memgraph/data_structures/kdtree/nns.hpp

102 lines
2.5 KiB
C++
Raw Normal View History

#pragma once
2015-06-19 16:04:42 +08:00
#include "math.hpp"
#include "point.hpp"
#include "kdnode.hpp"
namespace kd {
// helper class for calculating the nearest neighbour in a kdtree
template <class T, class U>
struct Result
{
Result()
: node(nullptr), distance_sq(std::numeric_limits<T>::infinity()) {}
Result(const KdNode<T, U>* node, T distance_sq)
: node(node), distance_sq(distance_sq) {}
const KdNode<T, U>* node;
T distance_sq;
};
// a recursive implementation for the kdtree nearest neighbour search
// \param p the point for which we search for the nearest neighbour
// \param node the root of the subtree during recursive descent
// \param best the place to save the best result so far
template <class T, class U>
void nns(const Point<T>& p, const KdNode<T, U>* const node, Result<T, U>& best)
{
if(node == nullptr)
return;
T d = math::distance_sq(p, node->coord);
// keep record of the closest point C found so far
if(d < best.distance_sq)
{
best.node = node;
best.distance_sq = d;
}
// where to traverse next?
// what to prune?
// |
// possible |
// prune *
// area | - - - - -* P
// |
//
// |----------|
// dx
//
// possible prune
// RIGHT area
//
// --------*------ ---
// | |
// LEFT |
// | | dy
// |
// | |
// * p ---
T axd = math::axial_distance(p, node->coord, node->axis);
// traverse the subtree in order that
// maximizes the probability for pruning
auto near = axd > 0 ? node->right : node->left;
auto far = axd > 0 ? node->left : node->right;
// try near first
nns(p, near, best);
// prune subtrees once their bounding boxes say
// that they can't contain any point closer than C
if(axd * axd >= best.distance_sq)
return;
// try other subtree
nns(p, far, best);
}
// an implementation for the kdtree nearest neighbour search
// \param p the point for which we search for the nearest neighbour
// \param root the root of the tree
// \return the nearest neighbour for the point p
template <class T, class U>
const KdNode<T, U>* nns(const Point<T>& p, const KdNode<T, U>* root)
{
Result<T, U> best;
// begin recursive search
nns(p, root, best);
return best.node;
}
}