memgraph/tests/macro_benchmark/groups/card_fraud/setup.py

48 lines
1.6 KiB
Python
Raw Normal View History

import random
def init_data(card_count, pos_count):
print("UNWIND range(0, {} - 1) AS id "
"CREATE (:Card {{id: id, compromised: false}});".format(
card_count))
print("UNWIND range(0, {} - 1) AS id "
"CREATE (:Pos {{id: id, compromised: false}});".format(
pos_count))
def compromise_pos_device(pos_id):
print("MATCH (p:Pos {{id: {}}}) SET p.compromised = true;".format(pos_id))
def compromise_pos_devices(pos_count, fraud_count):
for pos_id in random.sample(range(pos_count), fraud_count):
compromise_pos_device(pos_id)
def pump_transactions(card_count, pos_count, tx_count, report_pct):
# Create transactions. If the POS is compromised, then the
# Card of the transaction gets compromised too. If the card
# is compromised, there is a 0.1 chance the transaction is
# fraudulent and detected (regardless of POS).
q = ("MATCH (c:Card {{id: {}}}), (p:Pos {{id: {}}}) "
"CREATE (t:Transaction "
"{{id: {}, fraud_reported: c.compromised AND (rand() < %f)}}) "
"CREATE (c)<-[:Using]-(t)-[:At]->(p) "
"SET c.compromised = p.compromised;" % report_pct)
def rint(max): return random.randint(0, max - 1) # NOQA
for i in range(tx_count):
print(q.format(rint(card_count), rint(pos_count), i))
POS_COUNT = 1000
CARD_COUNT = 10000
FRAUD_POS_COUNT = 20
TX_COUNT = 50000
REPORT_PCT = 0.1
random.seed(12345)
init_data(CARD_COUNT, POS_COUNT)
compromise_pos_devices(POS_COUNT, FRAUD_POS_COUNT)
pump_transactions(CARD_COUNT, POS_COUNT, TX_COUNT, REPORT_PCT)