) {
auto v_address = InsertVertex(worker(1));
{
database::GraphDbAccessor dba0{master()};
database::GraphDbAccessor dba1{worker(1), dba0.transaction_id()};
auto v_local = dba1.FindVertex(v_address.gid(), false);
auto v_remote = VertexAccessor(v_address, dba0);
auto l1 = dba1.Label("label");
v_remote.add_label(l1);
v_local.add_label(l1);
worker(1).updates_server().Apply(dba0.transaction_id());
dba0.Commit();
}
{
database::GraphDbAccessor dba0{master()};
database::GraphDbAccessor dba1{worker(1), dba0.transaction_id()};
auto v = dba1.FindVertex(v_address.gid(), false);
EXPECT_EQ(v.labels().size(), 1);
}
}
TEST_F(DistributedGraphDbSimpleUpdatesTest, IndexGetsUpdatedRemotely) {
storage::VertexAddress v_remote = InsertVertex(worker(1));
storage::Label label;
{
database::GraphDbAccessor dba0{master()};
label = dba0.Label("label");
VertexAccessor va(v_remote, dba0);
va.add_label(label);
worker(1).updates_server().Apply(dba0.transaction_id());
dba0.Commit();
}
{
database::GraphDbAccessor dba1{worker(1)};
auto vertices = dba1.Vertices(label, false);
EXPECT_EQ(std::distance(vertices.begin(), vertices.end()), 1);
}
}
TEST_F(DistributedGraphDbSimpleUpdatesTest, DeleteVertexRemoteCommit) {
auto v_address = InsertVertex(worker(1));
database::GraphDbAccessor dba0{master()};
database::GraphDbAccessor dba1{worker(1), dba0.transaction_id()};
auto v_remote = VertexAccessor(v_address, dba0);
dba0.RemoveVertex(v_remote);
EXPECT_TRUE(dba1.FindVertexOptional(v_address.gid(), true));
EXPECT_EQ(worker(1).updates_server().Apply(dba0.transaction_id()),
distributed::UpdateResult::DONE);
EXPECT_FALSE(dba1.FindVertexOptional(v_address.gid(), true));
}
TEST_F(DistributedGraphDbSimpleUpdatesTest, DeleteVertexRemoteBothDelete) {
auto v_address = InsertVertex(worker(1));
{
database::GraphDbAccessor dba0{master()};
database::GraphDbAccessor dba1{worker(1), dba0.transaction_id()};
auto v_local = dba1.FindVertex(v_address.gid(), false);
auto v_remote = VertexAccessor(v_address, dba0);
EXPECT_TRUE(dba1.RemoveVertex(v_local));
EXPECT_TRUE(dba0.RemoveVertex(v_remote));
EXPECT_EQ(worker(1).updates_server().Apply(dba0.transaction_id()),
distributed::UpdateResult::DONE);
EXPECT_FALSE(dba1.FindVertexOptional(v_address.gid(), true));
}
}
TEST_F(DistributedGraphDbSimpleUpdatesTest, DeleteVertexRemoteStillConnected) {
auto v_address = InsertVertex(worker(1));
auto e_address = InsertEdge(v_address, v_address, "edge");
{
database::GraphDbAccessor dba0{master()};
database::GraphDbAccessor dba1{worker(1), dba0.transaction_id()};
auto v_remote = VertexAccessor(v_address, dba0);
dba0.RemoveVertex(v_remote);
EXPECT_EQ(worker(1).updates_server().Apply(dba0.transaction_id()),
distributed::UpdateResult::UNABLE_TO_DELETE_VERTEX_ERROR);
EXPECT_TRUE(dba1.FindVertexOptional(v_address.gid(), true));
}
{
database::GraphDbAccessor dba0{master()};
database::GraphDbAccessor dba1{worker(1), dba0.transaction_id()};
auto e_local = dba1.FindEdge(e_address.gid(), false);
auto v_local = dba1.FindVertex(v_address.gid(), false);
auto v_remote = VertexAccessor(v_address, dba0);
dba1.RemoveEdge(e_local);
dba0.RemoveVertex(v_remote);
EXPECT_EQ(worker(1).updates_server().Apply(dba0.transaction_id()),
distributed::UpdateResult::DONE);
EXPECT_FALSE(dba1.FindVertexOptional(v_address.gid(), true));
}
}
class DistributedDetachDeleteTest : public DistributedGraphDbTest {
protected:
DistributedDetachDeleteTest() : DistributedGraphDbTest("detach_delete") {}
storage::VertexAddress w1_a;
storage::VertexAddress w1_b;
storage::VertexAddress w2_a;
void SetUp() override {
DistributedGraphDbTest::SetUp();
w1_a = InsertVertex(worker(1));
w1_b = InsertVertex(worker(1));
w2_a = InsertVertex(worker(2));
}
template <typename TF>
void Run(storage::VertexAddress v_address, TF check_func) {
for (int i : {0, 1, 2}) {
database::GraphDbAccessor dba0{master()};
database::GraphDbAccessor dba1{worker(1), dba0.transaction_id()};
database::GraphDbAccessor dba2{worker(2), dba0.transaction_id()};
std::vector<std::reference_wrapper<database::GraphDbAccessor>> dba;
dba.emplace_back(dba0);
dba.emplace_back(dba1);
dba.emplace_back(dba2);
auto &accessor = dba[i].get();
auto v_accessor = VertexAccessor(v_address, accessor);
accessor.DetachRemoveVertex(v_accessor);
for (auto db_accessor : dba) {
Split GraphDb to distributed and single node files Summary: This change, hopefully, simplifies the implementation of different kinds of GraphDb. The pimpl idiom is now simplified by removing all of the crazy inheritance. Implementations classes are just plain data stores, without any methods. The interface classes now have a more flat hierarchy: ``` GraphDb (pure interface) | +----+---------- DistributedGraphDb (pure interface) | | Single Node +-----+------+ | | Master Worker ``` DistributedGraphDb is used as an intermediate interface for all the things that should work only in distributed. Therefore, virtual calls for distributed stuff have been removed from GraphDb. Some are exposed via DistributedGraphDb, other's are only in concrete Master and Worker classes. The code which relied on those virtual calls has been refactored to either use DistributedGraphDb, take a pointer to what is actually needed or use dynamic_cast. Obviously, dynamic_cast is a temporary solution and should be replaced with another mechanism (e.g. virtual call, or some other function pointer style). The cost of the above change is some code duplication in constructors and destructors of classes. This duplication has a lot of little tweaks that make it hard to generalize, not to mention that virtual calls do not work in constructor and destructor. If we really care about generalizing this, we should think about abandoning RAII in favor of constructor + Init method. The next steps for splitting the dependencies that seem logical are: 1) Split GraphDbAccessor implementation, either via inheritance or passing in an implementation pointer. GraphDbAccessor should then only be created by a virtual call on GraphDb. 2) Split Interpreter implementation. Besides allowing single node interpreter to exist without depending on distributed, this will enable the planner and operators to be correctly separated. Reviewers: msantl, mferencevic, ipaljak Reviewed By: msantl Subscribers: dgleich, pullbot Differential Revision: https://phabricator.memgraph.io/D1493
2018-07-19 23:00:50 +08:00
distributed::UpdatesRpcServer *updates_server = nullptr;
auto *db = &db_accessor.get().db();
if (auto *distributed_db =
dynamic_cast<database::DistributedGraphDb *>(db)) {
updates_server = &distributed_db->updates_server();
}
ASSERT_TRUE(updates_server);
ASSERT_EQ(updates_server->Apply(dba[0].get().transaction_id()),
distributed::UpdateResult::DONE);
}
check_func(dba);
}
}
};
TEST_F(DistributedDetachDeleteTest, VertexCycle) {
auto e_address = InsertEdge(w1_a, w1_a, "edge");
Run(w1_a,
[this, e_address](
std::vector<std::reference_wrapper<database::GraphDbAccessor>> &dba) {
EXPECT_FALSE(dba[1].get().FindVertexOptional(w1_a.gid(), true));
EXPECT_FALSE(dba[1].get().FindEdgeOptional(e_address.gid(), true));
});
}
TEST_F(DistributedDetachDeleteTest, TwoVerticesDifferentWorkers) {
auto e_address = InsertEdge(w1_a, w2_a, "edge");
// Delete from
Run(w1_a,
[this, e_address](
std::vector<std::reference_wrapper<database::GraphDbAccessor>> &dba) {
EXPECT_FALSE(dba[1].get().FindVertexOptional(w1_a.gid(), true));
EXPECT_TRUE(dba[2].get().FindVertexOptional(w2_a.gid(), true));
EXPECT_FALSE(dba[1].get().FindEdgeOptional(e_address.gid(), true));
});
// Delete to
Run(w2_a,
[this, e_address](
std::vector<std::reference_wrapper<database::GraphDbAccessor>> &dba) {
EXPECT_TRUE(dba[1].get().FindVertexOptional(w1_a.gid(), true));
EXPECT_FALSE(dba[2].get().FindVertexOptional(w2_a.gid(), true));
EXPECT_FALSE(dba[1].get().FindEdgeOptional(e_address.gid(), true));
});
}
TEST_F(DistributedDetachDeleteTest, TwoVerticesSameWorkers) {
auto e_address = InsertEdge(w1_a, w1_b, "edge");
// Delete from
Run(w1_a,
[this, e_address](
std::vector<std::reference_wrapper<database::GraphDbAccessor>> &dba) {
EXPECT_FALSE(dba[1].get().FindVertexOptional(w1_a.gid(), true));
EXPECT_TRUE(dba[1].get().FindVertexOptional(w1_b.gid(), true));
EXPECT_FALSE(dba[1].get().FindEdgeOptional(e_address.gid(), true));
});
// Delete to
Run(w1_b,
[this, e_address](
std::vector<std::reference_wrapper<database::GraphDbAccessor>> &dba) {
EXPECT_TRUE(dba[1].get().FindVertexOptional(w1_a.gid(), true));
EXPECT_FALSE(dba[1].get().FindVertexOptional(w1_b.gid(), true));
EXPECT_FALSE(dba[1].get().FindEdgeOptional(e_address.gid(), true));
});
}
class DistributedEdgeCreateTest : public DistributedGraphDbTest {
protected:
DistributedEdgeCreateTest() : DistributedGraphDbTest("edge_create") {}
storage::VertexAddress w1_a;
storage::VertexAddress w1_b;
storage::VertexAddress w2_a;
std::unordered_map<std::string, PropertyValue> props{{"p1", 42},
{"p2", true}};
storage::EdgeAddress e_ga;
void SetUp() override {
DistributedGraphDbTest::SetUp();
w1_a = InsertVertex(worker(1));
w1_b = InsertVertex(worker(1));
w2_a = InsertVertex(worker(2));
}
void CreateEdge(database::GraphDb &creator, storage::VertexAddress from_addr,
storage::VertexAddress to_addr) {
CHECK(from_addr.is_remote() && to_addr.is_remote())
<< "Local address given to CreateEdge";
database::GraphDbAccessor dba{creator};
auto edge_type = dba.EdgeType("et");
VertexAccessor v1{from_addr, dba};
VertexAccessor v2{to_addr, dba};
auto edge = dba.InsertEdge(v1, v2, edge_type);
e_ga = edge.GlobalAddress();
for (auto &kv : props) edge.PropsSet(dba.Property(kv.first), kv.second);
master().updates_server().Apply(dba.transaction_id());
worker(1).updates_server().Apply(dba.transaction_id());
worker(2).updates_server().Apply(dba.transaction_id());
dba.Commit();
}
void CheckState(database::GraphDb &db, bool edge_is_local,
storage::VertexAddress from_addr,
storage::VertexAddress to_addr) {
database::GraphDbAccessor dba{db};
// Check edge data.
{
EdgeAccessor edge{e_ga, dba};
EXPECT_EQ(edge.address().is_local(), edge_is_local);
EXPECT_EQ(edge.GlobalAddress(), e_ga);
auto from = edge.from();
EXPECT_EQ(from.GlobalAddress(), from_addr);
EXPECT_EQ(edge.from_addr().is_local(), from.is_local());
auto to = edge.to();
EXPECT_EQ(to.GlobalAddress(), to_addr);
EXPECT_EQ(edge.to_addr().is_local(), to.is_local());
EXPECT_EQ(edge.Properties().size(), props.size());
for (auto &kv : props) {
auto equality = edge.PropsAt(dba.Property(kv.first)) ==
query::TypedValue(kv.second);
EXPECT_TRUE(equality.IsBool() && equality.ValueBool());
}
}
auto edges = [](auto iterable) {
std::vector<EdgeAccessor> res;
for (auto edge : iterable) res.emplace_back(edge);
return res;
};
// Check `from` data.
{
VertexAccessor from{from_addr, dba};
ASSERT_EQ(edges(from.out()).size(), 1);
EXPECT_EQ(edges(from.out())[0].GlobalAddress(), e_ga);
// In case of cycles we have 1 in the `in` edges.
EXPECT_EQ(edges(from.in()).size(), from_addr == to_addr);
}
// Check `to` data.
{
VertexAccessor to{to_addr, dba};
// In case of cycles we have 1 in the `out` edges.
EXPECT_EQ(edges(to.out()).size(), from_addr == to_addr);
ASSERT_EQ(edges(to.in()).size(), 1);
EXPECT_EQ(edges(to.in())[0].GlobalAddress(), e_ga);
}
}
void CheckAll(storage::VertexAddress from_addr,
storage::VertexAddress to_addr) {
int edge_worker = from_addr.worker_id();
EXPECT_EQ(EdgeCount(master()), edge_worker == 0);
EXPECT_EQ(EdgeCount(worker(1)), edge_worker == 1);
EXPECT_EQ(EdgeCount(worker(2)), edge_worker == 2);
CheckState(master(), edge_worker == 0, from_addr, to_addr);
CheckState(worker(1), edge_worker == 1, from_addr, to_addr);
CheckState(worker(2), edge_worker == 2, from_addr, to_addr);
}
};
TEST_F(DistributedEdgeCreateTest, LocalRemote) {
CreateEdge(worker(1), w1_a, w2_a);
CheckAll(w1_a, w2_a);
}
TEST_F(DistributedEdgeCreateTest, RemoteLocal) {
CreateEdge(worker(2), w1_a, w2_a);
CheckAll(w1_a, w2_a);
}
TEST_F(DistributedEdgeCreateTest, RemoteRemoteDifferentWorkers) {
CreateEdge(master(), w1_a, w2_a);
CheckAll(w1_a, w2_a);
}
TEST_F(DistributedEdgeCreateTest, RemoteRemoteSameWorkers) {
CreateEdge(master(), w1_a, w1_b);
CheckAll(w1_a, w1_b);
}
TEST_F(DistributedEdgeCreateTest, RemoteRemoteCycle) {
CreateEdge(master(), w1_a, w1_a);
CheckAll(w1_a, w1_a);
}
class DistributedEdgeRemoveTest : public DistributedGraphDbTest {
protected:
DistributedEdgeRemoveTest() : DistributedGraphDbTest("edge_remove") {}
storage::VertexAddress from_addr;
storage::VertexAddress to_addr;
storage::EdgeAddress edge_addr;
void Create(database::GraphDb &from_db, database::GraphDb &to_db) {
from_addr = InsertVertex(from_db);
to_addr = InsertVertex(to_db);
edge_addr = InsertEdge(from_addr, to_addr, "edge_type");
}
void Delete(database::GraphDb &db) {
database::GraphDbAccessor dba{db};
EdgeAccessor edge{edge_addr, dba};
dba.RemoveEdge(edge);
master().updates_server().Apply(dba.transaction_id());
worker(1).updates_server().Apply(dba.transaction_id());
worker(2).updates_server().Apply(dba.transaction_id());
dba.Commit();
}
template <typename TIterable>
auto Size(TIterable iterable) {
return std::distance(iterable.begin(), iterable.end());
};
void CheckCreation() {
auto wid = from_addr.worker_id();
ASSERT_TRUE(wid >= 0 && wid < 3);
ASSERT_EQ(EdgeCount(master()), wid == 0);
ASSERT_EQ(EdgeCount(worker(1)), wid == 1);
ASSERT_EQ(EdgeCount(worker(2)), wid == 2);
database::GraphDbAccessor dba{master()};
VertexAccessor from{from_addr, dba};
EXPECT_EQ(Size(from.out()), 1);
EXPECT_EQ(Size(from.in()), 0);
VertexAccessor to{to_addr, dba};
EXPECT_EQ(Size(to.out()), 0);
EXPECT_EQ(Size(to.in()), 1);
}
void CheckDeletion() {
EXPECT_EQ(EdgeCount(master()), 0);
EXPECT_EQ(EdgeCount(worker(1)), 0);
EXPECT_EQ(EdgeCount(worker(2)), 0);
database::GraphDbAccessor dba{master()};
VertexAccessor from{from_addr, dba};
EXPECT_EQ(Size(from.out()), 0);
EXPECT_EQ(Size(from.in()), 0);
VertexAccessor to{to_addr, dba};
EXPECT_EQ(Size(to.out()), 0);
EXPECT_EQ(Size(to.in()), 0);
}
};
TEST_F(DistributedEdgeRemoveTest, DifferentVertexOwnersRemoteDelete) {
Create(worker(1), worker(2));
CheckCreation();
Delete(master());
CheckDeletion();
}
TEST_F(DistributedEdgeRemoveTest, DifferentVertexOwnersFromDelete) {
Create(worker(1), worker(2));
CheckCreation();
Delete(worker(1));
CheckDeletion();
}
TEST_F(DistributedEdgeRemoveTest, DifferentVertexOwnersToDelete) {
Create(worker(1), worker(2));
CheckCreation();
Delete(worker(2));
CheckDeletion();
}
TEST_F(DistributedEdgeRemoveTest, SameVertexOwnersRemoteDelete) {
Create(worker(1), worker(1));
CheckCreation();
Delete(worker(2));
CheckDeletion();
}