memgraph/tests/public_benchmark/ldbc/convert_results

47 lines
1.5 KiB
Plaintext
Raw Normal View History

#!/usr/bin/env python3
import json
import os
import sys
# paths
SCRIPT_DIR = os.path.dirname(os.path.realpath(__file__))
RESULTS_DIR = os.path.join(SCRIPT_DIR, "results")
MEASUREMENTS_PATH = os.path.join(SCRIPT_DIR, ".apollo_measurements")
LDBC_TIME_FACTORS = {
"SECONDS": 1.0,
"MILLISECONDS": 1000.0,
"MICROSECONDS": 1000000.0,
"NANOSECONDS": 1000000000.0
}
def generate_measurements(path):
ret = ""
action, db, scale, ldbc, results = os.path.basename(path).split("-")
test_path = "{}.{}.{}".format(action, scale, db)
with open(path) as f:
results = json.load(f)
metrics = ["total_duration", "total_count", "throughput"]
divs = [LDBC_TIME_FACTORS[results["unit"]], 1, 1]
for metric, div in zip(metrics, divs):
ret += "{}.{} {}\n".format(test_path, metric, results[metric] / div)
for result in results["all_metrics"]:
name = result["name"]
run_time = dict(result["run_time"])
unit = run_time.pop("unit")
run_time.pop("name")
for key, value in run_time.items():
scale = LDBC_TIME_FACTORS[unit] if key != "count" else 1
ret += "{}.queries.{}.{} {}\n".format(test_path, name, key, value / scale)
return ret
measurements = ""
for fname in sorted(os.listdir(RESULTS_DIR)):
path = os.path.join(RESULTS_DIR, fname)
if not os.path.isfile(path): continue
if not path.endswith(".json"): continue
measurements += generate_measurements(path)
with open(MEASUREMENTS_PATH, "w") as f:
f.write(measurements)