memgraph/src/storage/v2/storage.hpp

593 lines
23 KiB
C++
Raw Normal View History

// Copyright 2021 Memgraph Ltd.
//
// Use of this software is governed by the Business Source License
// included in the file licenses/BSL.txt; by using this file, you agree to be bound by the terms of the Business Source
// License, and you may not use this file except in compliance with the Business Source License.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0, included in the file
// licenses/APL.txt.
#pragma once
#include <atomic>
#include <filesystem>
#include <optional>
#include <shared_mutex>
2021-05-10 16:10:01 +08:00
#include <variant>
#include "io/network/endpoint.hpp"
#include "storage/v2/commit_log.hpp"
#include "storage/v2/config.hpp"
#include "storage/v2/constraints.hpp"
#include "storage/v2/durability/metadata.hpp"
#include "storage/v2/durability/wal.hpp"
#include "storage/v2/edge.hpp"
#include "storage/v2/edge_accessor.hpp"
#include "storage/v2/indices.hpp"
#include "storage/v2/isolation_level.hpp"
#include "storage/v2/mvcc.hpp"
#include "storage/v2/name_id_mapper.hpp"
#include "storage/v2/result.hpp"
#include "storage/v2/transaction.hpp"
#include "storage/v2/vertex.hpp"
#include "storage/v2/vertex_accessor.hpp"
#include "utils/file_locker.hpp"
#include "utils/on_scope_exit.hpp"
#include "utils/rw_lock.hpp"
#include "utils/scheduler.hpp"
#include "utils/skip_list.hpp"
#include "utils/synchronized.hpp"
#include "utils/uuid.hpp"
/// REPLICATION ///
#include "rpc/server.hpp"
#include "storage/v2/replication/config.hpp"
#include "storage/v2/replication/enums.hpp"
#include "storage/v2/replication/rpc.hpp"
#include "storage/v2/replication/serialization.hpp"
namespace storage {
// The storage is based on this paper:
// https://db.in.tum.de/~muehlbau/papers/mvcc.pdf
// The paper implements a fully serializable storage, in our implementation we
// only implement snapshot isolation for transactions.
/// Iterable for iterating through all vertices of a Storage.
///
/// An instance of this will be usually be wrapped inside VerticesIterable for
/// generic, public use.
class AllVerticesIterable final {
utils::SkipList<Vertex>::Accessor vertices_accessor_;
Transaction *transaction_;
View view_;
Indices *indices_;
Constraints *constraints_;
Config::Items config_;
std::optional<VertexAccessor> vertex_;
public:
class Iterator final {
AllVerticesIterable *self_;
utils::SkipList<Vertex>::Iterator it_;
public:
Iterator(AllVerticesIterable *self, utils::SkipList<Vertex>::Iterator it);
VertexAccessor operator*() const;
Iterator &operator++();
bool operator==(const Iterator &other) const { return self_ == other.self_ && it_ == other.it_; }
bool operator!=(const Iterator &other) const { return !(*this == other); }
};
AllVerticesIterable(utils::SkipList<Vertex>::Accessor vertices_accessor, Transaction *transaction, View view,
Indices *indices, Constraints *constraints, Config::Items config)
: vertices_accessor_(std::move(vertices_accessor)),
transaction_(transaction),
view_(view),
indices_(indices),
constraints_(constraints),
config_(config) {}
Iterator begin() { return Iterator(this, vertices_accessor_.begin()); }
Iterator end() { return Iterator(this, vertices_accessor_.end()); }
};
/// Generic access to different kinds of vertex iterations.
///
/// This class should be the primary type used by the client code to iterate
/// over vertices inside a Storage instance.
class VerticesIterable final {
enum class Type { ALL, BY_LABEL, BY_LABEL_PROPERTY };
Type type_;
union {
AllVerticesIterable all_vertices_;
LabelIndex::Iterable vertices_by_label_;
LabelPropertyIndex::Iterable vertices_by_label_property_;
};
public:
explicit VerticesIterable(AllVerticesIterable);
explicit VerticesIterable(LabelIndex::Iterable);
explicit VerticesIterable(LabelPropertyIndex::Iterable);
VerticesIterable(const VerticesIterable &) = delete;
VerticesIterable &operator=(const VerticesIterable &) = delete;
VerticesIterable(VerticesIterable &&) noexcept;
VerticesIterable &operator=(VerticesIterable &&) noexcept;
~VerticesIterable();
class Iterator final {
Type type_;
union {
AllVerticesIterable::Iterator all_it_;
LabelIndex::Iterable::Iterator by_label_it_;
LabelPropertyIndex::Iterable::Iterator by_label_property_it_;
};
void Destroy() noexcept;
public:
explicit Iterator(AllVerticesIterable::Iterator);
explicit Iterator(LabelIndex::Iterable::Iterator);
explicit Iterator(LabelPropertyIndex::Iterable::Iterator);
Iterator(const Iterator &);
Iterator &operator=(const Iterator &);
Iterator(Iterator &&) noexcept;
Iterator &operator=(Iterator &&) noexcept;
~Iterator();
VertexAccessor operator*() const;
Iterator &operator++();
bool operator==(const Iterator &other) const;
bool operator!=(const Iterator &other) const { return !(*this == other); }
};
Iterator begin();
Iterator end();
};
/// Structure used to return information about existing indices in the storage.
struct IndicesInfo {
std::vector<LabelId> label;
std::vector<std::pair<LabelId, PropertyId>> label_property;
};
/// Structure used to return information about existing constraints in the
/// storage.
struct ConstraintsInfo {
std::vector<std::pair<LabelId, PropertyId>> existence;
std::vector<std::pair<LabelId, std::set<PropertyId>>> unique;
};
/// Structure used to return information about the storage.
struct StorageInfo {
uint64_t vertex_count;
uint64_t edge_count;
double average_degree;
uint64_t memory_usage;
uint64_t disk_usage;
};
enum class ReplicationRole : uint8_t { MAIN, REPLICA };
class Storage final {
public:
/// @throw std::system_error
/// @throw std::bad_alloc
explicit Storage(Config config = Config());
~Storage();
class Accessor final {
private:
friend class Storage;
explicit Accessor(Storage *storage, IsolationLevel isolation_level);
public:
Accessor(const Accessor &) = delete;
Accessor &operator=(const Accessor &) = delete;
Accessor &operator=(Accessor &&other) = delete;
// NOTE: After the accessor is moved, all objects derived from it (accessors
// and iterators) are *invalid*. You have to get all derived objects again.
Accessor(Accessor &&other) noexcept;
~Accessor();
/// @throw std::bad_alloc
VertexAccessor CreateVertex();
std::optional<VertexAccessor> FindVertex(Gid gid, View view);
VerticesIterable Vertices(View view) {
return VerticesIterable(AllVerticesIterable(storage_->vertices_.access(), &transaction_, view,
&storage_->indices_, &storage_->constraints_,
storage_->config_.items));
}
VerticesIterable Vertices(LabelId label, View view);
VerticesIterable Vertices(LabelId label, PropertyId property, View view);
VerticesIterable Vertices(LabelId label, PropertyId property, const PropertyValue &value, View view);
VerticesIterable Vertices(LabelId label, PropertyId property,
const std::optional<utils::Bound<PropertyValue>> &lower_bound,
const std::optional<utils::Bound<PropertyValue>> &upper_bound, View view);
/// Return approximate number of all vertices in the database.
/// Note that this is always an over-estimate and never an under-estimate.
int64_t ApproximateVertexCount() const { return storage_->vertices_.size(); }
/// Return approximate number of vertices with the given label.
/// Note that this is always an over-estimate and never an under-estimate.
int64_t ApproximateVertexCount(LabelId label) const {
return storage_->indices_.label_index.ApproximateVertexCount(label);
}
/// Return approximate number of vertices with the given label and property.
/// Note that this is always an over-estimate and never an under-estimate.
int64_t ApproximateVertexCount(LabelId label, PropertyId property) const {
return storage_->indices_.label_property_index.ApproximateVertexCount(label, property);
}
/// Return approximate number of vertices with the given label and the given
/// value for the given property. Note that this is always an over-estimate
/// and never an under-estimate.
int64_t ApproximateVertexCount(LabelId label, PropertyId property, const PropertyValue &value) const {
return storage_->indices_.label_property_index.ApproximateVertexCount(label, property, value);
}
/// Return approximate number of vertices with the given label and value for
/// the given property in the range defined by provided upper and lower
/// bounds.
int64_t ApproximateVertexCount(LabelId label, PropertyId property,
const std::optional<utils::Bound<PropertyValue>> &lower,
const std::optional<utils::Bound<PropertyValue>> &upper) const {
return storage_->indices_.label_property_index.ApproximateVertexCount(label, property, lower, upper);
}
2021-05-10 16:10:01 +08:00
/// @return Accessor to the deleted vertex if a deletion took place, std::nullopt otherwise
/// @throw std::bad_alloc
Result<std::optional<VertexAccessor>> DeleteVertex(VertexAccessor *vertex);
2021-05-10 16:10:01 +08:00
/// @return Accessor to the deleted vertex and deleted edges if a deletion took place, std::nullopt otherwise
/// @throw std::bad_alloc
2021-05-10 16:10:01 +08:00
Result<std::optional<std::pair<VertexAccessor, std::vector<EdgeAccessor>>>> DetachDeleteVertex(
VertexAccessor *vertex);
/// @throw std::bad_alloc
Result<EdgeAccessor> CreateEdge(VertexAccessor *from, VertexAccessor *to, EdgeTypeId edge_type);
2021-05-10 16:10:01 +08:00
/// Accessor to the deleted edge if a deletion took place, std::nullopt otherwise
/// @throw std::bad_alloc
2021-05-10 16:10:01 +08:00
Result<std::optional<EdgeAccessor>> DeleteEdge(EdgeAccessor *edge);
const std::string &LabelToName(LabelId label) const;
const std::string &PropertyToName(PropertyId property) const;
const std::string &EdgeTypeToName(EdgeTypeId edge_type) const;
/// @throw std::bad_alloc if unable to insert a new mapping
LabelId NameToLabel(const std::string_view &name);
/// @throw std::bad_alloc if unable to insert a new mapping
PropertyId NameToProperty(const std::string_view &name);
/// @throw std::bad_alloc if unable to insert a new mapping
EdgeTypeId NameToEdgeType(const std::string_view &name);
bool LabelIndexExists(LabelId label) const { return storage_->indices_.label_index.IndexExists(label); }
bool LabelPropertyIndexExists(LabelId label, PropertyId property) const {
return storage_->indices_.label_property_index.IndexExists(label, property);
}
IndicesInfo ListAllIndices() const {
return {storage_->indices_.label_index.ListIndices(), storage_->indices_.label_property_index.ListIndices()};
}
ConstraintsInfo ListAllConstraints() const {
return {ListExistenceConstraints(storage_->constraints_),
storage_->constraints_.unique_constraints.ListConstraints()};
}
void AdvanceCommand();
/// Commit returns `ConstraintViolation` if the changes made by this
/// transaction violate an existence or unique constraint. In that case the
/// transaction is automatically aborted. Otherwise, void is returned.
/// @throw std::bad_alloc
utils::BasicResult<ConstraintViolation, void> Commit(std::optional<uint64_t> desired_commit_timestamp = {});
/// @throw std::bad_alloc
void Abort();
void FinalizeTransaction();
private:
/// @throw std::bad_alloc
VertexAccessor CreateVertex(storage::Gid gid);
/// @throw std::bad_alloc
Result<EdgeAccessor> CreateEdge(VertexAccessor *from, VertexAccessor *to, EdgeTypeId edge_type, storage::Gid gid);
Storage *storage_;
std::shared_lock<utils::RWLock> storage_guard_;
Transaction transaction_;
std::optional<uint64_t> commit_timestamp_;
bool is_transaction_active_;
Config::Items config_;
};
Accessor Access(std::optional<IsolationLevel> override_isolation_level = {}) {
return Accessor{this, override_isolation_level.value_or(isolation_level_)};
}
const std::string &LabelToName(LabelId label) const;
const std::string &PropertyToName(PropertyId property) const;
const std::string &EdgeTypeToName(EdgeTypeId edge_type) const;
/// @throw std::bad_alloc if unable to insert a new mapping
LabelId NameToLabel(const std::string_view &name);
/// @throw std::bad_alloc if unable to insert a new mapping
PropertyId NameToProperty(const std::string_view &name);
/// @throw std::bad_alloc if unable to insert a new mapping
EdgeTypeId NameToEdgeType(const std::string_view &name);
/// @throw std::bad_alloc
bool CreateIndex(LabelId label, std::optional<uint64_t> desired_commit_timestamp = {});
/// @throw std::bad_alloc
bool CreateIndex(LabelId label, PropertyId property, std::optional<uint64_t> desired_commit_timestamp = {});
bool DropIndex(LabelId label, std::optional<uint64_t> desired_commit_timestamp = {});
bool DropIndex(LabelId label, PropertyId property, std::optional<uint64_t> desired_commit_timestamp = {});
IndicesInfo ListAllIndices() const;
/// Creates an existence constraint. Returns true if the constraint was
/// successfuly added, false if it already exists and a `ConstraintViolation`
/// if there is an existing vertex violating the constraint.
///
/// @throw std::bad_alloc
/// @throw std::length_error
utils::BasicResult<ConstraintViolation, bool> CreateExistenceConstraint(
LabelId label, PropertyId property, std::optional<uint64_t> desired_commit_timestamp = {});
/// Removes an existence constraint. Returns true if the constraint was
/// removed, and false if it doesn't exist.
bool DropExistenceConstraint(LabelId label, PropertyId property,
std::optional<uint64_t> desired_commit_timestamp = {});
/// Creates a unique constraint. In the case of two vertices violating the
/// constraint, it returns `ConstraintViolation`. Otherwise returns a
/// `UniqueConstraints::CreationStatus` enum with the following possibilities:
/// * `SUCCESS` if the constraint was successfully created,
/// * `ALREADY_EXISTS` if the constraint already existed,
/// * `EMPTY_PROPERTIES` if the property set is empty, or
// * `PROPERTIES_SIZE_LIMIT_EXCEEDED` if the property set exceeds the
// limit of maximum number of properties.
///
/// @throw std::bad_alloc
utils::BasicResult<ConstraintViolation, UniqueConstraints::CreationStatus> CreateUniqueConstraint(
LabelId label, const std::set<PropertyId> &properties, std::optional<uint64_t> desired_commit_timestamp = {});
/// Removes a unique constraint. Returns `UniqueConstraints::DeletionStatus`
/// enum with the following possibilities:
/// * `SUCCESS` if constraint was successfully removed,
/// * `NOT_FOUND` if the specified constraint was not found,
/// * `EMPTY_PROPERTIES` if the property set is empty, or
/// * `PROPERTIES_SIZE_LIMIT_EXCEEDED` if the property set exceeds the
// limit of maximum number of properties.
UniqueConstraints::DeletionStatus DropUniqueConstraint(LabelId label, const std::set<PropertyId> &properties,
std::optional<uint64_t> desired_commit_timestamp = {});
ConstraintsInfo ListAllConstraints() const;
StorageInfo GetInfo() const;
2021-01-19 19:10:06 +08:00
bool LockPath();
bool UnlockPath();
bool SetReplicaRole(io::network::Endpoint endpoint, const replication::ReplicationServerConfig &config = {});
bool SetMainReplicationRole();
enum class RegisterReplicaError : uint8_t { NAME_EXISTS, CONNECTION_FAILED };
/// @pre The instance should have a MAIN role
/// @pre Timeout can only be set for SYNC replication
utils::BasicResult<RegisterReplicaError, void> RegisterReplica(
std::string name, io::network::Endpoint endpoint, replication::ReplicationMode replication_mode,
const replication::ReplicationClientConfig &config = {});
/// @pre The instance should have a MAIN role
bool UnregisterReplica(std::string_view name);
std::optional<replication::ReplicaState> GetReplicaState(std::string_view name);
ReplicationRole GetReplicationRole() const;
struct ReplicaInfo {
std::string name;
replication::ReplicationMode mode;
std::optional<double> timeout;
io::network::Endpoint endpoint;
replication::ReplicaState state;
};
std::vector<ReplicaInfo> ReplicasInfo();
void FreeMemory();
void SetIsolationLevel(IsolationLevel isolation_level);
2021-06-30 18:31:30 +08:00
enum class CreateSnapshotError : uint8_t { DisabledForReplica };
utils::BasicResult<CreateSnapshotError> CreateSnapshot();
private:
Transaction CreateTransaction(IsolationLevel isolation_level);
/// The force parameter determines the behaviour of the garbage collector.
/// If it's set to true, it will behave as a global operation, i.e. it can't
/// be part of a transaction, and no other transaction can be active at the same time.
/// This allows it to delete immediately vertices without worrying that some other
/// transaction is possibly using it. If there are active transactions when this method
/// is called with force set to true, it will fallback to the same method with the force
/// set to false.
/// If it's set to false, it will execute in parallel with other transactions, ensuring
/// that no object in use can be deleted.
/// @throw std::system_error
/// @throw std::bad_alloc
template <bool force>
void CollectGarbage();
bool InitializeWalFile();
void FinalizeWalFile();
void AppendToWal(const Transaction &transaction, uint64_t final_commit_timestamp);
void AppendToWal(durability::StorageGlobalOperation operation, LabelId label, const std::set<PropertyId> &properties,
uint64_t final_commit_timestamp);
uint64_t CommitTimestamp(std::optional<uint64_t> desired_commit_timestamp = {});
// Main storage lock.
//
// Accessors take a shared lock when starting, so it is possible to block
// creation of new accessors by taking a unique lock. This is used when doing
// operations on storage that affect the global state, for example index
// creation.
mutable utils::RWLock main_lock_{utils::RWLock::Priority::WRITE};
// Main object storage
utils::SkipList<storage::Vertex> vertices_;
utils::SkipList<storage::Edge> edges_;
std::atomic<uint64_t> vertex_id_{0};
std::atomic<uint64_t> edge_id_{0};
// Even though the edge count is already kept in the `edges_` SkipList, the
// list is used only when properties are enabled for edges. Because of that we
// keep a separate count of edges that is always updated.
std::atomic<uint64_t> edge_count_{0};
NameIdMapper name_id_mapper_;
Constraints constraints_;
Indices indices_;
// Transaction engine
utils::SpinLock engine_lock_;
uint64_t timestamp_{kTimestampInitialId};
uint64_t transaction_id_{kTransactionInitialId};
// TODO: This isn't really a commit log, it doesn't even care if a
// transaction commited or aborted. We could probably combine this with
// `timestamp_` in a sensible unit, something like TransactionClock or
// whatever.
std::optional<CommitLog> commit_log_;
utils::Synchronized<std::list<Transaction>, utils::SpinLock> committed_transactions_;
IsolationLevel isolation_level_;
Config config_;
utils::Scheduler gc_runner_;
std::mutex gc_lock_;
// Undo buffers that were unlinked and now are waiting to be freed.
utils::Synchronized<std::list<std::pair<uint64_t, std::list<Delta>>>, utils::SpinLock> garbage_undo_buffers_;
// Vertices that are logically deleted but still have to be removed from
// indices before removing them from the main storage.
utils::Synchronized<std::list<Gid>, utils::SpinLock> deleted_vertices_;
// Vertices that are logically deleted and removed from indices and now wait
// to be removed from the main storage.
std::list<std::pair<uint64_t, Gid>> garbage_vertices_;
// Edges that are logically deleted and wait to be removed from the main
// storage.
utils::Synchronized<std::list<Gid>, utils::SpinLock> deleted_edges_;
// Durability
std::filesystem::path snapshot_directory_;
std::filesystem::path wal_directory_;
std::filesystem::path lock_file_path_;
utils::OutputFile lock_file_handle_;
utils::Scheduler snapshot_runner_;
2021-06-30 18:31:30 +08:00
utils::SpinLock snapshot_lock_;
// UUID used to distinguish snapshots and to link snapshots to WALs
std::string uuid_;
// Sequence number used to keep track of the chain of WALs.
uint64_t wal_seq_num_{0};
// UUID to distinguish different main instance runs for replication process
// on SAME storage.
// Multiple instances can have same storage UUID and be MAIN at the same time.
// We cannot compare commit timestamps of those instances if one of them
// becomes the replica of the other so we use epoch_id_ as additional
// discriminating property.
// Example of this:
// We have 2 instances of the same storage, S1 and S2.
// S1 and S2 are MAIN and accept their own commits and write them to the WAL.
// At the moment when S1 commited a transaction with timestamp 20, and S2
// a different transaction with timestamp 15, we change S2's role to REPLICA
// and register it on S1.
// Without using the epoch_id, we don't know that S1 and S2 have completely
// different transactions, we think that the S2 is behind only by 5 commits.
std::string epoch_id_;
// History of the previous epoch ids.
// Each value consists of the epoch id along the last commit belonging to that
// epoch.
std::deque<std::pair<std::string, uint64_t>> epoch_history_;
std::optional<durability::WalFile> wal_file_;
uint64_t wal_unsynced_transactions_{0};
utils::FileRetainer file_retainer_;
2021-01-19 19:10:06 +08:00
// Global locker that is used for clients file locking
utils::FileRetainer::FileLocker global_locker_;
// Last commited timestamp
std::atomic<uint64_t> last_commit_timestamp_{kTimestampInitialId};
class ReplicationServer;
std::unique_ptr<ReplicationServer> replication_server_{nullptr};
class ReplicationClient;
// We create ReplicationClient using unique_ptr so we can move
// newly created client into the vector.
// We cannot move the client directly because it contains ThreadPool
// which cannot be moved. Also, the move is necessary because
// we don't want to create the client directly inside the vector
// because that would require the lock on the list putting all
// commits (they iterate list of clients) to halt.
// This way we can initialize client in main thread which means
// that we can immediately notify the user if the initialization
// failed.
using ReplicationClientList = utils::Synchronized<std::vector<std::unique_ptr<ReplicationClient>>, utils::SpinLock>;
ReplicationClientList replication_clients_;
std::atomic<ReplicationRole> replication_role_{ReplicationRole::MAIN};
};
} // namespace storage