memgraph/tests/stress/long_running.py

340 lines
12 KiB
Python
Raw Normal View History

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
A long running test that performs
random CRUD ops on a bolt database.
Parameterized with vertex and edge counts around which
the graph state oscilates.
"""
import logging
import multiprocessing
import neo4j.exceptions
import random
import time
from collections import defaultdict
import common
log = logging.getLogger(__name__)
INDEX_FORMAT = "indexed_label{}"
def random_element(lst):
return lst[random.randint(0, len(lst) - 1)]
def bernoulli(p):
return random.random() < p
class Graph():
"""
Exposes functions for working on a graph, and tracks some
statistics about graph state.
"""
def __init__(self, vertex_count, edge_count, labels=5):
"""
Args:
vertex_count - int, desired vertex count
edge_count - int, desired edge count
labels - int, the number of labels to use
"""
# desired vertex and edge counts
self.vertex_count = vertex_count
self.edge_count = edge_count
# storage
self.edges = []
self.vertices = []
self.labels = {"label%d" % i: [] for i in range(labels)}
# info about query failures, maps exception string representations into
# occurence counts
self._query_failure_counts = defaultdict(int)
def add_query_failure(self, reason):
self._query_failure_counts[reason] += 1
def query_failures(self):
return dict(self._query_failure_counts)
class GraphSession():
"""
Encapsulates a Graph and a Bolt session and provides CRUD op functions.
Also defines a run-loop for a generic exectutor, and a graph state
verification function.
"""
def __init__(self, sid, graph, session):
self.sid = sid
# the label in the database that is indexed
# used for matching vertices faster
self.indexed_label = INDEX_FORMAT.format(sid)
self.vertex_id = 1
self.edge_id = 1
self.graph = graph
self.session = session
self.executed_queries = 0
self._start_time = time.time()
@property
def v(self):
return self.graph.vertices
@property
def e(self):
return self.graph.edges
def execute(self, query):
log.debug("Runner %d executing query: %s", self.sid, query)
self.executed_queries += 1
try:
return self.session.run(query).data()
except neo4j.exceptions.ServiceUnavailable as e:
raise e
except Exception as e:
self.graph.add_query_failure(str(e))
return None
def create_vertices(self, vertices_count):
query = ""
if vertices_count == 0: return
for _ in range(vertices_count):
query += "CREATE (:%s {id: %r}) " % (self.indexed_label,
self.vertex_id)
self.v.append(self.vertex_id)
self.vertex_id += 1
self.execute(query)
def remove_vertex(self):
vertex_id = random_element(self.v)
result = self.execute(
"MATCH (n:%s {id: %r}) OPTIONAL MATCH (n)-[r]-() "
"DETACH DELETE n RETURN n.id, labels(n), r.id" %
(self.indexed_label, vertex_id))
if result:
process_vertex_ids = set()
for row in result:
# remove vertex but note there could be duplicates
vertex_id = row['n.id']
if vertex_id not in process_vertex_ids:
process_vertex_ids.add(vertex_id)
self.v.remove(vertex_id)
for label in row['labels(n)']:
if (label != self.indexed_label):
self.graph.labels[label].remove(vertex_id)
# remove edge
edge_id = row['r.id']
if edge_id != None:
self.e.remove(edge_id)
def create_edge(self):
creation = self.execute(
"MATCH (from:%s {id: %r}), (to:%s {id: %r}) "
"CREATE (from)-[e:EdgeType {id: %r}]->(to) RETURN e" % (
self.indexed_label, random_element(self.v), self.indexed_label,
random_element(self.v), self.edge_id))
if creation:
self.e.append(self.edge_id)
self.edge_id += 1
def remove_edge(self):
edge_id = random_element(self.e)
result = self.execute("MATCH (:%s)-[e {id: %r}]->(:%s) DELETE e "
"RETURN e.id" % (self.indexed_label, edge_id,
self.indexed_label))
if result:
self.e.remove(edge_id)
def add_label(self):
vertex_id = random_element(self.v)
label = random.choice(list(self.graph.labels.keys()))
# add a label on a vertex that didn't have that label
# yet (we need that for book-keeping)
result = self.execute("MATCH (v:%s {id: %r}) WHERE not v:%s SET v:%s "
"RETURN v.id" % (self.indexed_label, vertex_id,
label, label))
if result:
self.graph.labels[label].append(vertex_id)
def update_global_vertices(self):
lo = random.randint(0, self.vertex_id)
hi = lo + int(self.vertex_id * 0.01)
num = random.randint(0, 2 ** 20)
self.execute("MATCH (n) WHERE n.id > %d AND n.id < %d "
"SET n.value = %d" % (lo, hi, num))
def update_global_edges(self):
lo = random.randint(0, self.edge_id)
hi = lo + int(self.edge_id * 0.01)
num = random.randint(0, 2 ** 20)
self.execute("MATCH ()-[e]->() WHERE e.id > %d AND e.id < %d "
"SET e.value = %d" % (lo, hi, num))
def verify_graph(self):
""" Checks if the local info corresponds to DB state """
def test(obj, length, message):
assert len(obj) == length, message % (len(obj), length)
def get(query, key):
ret = self.execute(query)
assert ret != None, "Query '{}' returned 'None'!".format(query)
return [row[key] for row in ret]
test(self.v, get("MATCH (n:{}) RETURN count(n)".format(
self.indexed_label), "count(n)")[0],
"Expected %d vertices, found %d")
test(self.e, get("MATCH (:{0})-[r]->(:{0}) RETURN count(r)".format(
self.indexed_label), "count(r)")[0],
"Expected %d edges, found %d")
for lab, exp in self.graph.labels.items():
test(exp, get("MATCH (n:%s:%s) RETURN count(n)" % (
self.indexed_label, lab), "count(n)")[0],
"Expected %d vertices with label '{}', found %d".format(
lab))
log.info("Runner %d graph verification success:", self.sid)
log.info("\tExecuted %d queries in %.2f seconds",
self.executed_queries, time.time() - self._start_time)
log.info("\tGraph has %d vertices and %d edges",
len(self.v), len(self.e))
for label in sorted(self.graph.labels.keys()):
log.info("\tVertices with label '%s': %d",
label, len(self.graph.labels[label]))
failures = self.graph.query_failures()
if failures:
log.info("\tQuery failed (reason: count)")
for reason, count in failures.items():
log.info("\t\t'%s': %d", reason, count)
def run_loop(self, vertex_batch, query_count, max_time, verify):
# start the test
start_time = last_verify = time.time()
# initial batched vertex creation
for _ in range(self.graph.vertex_count // vertex_batch):
if (time.time() - start_time) / 60 > max_time \
or self.executed_queries > query_count:
break
self.create_vertices(vertex_batch)
self.create_vertices(self.graph.vertex_count % vertex_batch)
# run rest
while self.executed_queries < query_count:
now_time = time.time()
if (now_time - start_time) / 60 > max_time:
break
if verify > 0 and (now_time - last_verify) > verify:
self.verify_graph()
last_verify = now_time
ratio_e = len(self.e) / self.graph.edge_count
ratio_v = len(self.v) / self.graph.vertex_count
# try to edit vertices globally
if bernoulli(0.01):
self.update_global_vertices()
# try to edit edges globally
if bernoulli(0.01):
self.update_global_edges()
# prefer adding/removing edges whenever there is an edge
# disbalance and there is enough vertices
if ratio_v > 0.5 and abs(1 - ratio_e) > 0.2:
if bernoulli(ratio_e / 2.0):
self.remove_edge()
else:
self.create_edge()
continue
# if we are near vertex balance, we can also do updates
# instad of update / deletes
if abs(1 - ratio_v) < 0.5 and bernoulli(0.5):
self.add_label()
continue
if bernoulli(ratio_v / 2.0):
self.remove_vertex()
else:
self.create_vertices(1)
def runner(params):
num, args = params
driver = common.argument_driver(args)
graph = Graph(args.vertex_count // args.worker_count,
args.edge_count // args.worker_count)
log.info("Starting query runner process")
session = GraphSession(num, graph, driver.session())
session.run_loop(args.vertex_batch, args.max_queries // args.worker_count,
args.max_time, args.verify)
log.info("Runner %d executed %d queries", num, session.executed_queries)
driver.close()
def parse_args():
argp = common.connection_argument_parser()
argp.add_argument("--logging", default="INFO",
choices=["INFO", "DEBUG", "WARNING", "ERROR"],
help="Logging level")
argp.add_argument("--vertex-count", type=int, required=True,
help="The average number of vertices in the graph")
argp.add_argument("--edge-count", type=int, required=True,
help="The average number of edges in the graph")
argp.add_argument("--vertex-batch", type=int, default=200,
help="The number of vertices to be created "
"simultaneously")
argp.add_argument("--prop-count", type=int, default=5,
help="The max number of properties on a node")
argp.add_argument("--max-queries", type=int, default=2 ** 30,
help="Maximum number of queries to execute")
argp.add_argument("--max-time", type=int, default=2 ** 30,
help="Maximum execution time in minutes")
argp.add_argument("--verify", type=int, default=0,
help="Interval (seconds) between checking local info")
argp.add_argument("--worker-count", type=int, default=1,
help="The number of workers that operate on the graph "
"independently")
return argp.parse_args()
def main():
args = parse_args()
if args.logging:
logging.basicConfig(level=args.logging)
logging.getLogger("neo4j").setLevel(logging.WARNING)
log.info("Starting Memgraph long running test")
# cleanup and create indexes
driver = common.argument_driver(args)
driver.session().run("MATCH (n) DETACH DELETE n").consume()
for i in range(args.worker_count):
label = INDEX_FORMAT.format(i)
driver.session().run("CREATE INDEX ON :%s(id)" % label).consume()
driver.close()
params = [(i, args) for i in range(args.worker_count)]
with multiprocessing.Pool(args.worker_count) as p:
p.map(runner, params, 1)
log.info("All query runners done")
if __name__ == '__main__':
main()