253 lines
8.7 KiB
C++
253 lines
8.7 KiB
C++
|
#include "distributed_common.hpp"
|
||
|
|
||
|
#include <memory>
|
||
|
#include <thread>
|
||
|
#include <unordered_set>
|
||
|
#include <vector>
|
||
|
|
||
|
#include "gtest/gtest.h"
|
||
|
|
||
|
#include "distributed/dgp/partitioner.hpp"
|
||
|
#include "distributed/updates_rpc_clients.hpp"
|
||
|
|
||
|
using namespace distributed;
|
||
|
using namespace database;
|
||
|
|
||
|
DECLARE_int32(dgp_max_batch_size);
|
||
|
|
||
|
class DistributedDynamicGraphPartitionerTest : public DistributedGraphDbTest {
|
||
|
public:
|
||
|
DistributedDynamicGraphPartitionerTest()
|
||
|
: DistributedGraphDbTest("dynamic_graph_partitioner") {}
|
||
|
|
||
|
void LogClusterState() {
|
||
|
LOG(INFO) << "master_v: " << VertexCount(master())
|
||
|
<< " master_e: " << EdgeCount(master());
|
||
|
LOG(INFO) << "worker1_v: " << VertexCount(worker(1))
|
||
|
<< " worker1_e: " << EdgeCount(worker(1));
|
||
|
LOG(INFO) << "worker2_v: " << VertexCount(worker(2))
|
||
|
<< " worker2_e: " << EdgeCount(worker(2));
|
||
|
}
|
||
|
};
|
||
|
|
||
|
TEST_F(DistributedDynamicGraphPartitionerTest, CountLabels) {
|
||
|
auto va = InsertVertex(master());
|
||
|
auto vb = InsertVertex(worker(1));
|
||
|
auto vc = InsertVertex(worker(2));
|
||
|
for (int i = 0; i < 2; ++i) InsertEdge(va, va, "edge");
|
||
|
for (int i = 0; i < 3; ++i) InsertEdge(va, vb, "edge");
|
||
|
for (int i = 0; i < 4; ++i) InsertEdge(va, vc, "edge");
|
||
|
for (int i = 0; i < 5; ++i) InsertEdge(vb, va, "edge");
|
||
|
for (int i = 0; i < 6; ++i) InsertEdge(vc, va, "edge");
|
||
|
|
||
|
distributed::dgp::Partitioner dgp(&master());
|
||
|
auto dba = master().Access();
|
||
|
VertexAccessor v(va, *dba);
|
||
|
auto count_labels = dgp.CountLabels(v);
|
||
|
|
||
|
// Self loops counted twice
|
||
|
EXPECT_EQ(count_labels[master().WorkerId()], 2 * 2);
|
||
|
|
||
|
EXPECT_EQ(count_labels[worker(1).WorkerId()], 3 + 5);
|
||
|
EXPECT_EQ(count_labels[worker(2).WorkerId()], 4 + 6);
|
||
|
}
|
||
|
|
||
|
TEST_F(DistributedDynamicGraphPartitionerTest, FindMigrationsMoveVertex) {
|
||
|
auto va = InsertVertex(master());
|
||
|
auto vb = InsertVertex(worker(1));
|
||
|
|
||
|
// Balance the number of nodes on workers a bit
|
||
|
InsertVertex(worker(2));
|
||
|
InsertVertex(worker(2));
|
||
|
|
||
|
for (int i = 0; i < 100; ++i) InsertEdge(va, vb, "edge");
|
||
|
distributed::dgp::Partitioner dgp(&master());
|
||
|
auto dba = master().Access();
|
||
|
auto data = dgp.FindMigrations(*dba);
|
||
|
// Expect `va` to try to move to another worker, the one connected to it
|
||
|
ASSERT_EQ(data.migrations.size(), 1);
|
||
|
EXPECT_EQ(data.migrations[0].second, worker(1).WorkerId());
|
||
|
}
|
||
|
|
||
|
TEST_F(DistributedDynamicGraphPartitionerTest, FindMigrationsNoChange) {
|
||
|
InsertVertex(master());
|
||
|
InsertVertex(worker(1));
|
||
|
InsertVertex(worker(2));
|
||
|
|
||
|
// Everything is balanced, there should be no movement
|
||
|
|
||
|
distributed::dgp::Partitioner dgp(&master());
|
||
|
auto dba = master().Access();
|
||
|
auto data = dgp.FindMigrations(*dba);
|
||
|
EXPECT_EQ(data.migrations.size(), 0);
|
||
|
}
|
||
|
|
||
|
TEST_F(DistributedDynamicGraphPartitionerTest, FindMigrationsMultipleAndLimit) {
|
||
|
auto va = InsertVertex(master());
|
||
|
auto vb = InsertVertex(master());
|
||
|
auto vc = InsertVertex(worker(1));
|
||
|
|
||
|
// Balance the number of nodes on workers a bit
|
||
|
InsertVertex(worker(1));
|
||
|
InsertVertex(worker(2));
|
||
|
InsertVertex(worker(2));
|
||
|
|
||
|
for (int i = 0; i < 100; ++i) InsertEdge(va, vc, "edge");
|
||
|
for (int i = 0; i < 100; ++i) InsertEdge(vb, vc, "edge");
|
||
|
distributed::dgp::Partitioner dgp(&master());
|
||
|
auto dba = master().Access();
|
||
|
{
|
||
|
auto data = dgp.FindMigrations(*dba);
|
||
|
// Expect vertices to try to move to another worker
|
||
|
ASSERT_EQ(data.migrations.size(), 2);
|
||
|
}
|
||
|
|
||
|
// See if flag affects number of returned results
|
||
|
{
|
||
|
FLAGS_dgp_max_batch_size = 1;
|
||
|
auto data = dgp.FindMigrations(*dba);
|
||
|
// Expect vertices to try to move to another worker
|
||
|
ASSERT_EQ(data.migrations.size(), 1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
TEST_F(DistributedDynamicGraphPartitionerTest, Run) {
|
||
|
// Emulate a bipartite graph with lots of connections on the left, and right
|
||
|
// side, and some connections between the halfs
|
||
|
std::vector<storage::VertexAddress> left;
|
||
|
for (int i = 0; i < 10; ++i) {
|
||
|
left.push_back(InsertVertex(master()));
|
||
|
}
|
||
|
std::vector<storage::VertexAddress> right;
|
||
|
for (int i = 0; i < 10; ++i) {
|
||
|
right.push_back(InsertVertex(master()));
|
||
|
}
|
||
|
|
||
|
// Force the nodes of both sides to stay on one worker by inserting a lot of
|
||
|
// edges in between them
|
||
|
for (int i = 0; i < 1000; ++i) {
|
||
|
InsertEdge(left[rand() % 10], left[rand() % 10], "edge");
|
||
|
InsertEdge(right[rand() % 10], right[rand() % 10], "edge");
|
||
|
}
|
||
|
|
||
|
// Insert edges between left and right side
|
||
|
for (int i = 0; i < 50; ++i)
|
||
|
InsertEdge(left[rand() % 10], right[rand() % 10], "edge");
|
||
|
|
||
|
// Balance it out so that the vertices count on workers don't influence the
|
||
|
// partitioning too much
|
||
|
for (int i = 0; i < 10; ++i) InsertVertex(worker(2));
|
||
|
|
||
|
distributed::dgp::Partitioner dgp(&master());
|
||
|
// Transfer one by one to actually converge
|
||
|
FLAGS_dgp_max_batch_size = 1;
|
||
|
// Try a bit more transfers to see if we reached a steady state
|
||
|
for (int i = 0; i < 15; ++i) {
|
||
|
dgp.Partition();
|
||
|
}
|
||
|
|
||
|
EXPECT_EQ(VertexCount(master()), 10);
|
||
|
EXPECT_EQ(VertexCount(worker(1)), 10);
|
||
|
|
||
|
auto CountRemotes = [](GraphDbAccessor &dba) {
|
||
|
int64_t cnt = 0;
|
||
|
for (auto vertex : dba.Vertices(false)) {
|
||
|
for (auto edge : vertex.in())
|
||
|
if (edge.from_addr().is_remote()) ++cnt;
|
||
|
for (auto edge : vertex.out())
|
||
|
if (edge.to_addr().is_remote()) ++cnt;
|
||
|
}
|
||
|
return cnt;
|
||
|
};
|
||
|
|
||
|
auto dba_m = master().Access();
|
||
|
auto dba_w1 = worker(1).Access();
|
||
|
EXPECT_EQ(CountRemotes(*dba_m), 50);
|
||
|
EXPECT_EQ(CountRemotes(*dba_w1), 50);
|
||
|
}
|
||
|
|
||
|
TEST_F(DistributedDynamicGraphPartitionerTest, Convergence) {
|
||
|
auto seed = std::time(nullptr);
|
||
|
LOG(INFO) << "Seed: " << seed;
|
||
|
std::srand(seed);
|
||
|
|
||
|
// Generate random graph across cluster.
|
||
|
std::vector<storage::VertexAddress> master_vertices;
|
||
|
for (int i = 0; i < 1000; ++i) {
|
||
|
master_vertices.push_back(InsertVertex(master()));
|
||
|
}
|
||
|
std::vector<storage::VertexAddress> worker1_vertices;
|
||
|
for (int i = 0; i < 1000; ++i) {
|
||
|
worker1_vertices.push_back(InsertVertex(worker(1)));
|
||
|
}
|
||
|
std::vector<storage::VertexAddress> worker2_vertices;
|
||
|
for (int i = 0; i < 1000; ++i) {
|
||
|
worker2_vertices.push_back(InsertVertex(worker(2)));
|
||
|
}
|
||
|
|
||
|
// Generate random edges between machines.
|
||
|
for (int i = 0; i < 1000; ++i) {
|
||
|
InsertEdge(master_vertices[rand() % 1000], worker1_vertices[rand() % 1000],
|
||
|
"edge");
|
||
|
InsertEdge(master_vertices[rand() % 1000], worker2_vertices[rand() % 1000],
|
||
|
"edge");
|
||
|
InsertEdge(worker1_vertices[rand() % 1000], master_vertices[rand() % 1000],
|
||
|
"edge");
|
||
|
InsertEdge(worker1_vertices[rand() % 1000], worker2_vertices[rand() % 1000],
|
||
|
"edge");
|
||
|
InsertEdge(worker2_vertices[rand() % 1000], master_vertices[rand() % 1000],
|
||
|
"edge");
|
||
|
InsertEdge(worker2_vertices[rand() % 1000], worker1_vertices[rand() % 1000],
|
||
|
"edge");
|
||
|
}
|
||
|
|
||
|
// Run the partitioning algorithm, after some time it should stop doing
|
||
|
// migrations.
|
||
|
distributed::dgp::Partitioner dgp_master(&master());
|
||
|
std::vector<double> master_scores;
|
||
|
distributed::dgp::Partitioner dgp_worker1(&worker(1));
|
||
|
std::vector<double> worker1_scores;
|
||
|
distributed::dgp::Partitioner dgp_worker2(&worker(2));
|
||
|
std::vector<double> worker2_scores;
|
||
|
FLAGS_dgp_max_batch_size = 10;
|
||
|
for (int i = 0; i < 100; ++i) {
|
||
|
LOG(INFO) << "Iteration: " << i;
|
||
|
|
||
|
auto data_master = dgp_master.Partition();
|
||
|
LOG(INFO) << "Master score: " << data_master.first;
|
||
|
master_scores.push_back(data_master.first);
|
||
|
LogClusterState();
|
||
|
|
||
|
auto data_worker1 = dgp_worker1.Partition();
|
||
|
LOG(INFO) << "Worker1 score: " << data_worker1.first;
|
||
|
worker1_scores.push_back(data_worker1.first);
|
||
|
LogClusterState();
|
||
|
|
||
|
auto data_worker2 = dgp_worker2.Partition();
|
||
|
LOG(INFO) << "Worker2 score: " << data_worker2.first;
|
||
|
worker2_scores.push_back(data_worker2.first);
|
||
|
LogClusterState();
|
||
|
}
|
||
|
|
||
|
// Check that the last N scores from each instance are the same.
|
||
|
int scores_to_validate = 10;
|
||
|
auto score_equality = [](double x, double y) {
|
||
|
return std::abs(x - y) < 10e-1;
|
||
|
};
|
||
|
ASSERT_TRUE(std::all_of(master_scores.end() - scores_to_validate,
|
||
|
master_scores.end(),
|
||
|
[&score_equality, &master_scores](double elem) {
|
||
|
return score_equality(elem, master_scores.back());
|
||
|
}));
|
||
|
ASSERT_TRUE(std::all_of(worker1_scores.end() - scores_to_validate,
|
||
|
worker1_scores.end(),
|
||
|
[&score_equality, &worker1_scores](double elem) {
|
||
|
return score_equality(elem, worker1_scores.back());
|
||
|
}));
|
||
|
ASSERT_TRUE(std::all_of(worker2_scores.end() - scores_to_validate,
|
||
|
worker2_scores.end(),
|
||
|
[&score_equality, &worker2_scores](double elem) {
|
||
|
return score_equality(elem, worker2_scores.back());
|
||
|
}));
|
||
|
}
|