memgraph/tests/unit/interpreter.cpp

467 lines
17 KiB
C++
Raw Normal View History

#include <cstdlib>
#include "communication/bolt/v1/value.hpp"
#include "communication/result_stream_faker.hpp"
#include "glue/communication.hpp"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "query/exceptions.hpp"
#include "query/interpreter.hpp"
#include "query/typed_value.hpp"
#include "query_common.hpp"
namespace {
auto ToEdgeList(const communication::bolt::Value &v) {
std::vector<communication::bolt::Edge> list;
for (auto x : v.ValueList()) {
list.push_back(x.ValueEdge());
}
return list;
};
} // namespace
// TODO: This is not a unit test, but tests/integration dir is chaotic at the
// moment. After tests refactoring is done, move/rename this.
class InterpreterTest : public ::testing::Test {
protected:
storage::Storage db_;
query::InterpreterContext interpreter_context_{&db_};
query::Interpreter interpreter_{&interpreter_context_};
/**
* Execute the given query and commit the transaction.
*
* Return the query stream.
*/
auto Interpret(
const std::string &query,
const std::map<std::string, storage::PropertyValue> &params = {}) {
ResultStreamFaker stream(&db_);
auto [header, _] = interpreter_.Prepare(query, params);
stream.Header(header);
auto summary = interpreter_.PullAll(&stream);
stream.Summary(summary);
return stream;
}
};
// Run query with different ast twice to see if query executes correctly when
// ast is read from cache.
TEST_F(InterpreterTest, AstCache) {
{
auto stream = Interpret("RETURN 2 + 3");
ASSERT_EQ(stream.GetHeader().size(), 1U);
EXPECT_EQ(stream.GetHeader()[0], "2 + 3");
ASSERT_EQ(stream.GetResults().size(), 1U);
ASSERT_EQ(stream.GetResults()[0].size(), 1U);
ASSERT_EQ(stream.GetResults()[0][0].ValueInt(), 5);
}
{
// Cached ast, different literals.
auto stream = Interpret("RETURN 5 + 4");
ASSERT_EQ(stream.GetResults().size(), 1U);
ASSERT_EQ(stream.GetResults()[0].size(), 1U);
ASSERT_EQ(stream.GetResults()[0][0].ValueInt(), 9);
}
{
// Different ast (because of different types).
auto stream = Interpret("RETURN 5.5 + 4");
ASSERT_EQ(stream.GetResults().size(), 1U);
ASSERT_EQ(stream.GetResults()[0].size(), 1U);
ASSERT_EQ(stream.GetResults()[0][0].ValueDouble(), 9.5);
}
{
// Cached ast, same literals.
auto stream = Interpret("RETURN 2 + 3");
ASSERT_EQ(stream.GetResults().size(), 1U);
ASSERT_EQ(stream.GetResults()[0].size(), 1U);
ASSERT_EQ(stream.GetResults()[0][0].ValueInt(), 5);
}
{
// Cached ast, different literals.
auto stream = Interpret("RETURN 10.5 + 1");
ASSERT_EQ(stream.GetResults().size(), 1U);
ASSERT_EQ(stream.GetResults()[0].size(), 1U);
ASSERT_EQ(stream.GetResults()[0][0].ValueDouble(), 11.5);
}
{
// Cached ast, same literals, different whitespaces.
auto stream = Interpret("RETURN 10.5 + 1");
ASSERT_EQ(stream.GetResults().size(), 1U);
ASSERT_EQ(stream.GetResults()[0].size(), 1U);
ASSERT_EQ(stream.GetResults()[0][0].ValueDouble(), 11.5);
}
{
// Cached ast, same literals, different named header.
auto stream = Interpret("RETURN 10.5+1");
ASSERT_EQ(stream.GetHeader().size(), 1U);
EXPECT_EQ(stream.GetHeader()[0], "10.5+1");
ASSERT_EQ(stream.GetResults().size(), 1U);
ASSERT_EQ(stream.GetResults()[0].size(), 1U);
ASSERT_EQ(stream.GetResults()[0][0].ValueDouble(), 11.5);
}
}
// Run query with same ast multiple times with different parameters.
TEST_F(InterpreterTest, Parameters) {
{
auto stream =
Interpret("RETURN $2 + $`a b`", {{"2", storage::PropertyValue(10)},
{"a b", storage::PropertyValue(15)}});
ASSERT_EQ(stream.GetHeader().size(), 1U);
EXPECT_EQ(stream.GetHeader()[0], "$2 + $`a b`");
ASSERT_EQ(stream.GetResults().size(), 1U);
ASSERT_EQ(stream.GetResults()[0].size(), 1U);
ASSERT_EQ(stream.GetResults()[0][0].ValueInt(), 25);
}
{
// Not needed parameter.
auto stream =
Interpret("RETURN $2 + $`a b`", {{"2", storage::PropertyValue(10)},
{"a b", storage::PropertyValue(15)},
{"c", storage::PropertyValue(10)}});
ASSERT_EQ(stream.GetHeader().size(), 1U);
EXPECT_EQ(stream.GetHeader()[0], "$2 + $`a b`");
ASSERT_EQ(stream.GetResults().size(), 1U);
ASSERT_EQ(stream.GetResults()[0].size(), 1U);
ASSERT_EQ(stream.GetResults()[0][0].ValueInt(), 25);
}
{
// Cached ast, different parameters.
auto stream = Interpret("RETURN $2 + $`a b`",
{{"2", storage::PropertyValue("da")},
{"a b", storage::PropertyValue("ne")}});
ASSERT_EQ(stream.GetResults().size(), 1U);
ASSERT_EQ(stream.GetResults()[0].size(), 1U);
ASSERT_EQ(stream.GetResults()[0][0].ValueString(), "dane");
}
{
// Non-primitive literal.
auto stream = Interpret(
"RETURN $2",
{{"2", storage::PropertyValue(std::vector<storage::PropertyValue>{
storage::PropertyValue(5), storage::PropertyValue(2),
storage::PropertyValue(3)})}});
ASSERT_EQ(stream.GetResults().size(), 1U);
ASSERT_EQ(stream.GetResults()[0].size(), 1U);
auto result = query::test_common::ToIntList(
glue::ToTypedValue(stream.GetResults()[0][0]));
ASSERT_THAT(result, testing::ElementsAre(5, 2, 3));
}
{
// Cached ast, unprovided parameter.
ASSERT_THROW(
Interpret("RETURN $2 + $`a b`", {{"2", storage::PropertyValue("da")},
{"ab", storage::PropertyValue("ne")}}),
query::UnprovidedParameterError);
}
}
// Test bfs end to end.
TEST_F(InterpreterTest, Bfs) {
srand(0);
const auto kNumLevels = 10;
const auto kNumNodesPerLevel = 100;
const auto kNumEdgesPerNode = 100;
const auto kNumUnreachableNodes = 1000;
const auto kNumUnreachableEdges = 100000;
const auto kReachable = "reachable";
const auto kId = "id";
std::vector<std::vector<query::VertexAccessor>> levels(kNumLevels);
int id = 0;
// Set up.
{
auto storage_dba = db_.Access();
query::DbAccessor dba(&storage_dba);
auto add_node = [&](int level, bool reachable) {
auto node = dba.InsertVertex();
CHECK(node.SetProperty(dba.NameToProperty(kId),
storage::PropertyValue(id++))
.HasValue());
CHECK(node.SetProperty(dba.NameToProperty(kReachable),
storage::PropertyValue(reachable))
.HasValue());
levels[level].push_back(node);
return node;
};
auto add_edge = [&](auto &v1, auto &v2, bool reachable) {
auto edge = dba.InsertEdge(&v1, &v2, dba.NameToEdgeType("edge"));
CHECK(edge->SetProperty(dba.NameToProperty(kReachable),
storage::PropertyValue(reachable))
.HasValue());
};
// Add source node.
add_node(0, true);
// Add reachable nodes.
for (int i = 1; i < kNumLevels; ++i) {
for (int j = 0; j < kNumNodesPerLevel; ++j) {
auto node = add_node(i, true);
for (int k = 0; k < kNumEdgesPerNode; ++k) {
auto &node2 = levels[i - 1][rand() % levels[i - 1].size()];
add_edge(node2, node, true);
}
}
}
// Add unreachable nodes.
for (int i = 0; i < kNumUnreachableNodes; ++i) {
auto node = add_node(rand() % kNumLevels, // Not really important.
false);
for (int j = 0; j < kNumEdgesPerNode; ++j) {
auto &level = levels[rand() % kNumLevels];
auto &node2 = level[rand() % level.size()];
add_edge(node2, node, true);
add_edge(node, node2, true);
}
}
// Add unreachable edges.
for (int i = 0; i < kNumUnreachableEdges; ++i) {
auto &level1 = levels[rand() % kNumLevels];
auto &node1 = level1[rand() % level1.size()];
auto &level2 = levels[rand() % kNumLevels];
auto &node2 = level2[rand() % level2.size()];
add_edge(node1, node2, false);
}
ASSERT_FALSE(dba.Commit().HasError());
}
auto stream = Interpret(
"MATCH (n {id: 0})-[r *bfs..5 (e, n | n.reachable and "
"e.reachable)]->(m) RETURN n, r, m");
ASSERT_EQ(stream.GetHeader().size(), 3U);
EXPECT_EQ(stream.GetHeader()[0], "n");
EXPECT_EQ(stream.GetHeader()[1], "r");
EXPECT_EQ(stream.GetHeader()[2], "m");
ASSERT_EQ(stream.GetResults().size(), 5 * kNumNodesPerLevel);
auto dba = db_.Access();
int expected_level = 1;
int remaining_nodes_in_level = kNumNodesPerLevel;
std::unordered_set<int64_t> matched_ids;
for (const auto &result : stream.GetResults()) {
const auto &begin = result[0].ValueVertex();
const auto &edges = ToEdgeList(result[1]);
const auto &end = result[2].ValueVertex();
// Check that path is of expected length. Returned paths should be from
// shorter to longer ones.
EXPECT_EQ(edges.size(), expected_level);
// Check that starting node is correct.
EXPECT_EQ(edges.front().from, begin.id);
EXPECT_EQ(begin.properties.at(kId).ValueInt(), 0);
for (int i = 1; i < static_cast<int>(edges.size()); ++i) {
// Check that edges form a connected path.
EXPECT_EQ(edges[i - 1].to.AsInt(), edges[i].from.AsInt());
}
auto matched_id = end.properties.at(kId).ValueInt();
EXPECT_EQ(edges.back().to, end.id);
// Check that we didn't match that node already.
EXPECT_TRUE(matched_ids.insert(matched_id).second);
// Check that shortest path was found.
EXPECT_TRUE(matched_id > kNumNodesPerLevel * (expected_level - 1) &&
matched_id <= kNumNodesPerLevel * expected_level);
if (!--remaining_nodes_in_level) {
remaining_nodes_in_level = kNumNodesPerLevel;
++expected_level;
}
}
}
TEST_F(InterpreterTest, CreateIndexInMulticommandTransaction) {
Interpret("BEGIN");
ASSERT_THROW(Interpret("CREATE INDEX ON :X(y)"),
query::IndexInMulticommandTxException);
Interpret("ROLLBACK");
}
// Test shortest path end to end.
TEST_F(InterpreterTest, ShortestPath) {
Interpret(
"CREATE (n:A {x: 1}), (m:B {x: 2}), (l:C {x: 1}), (n)-[:r1 {w: 1 "
"}]->(m)-[:r2 {w: 2}]->(l), (n)-[:r3 {w: 4}]->(l)");
auto stream =
Interpret("MATCH (n)-[e *wshortest 5 (e, n | e.w) ]->(m) return e");
ASSERT_EQ(stream.GetHeader().size(), 1U);
EXPECT_EQ(stream.GetHeader()[0], "e");
ASSERT_EQ(stream.GetResults().size(), 3U);
auto dba = db_.Access();
std::vector<std::vector<std::string>> expected_results{
{"r1"}, {"r2"}, {"r1", "r2"}};
for (const auto &result : stream.GetResults()) {
const auto &edges = ToEdgeList(result[0]);
std::vector<std::string> datum;
datum.reserve(edges.size());
for (const auto &edge : edges) {
datum.push_back(edge.type);
}
bool any_match = false;
for (const auto &expected : expected_results) {
if (expected == datum) {
any_match = true;
break;
}
}
EXPECT_TRUE(any_match);
}
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST_F(InterpreterTest, ExistenceConstraintTest) {
Interpret("CREATE CONSTRAINT ON (n:A) ASSERT EXISTS (n.a);");
Interpret("CREATE (:A{a:1})");
Interpret("CREATE (:A{a:2})");
ASSERT_THROW(Interpret("CREATE (:A)"), query::QueryException);
Interpret("MATCH (n:A{a:2}) SET n.a=3");
Interpret("CREATE (:A{a:2})");
Interpret("MATCH (n:A{a:2}) DETACH DELETE n");
Interpret("CREATE (n:A{a:2})");
}
TEST_F(InterpreterTest, ExplainQuery) {
EXPECT_EQ(interpreter_context_.plan_cache.size(), 0U);
EXPECT_EQ(interpreter_context_.ast_cache.size(), 0U);
auto stream = Interpret("EXPLAIN MATCH (n) RETURN *;");
ASSERT_EQ(stream.GetHeader().size(), 1U);
EXPECT_EQ(stream.GetHeader().front(), "QUERY PLAN");
std::vector<std::string> expected_rows{" * Produce {n}", " * ScanAll (n)",
" * Once"};
ASSERT_EQ(stream.GetResults().size(), expected_rows.size());
auto expected_it = expected_rows.begin();
for (const auto &row : stream.GetResults()) {
ASSERT_EQ(row.size(), 1U);
EXPECT_EQ(row.front().ValueString(), *expected_it);
++expected_it;
}
// We should have a plan cache for MATCH ...
EXPECT_EQ(interpreter_context_.plan_cache.size(), 1U);
// We should have AST cache for EXPLAIN ... and for inner MATCH ...
EXPECT_EQ(interpreter_context_.ast_cache.size(), 2U);
Interpret("MATCH (n) RETURN *;");
EXPECT_EQ(interpreter_context_.plan_cache.size(), 1U);
EXPECT_EQ(interpreter_context_.ast_cache.size(), 2U);
}
TEST_F(InterpreterTest, ExplainQueryWithParams) {
EXPECT_EQ(interpreter_context_.plan_cache.size(), 0U);
EXPECT_EQ(interpreter_context_.ast_cache.size(), 0U);
auto stream = Interpret("EXPLAIN MATCH (n) WHERE n.id = $id RETURN *;",
{{"id", storage::PropertyValue(42)}});
ASSERT_EQ(stream.GetHeader().size(), 1U);
EXPECT_EQ(stream.GetHeader().front(), "QUERY PLAN");
std::vector<std::string> expected_rows{" * Produce {n}", " * Filter",
" * ScanAll (n)", " * Once"};
ASSERT_EQ(stream.GetResults().size(), expected_rows.size());
auto expected_it = expected_rows.begin();
for (const auto &row : stream.GetResults()) {
ASSERT_EQ(row.size(), 1U);
EXPECT_EQ(row.front().ValueString(), *expected_it);
++expected_it;
}
// We should have a plan cache for MATCH ...
EXPECT_EQ(interpreter_context_.plan_cache.size(), 1U);
// We should have AST cache for EXPLAIN ... and for inner MATCH ...
EXPECT_EQ(interpreter_context_.ast_cache.size(), 2U);
Interpret("MATCH (n) WHERE n.id = $id RETURN *;",
{{"id", storage::PropertyValue("something else")}});
EXPECT_EQ(interpreter_context_.plan_cache.size(), 1U);
EXPECT_EQ(interpreter_context_.ast_cache.size(), 2U);
}
TEST_F(InterpreterTest, ProfileQuery) {
EXPECT_EQ(interpreter_context_.plan_cache.size(), 0U);
EXPECT_EQ(interpreter_context_.ast_cache.size(), 0U);
auto stream = Interpret("PROFILE MATCH (n) RETURN *;");
std::vector<std::string> expected_header{"OPERATOR", "ACTUAL HITS",
"RELATIVE TIME", "ABSOLUTE TIME"};
EXPECT_EQ(stream.GetHeader(), expected_header);
std::vector<std::string> expected_rows{"* Produce", "* ScanAll", "* Once"};
ASSERT_EQ(stream.GetResults().size(), expected_rows.size());
auto expected_it = expected_rows.begin();
for (const auto &row : stream.GetResults()) {
ASSERT_EQ(row.size(), 4U);
EXPECT_EQ(row.front().ValueString(), *expected_it);
++expected_it;
}
// We should have a plan cache for MATCH ...
EXPECT_EQ(interpreter_context_.plan_cache.size(), 1U);
// We should have AST cache for PROFILE ... and for inner MATCH ...
EXPECT_EQ(interpreter_context_.ast_cache.size(), 2U);
Interpret("MATCH (n) RETURN *;");
EXPECT_EQ(interpreter_context_.plan_cache.size(), 1U);
EXPECT_EQ(interpreter_context_.ast_cache.size(), 2U);
}
TEST_F(InterpreterTest, ProfileQueryWithParams) {
EXPECT_EQ(interpreter_context_.plan_cache.size(), 0U);
EXPECT_EQ(interpreter_context_.ast_cache.size(), 0U);
auto stream = Interpret("PROFILE MATCH (n) WHERE n.id = $id RETURN *;",
{{"id", storage::PropertyValue(42)}});
std::vector<std::string> expected_header{"OPERATOR", "ACTUAL HITS",
"RELATIVE TIME", "ABSOLUTE TIME"};
EXPECT_EQ(stream.GetHeader(), expected_header);
std::vector<std::string> expected_rows{"* Produce", "* Filter", "* ScanAll",
"* Once"};
ASSERT_EQ(stream.GetResults().size(), expected_rows.size());
auto expected_it = expected_rows.begin();
for (const auto &row : stream.GetResults()) {
ASSERT_EQ(row.size(), 4U);
EXPECT_EQ(row.front().ValueString(), *expected_it);
++expected_it;
}
// We should have a plan cache for MATCH ...
EXPECT_EQ(interpreter_context_.plan_cache.size(), 1U);
// We should have AST cache for PROFILE ... and for inner MATCH ...
EXPECT_EQ(interpreter_context_.ast_cache.size(), 2U);
Interpret("MATCH (n) WHERE n.id = $id RETURN *;",
{{"id", storage::PropertyValue("something else")}});
EXPECT_EQ(interpreter_context_.plan_cache.size(), 1U);
EXPECT_EQ(interpreter_context_.ast_cache.size(), 2U);
}
TEST_F(InterpreterTest, ProfileQueryWithLiterals) {
EXPECT_EQ(interpreter_context_.plan_cache.size(), 0U);
EXPECT_EQ(interpreter_context_.ast_cache.size(), 0U);
auto stream = Interpret(
"PROFILE UNWIND range(1, 1000) AS x CREATE (:Node {id: x});", {});
std::vector<std::string> expected_header{"OPERATOR", "ACTUAL HITS",
"RELATIVE TIME", "ABSOLUTE TIME"};
EXPECT_EQ(stream.GetHeader(), expected_header);
std::vector<std::string> expected_rows{"* CreateNode", "* Unwind", "* Once"};
ASSERT_EQ(stream.GetResults().size(), expected_rows.size());
auto expected_it = expected_rows.begin();
for (const auto &row : stream.GetResults()) {
ASSERT_EQ(row.size(), 4U);
EXPECT_EQ(row.front().ValueString(), *expected_it);
++expected_it;
}
// We should have a plan cache for UNWIND ...
EXPECT_EQ(interpreter_context_.plan_cache.size(), 1U);
// We should have AST cache for PROFILE ... and for inner UNWIND ...
EXPECT_EQ(interpreter_context_.ast_cache.size(), 2U);
Interpret("UNWIND range(42, 4242) AS x CREATE (:Node {id: x});", {});
EXPECT_EQ(interpreter_context_.plan_cache.size(), 1U);
EXPECT_EQ(interpreter_context_.ast_cache.size(), 2U);
}