memgraph/tests/unit/query_plan_accumulate_aggregate.cpp

616 lines
22 KiB
C++
Raw Normal View History

#include <algorithm>
#include <iterator>
#include <memory>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "communication/result_stream_faker.hpp"
#include "database/graph_db.hpp"
#include "query/context.hpp"
#include "query/exceptions.hpp"
#include "query/plan/operator.hpp"
#include "query_plan_common.hpp"
using namespace query;
using namespace query::plan;
using query::test_common::ToList;
using query::test_common::ToMap;
using testing::UnorderedElementsAre;
TEST(QueryPlan, Accumulate) {
// simulate the following two query execution on an empty db
// CREATE ({x:0})-[:T]->({x:0})
// MATCH (n)--(m) SET n.x = n.x + 1, m.x = m.x + 1 RETURN n.x, m.x
// without accumulation we expected results to be [[1, 1], [2, 2]]
// with accumulation we expect them to be [[2, 2], [2, 2]]
auto check = [&](bool accumulate) {
database::SingleNode db;
database::GraphDbAccessor dba(db);
auto prop = dba.Property("x");
auto v1 = dba.InsertVertex();
v1.PropsSet(prop, 0);
auto v2 = dba.InsertVertex();
v2.PropsSet(prop, 0);
dba.InsertEdge(v1, v2, dba.EdgeType("T"));
dba.AdvanceCommand();
AstTreeStorage storage;
SymbolTable symbol_table;
auto n = MakeScanAll(storage, symbol_table, "n");
auto r_m = MakeExpand(storage, symbol_table, n.op_, n.sym_, "r",
Variable expansion consolidaton Summary: - Removed BreadthFirstAtom, using EdgeAtom only with a Type enum. - Both variable expansions (breadth and depth first) now have mandatory inner node and edge Identifiers. - Both variable expansions use inline property filtering and support inline lambdas. - BFS and variable expansion now have the same planning process. - Planner modified in the following ways: - Variable expansions support inline property filtering (two filters added to all_filters, one for inline, one for post-expand). - Asserting against existing_edge since we don't support that anymore. - Edge and node symbols bound after variable expansion to disallow post-expand filters to get inlined. - Some things simplified due to different handling. - BreadthFirstExpand logical operator merged into ExpandVariable. Two Cursor classes remain and are dynamically chosen from. As part of planned planner refactor we should ensure that a filter is applied only once. The current implementation is very suboptimal for property filtering in variable expansions. @buda: we will start refactoring this these days. This current planner logic is too dense and complex. It is becoming technical debt. Most of the time I spent working on this has been spent figuring the planning out, and I still needed Teon's help at times. Implementing the correct and optimal version of query execution (avoiding multiple potentially expensive filterings) was out of reach also due to tech debt. Reviewers: buda, teon.banek Reviewed By: teon.banek Subscribers: pullbot, buda Differential Revision: https://phabricator.memgraph.io/D852
2017-10-05 17:25:52 +08:00
EdgeAtom::Direction::BOTH, {}, "m", false);
auto one = LITERAL(1);
auto n_p = PROPERTY_LOOKUP("n", prop);
symbol_table[*n_p->expression_] = n.sym_;
auto set_n_p =
std::make_shared<plan::SetProperty>(r_m.op_, n_p, ADD(n_p, one));
auto m_p = PROPERTY_LOOKUP("m", prop);
symbol_table[*m_p->expression_] = r_m.node_sym_;
auto set_m_p =
std::make_shared<plan::SetProperty>(set_n_p, m_p, ADD(m_p, one));
std::shared_ptr<LogicalOperator> last_op = set_m_p;
if (accumulate) {
last_op = std::make_shared<Accumulate>(
last_op, std::vector<Symbol>{n.sym_, r_m.node_sym_});
}
auto n_p_ne = NEXPR("n.p", n_p);
symbol_table[*n_p_ne] = symbol_table.CreateSymbol("n_p_ne", true);
auto m_p_ne = NEXPR("m.p", m_p);
symbol_table[*m_p_ne] = symbol_table.CreateSymbol("m_p_ne", true);
auto produce = MakeProduce(last_op, n_p_ne, m_p_ne);
auto results = CollectProduce(produce.get(), symbol_table, dba);
std::vector<int> results_data;
for (const auto &row : results)
for (const auto &column : row)
results_data.emplace_back(column.Value<int64_t>());
if (accumulate)
EXPECT_THAT(results_data, testing::ElementsAre(2, 2, 2, 2));
else
EXPECT_THAT(results_data, testing::ElementsAre(1, 1, 2, 2));
};
check(false);
check(true);
}
TEST(QueryPlan, AccumulateAdvance) {
// we simulate 'CREATE (n) WITH n AS n MATCH (m) RETURN m'
// to get correct results we need to advance the command
auto check = [&](bool advance) {
database::SingleNode db;
database::GraphDbAccessor dba(db);
AstTreeStorage storage;
SymbolTable symbol_table;
auto node = NODE("n");
auto sym_n = symbol_table.CreateSymbol("n", true);
symbol_table[*node->identifier_] = sym_n;
auto create = std::make_shared<CreateNode>(node, nullptr);
auto accumulate = std::make_shared<Accumulate>(
create, std::vector<Symbol>{sym_n}, advance);
auto match = MakeScanAll(storage, symbol_table, "m", accumulate);
EXPECT_EQ(advance ? 1 : 0, PullAll(match.op_, dba, symbol_table));
};
check(false);
check(true);
}
std::shared_ptr<Produce> MakeAggregationProduce(
std::shared_ptr<LogicalOperator> input, SymbolTable &symbol_table,
AstTreeStorage &storage, const std::vector<Expression *> aggr_inputs,
const std::vector<Aggregation::Op> aggr_ops,
const std::vector<Expression *> group_by_exprs,
const std::vector<Symbol> remember) {
// prepare all the aggregations
std::vector<Aggregate::Element> aggregates;
std::vector<NamedExpression *> named_expressions;
auto aggr_inputs_it = aggr_inputs.begin();
for (auto aggr_op : aggr_ops) {
// TODO change this from using IDENT to using AGGREGATION
// once AGGREGATION is handled properly in ExpressionEvaluation
auto named_expr = NEXPR("", IDENT("aggregation"));
named_expressions.push_back(named_expr);
symbol_table[*named_expr->expression_] =
symbol_table.CreateSymbol("aggregation", true);
symbol_table[*named_expr] =
symbol_table.CreateSymbol("named_expression", true);
// the key expression is only used in COLLECT_MAP
Expression *key_expr_ptr =
aggr_op == Aggregation::Op::COLLECT_MAP ? LITERAL("key") : nullptr;
aggregates.emplace_back(
Aggregate::Element{*aggr_inputs_it++, key_expr_ptr, aggr_op,
symbol_table[*named_expr->expression_]});
}
// Produce will also evaluate group_by expressions and return them after the
// aggregations.
for (auto group_by_expr : group_by_exprs) {
auto named_expr = NEXPR("", group_by_expr);
named_expressions.push_back(named_expr);
symbol_table[*named_expr] =
symbol_table.CreateSymbol("named_expression", true);
}
auto aggregation =
std::make_shared<Aggregate>(input, aggregates, group_by_exprs, remember);
return std::make_shared<Produce>(aggregation, named_expressions);
}
/** Test fixture for all the aggregation ops in one return. */
class QueryPlanAggregateOps : public ::testing::Test {
protected:
database::SingleNode db;
database::GraphDbAccessor dba{db};
database::Property prop = dba.Property("prop");
AstTreeStorage storage;
SymbolTable symbol_table;
void AddData() {
// setup is several nodes most of which have an int property set
// we will take the sum, avg, min, max and count
// we won't group by anything
dba.InsertVertex().PropsSet(prop, 5);
dba.InsertVertex().PropsSet(prop, 7);
dba.InsertVertex().PropsSet(prop, 12);
// a missing property (null) gets ignored by all aggregations except
// COUNT(*)
dba.InsertVertex();
dba.AdvanceCommand();
}
auto AggregationResults(bool with_group_by,
std::vector<Aggregation::Op> ops = {
Aggregation::Op::COUNT, Aggregation::Op::COUNT,
Aggregation::Op::MIN, Aggregation::Op::MAX,
Aggregation::Op::SUM, Aggregation::Op::AVG,
Aggregation::Op::COLLECT_LIST,
Aggregation::Op::COLLECT_MAP}) {
// match all nodes and perform aggregations
auto n = MakeScanAll(storage, symbol_table, "n");
auto n_p = PROPERTY_LOOKUP("n", prop);
symbol_table[*n_p->expression_] = n.sym_;
std::vector<Expression *> aggregation_expressions(ops.size(), n_p);
std::vector<Expression *> group_bys;
if (with_group_by) group_bys.push_back(n_p);
aggregation_expressions[0] = nullptr;
auto produce =
MakeAggregationProduce(n.op_, symbol_table, storage,
aggregation_expressions, ops, group_bys, {});
return CollectProduce(produce.get(), symbol_table, dba);
}
};
TEST_F(QueryPlanAggregateOps, WithData) {
AddData();
auto results = AggregationResults(false);
ASSERT_EQ(results.size(), 1);
ASSERT_EQ(results[0].size(), 8);
// count(*)
ASSERT_EQ(results[0][0].type(), TypedValue::Type::Int);
EXPECT_EQ(results[0][0].Value<int64_t>(), 4);
// count
ASSERT_EQ(results[0][1].type(), TypedValue::Type::Int);
EXPECT_EQ(results[0][1].Value<int64_t>(), 3);
// min
ASSERT_EQ(results[0][2].type(), TypedValue::Type::Int);
EXPECT_EQ(results[0][2].Value<int64_t>(), 5);
// max
ASSERT_EQ(results[0][3].type(), TypedValue::Type::Int);
EXPECT_EQ(results[0][3].Value<int64_t>(), 12);
// sum
ASSERT_EQ(results[0][4].type(), TypedValue::Type::Int);
EXPECT_EQ(results[0][4].Value<int64_t>(), 24);
// avg
ASSERT_EQ(results[0][5].type(), TypedValue::Type::Double);
EXPECT_FLOAT_EQ(results[0][5].Value<double>(), 24 / 3.0);
// collect list
ASSERT_EQ(results[0][6].type(), TypedValue::Type::List);
EXPECT_THAT(ToList<int64_t>(results[0][6]), UnorderedElementsAre(5, 7, 12));
// collect map
ASSERT_EQ(results[0][7].type(), TypedValue::Type::Map);
auto map = ToMap<int64_t>(results[0][7]);
ASSERT_EQ(map.size(), 1);
EXPECT_EQ(map.begin()->first, "key");
EXPECT_FALSE(std::set<int>({5, 7, 12}).insert(map.begin()->second).second);
}
TEST_F(QueryPlanAggregateOps, WithoutDataWithGroupBy) {
{
auto results = AggregationResults(true, {Aggregation::Op::COUNT});
EXPECT_EQ(results.size(), 0);
}
{
auto results = AggregationResults(true, {Aggregation::Op::SUM});
EXPECT_EQ(results.size(), 0);
}
{
auto results = AggregationResults(true, {Aggregation::Op::AVG});
EXPECT_EQ(results.size(), 0);
}
{
auto results = AggregationResults(true, {Aggregation::Op::MIN});
EXPECT_EQ(results.size(), 0);
}
{
auto results = AggregationResults(true, {Aggregation::Op::MAX});
EXPECT_EQ(results.size(), 0);
}
{
auto results = AggregationResults(true, {Aggregation::Op::COLLECT_LIST});
EXPECT_EQ(results.size(), 0);
}
{
auto results = AggregationResults(true, {Aggregation::Op::COLLECT_MAP});
EXPECT_EQ(results.size(), 0);
}
}
TEST_F(QueryPlanAggregateOps, WithoutDataWithoutGroupBy) {
auto results = AggregationResults(false);
ASSERT_EQ(results.size(), 1);
ASSERT_EQ(results[0].size(), 8);
// count(*)
ASSERT_EQ(results[0][0].type(), TypedValue::Type::Int);
EXPECT_EQ(results[0][0].Value<int64_t>(), 0);
// count
ASSERT_EQ(results[0][1].type(), TypedValue::Type::Int);
EXPECT_EQ(results[0][1].Value<int64_t>(), 0);
// min
EXPECT_TRUE(results[0][2].IsNull());
// max
EXPECT_TRUE(results[0][3].IsNull());
// sum
EXPECT_TRUE(results[0][4].IsNull());
// avg
EXPECT_TRUE(results[0][5].IsNull());
// collect list
ASSERT_EQ(results[0][6].type(), TypedValue::Type::List);
EXPECT_EQ(ToList<int64_t>(results[0][6]).size(), 0);
// collect map
ASSERT_EQ(results[0][7].type(), TypedValue::Type::Map);
EXPECT_EQ(ToMap<int64_t>(results[0][7]).size(), 0);
}
TEST(QueryPlan, AggregateGroupByValues) {
// Tests that distinct groups are aggregated properly for values of all types.
// Also test the "remember" part of the Aggregation API as final results are
// obtained via a property lookup of a remembered node.
database::SingleNode db;
database::GraphDbAccessor dba(db);
// a vector of TypedValue to be set as property values on vertices
// most of them should result in a distinct group (commented where not)
std::vector<TypedValue> group_by_vals;
group_by_vals.emplace_back(4);
group_by_vals.emplace_back(7);
group_by_vals.emplace_back(7.3);
group_by_vals.emplace_back(7.2);
group_by_vals.emplace_back("Johhny");
group_by_vals.emplace_back("Jane");
group_by_vals.emplace_back("1");
group_by_vals.emplace_back(true);
group_by_vals.emplace_back(false);
group_by_vals.emplace_back(std::vector<TypedValue>{1});
group_by_vals.emplace_back(std::vector<TypedValue>{1, 2});
group_by_vals.emplace_back(std::vector<TypedValue>{2, 1});
group_by_vals.emplace_back(TypedValue::Null);
// should NOT result in another group because 7.0 == 7
group_by_vals.emplace_back(7.0);
// should NOT result in another group
group_by_vals.emplace_back(std::vector<TypedValue>{1, 2.0});
// generate a lot of vertices and set props on them
auto prop = dba.Property("prop");
for (int i = 0; i < 1000; ++i)
dba.InsertVertex().PropsSet(prop, group_by_vals[i % group_by_vals.size()]);
dba.AdvanceCommand();
AstTreeStorage storage;
SymbolTable symbol_table;
// match all nodes and perform aggregations
auto n = MakeScanAll(storage, symbol_table, "n");
auto n_p = PROPERTY_LOOKUP("n", prop);
symbol_table[*n_p->expression_] = n.sym_;
auto produce =
MakeAggregationProduce(n.op_, symbol_table, storage, {n_p},
{Aggregation::Op::COUNT}, {n_p}, {n.sym_});
auto results = CollectProduce(produce.get(), symbol_table, dba);
ASSERT_EQ(results.size(), group_by_vals.size() - 2);
TypedValue::unordered_set result_group_bys;
for (const auto &row : results) {
ASSERT_EQ(2, row.size());
result_group_bys.insert(row[1]);
}
ASSERT_EQ(result_group_bys.size(), group_by_vals.size() - 2);
EXPECT_TRUE(
std::is_permutation(group_by_vals.begin(), group_by_vals.end() - 2,
result_group_bys.begin(), TypedValue::BoolEqual{}));
}
TEST(QueryPlan, AggregateMultipleGroupBy) {
// in this test we have 3 different properties that have different values
// for different records and assert that we get the correct combination
// of values in our groups
database::SingleNode db;
database::GraphDbAccessor dba(db);
auto prop1 = dba.Property("prop1");
auto prop2 = dba.Property("prop2");
auto prop3 = dba.Property("prop3");
for (int i = 0; i < 2 * 3 * 5; ++i) {
auto v = dba.InsertVertex();
v.PropsSet(prop1, (bool)(i % 2));
v.PropsSet(prop2, i % 3);
v.PropsSet(prop3, "value" + std::to_string(i % 5));
}
dba.AdvanceCommand();
AstTreeStorage storage;
SymbolTable symbol_table;
// match all nodes and perform aggregations
auto n = MakeScanAll(storage, symbol_table, "n");
auto n_p1 = PROPERTY_LOOKUP("n", prop1);
auto n_p2 = PROPERTY_LOOKUP("n", prop2);
auto n_p3 = PROPERTY_LOOKUP("n", prop3);
symbol_table[*n_p1->expression_] = n.sym_;
symbol_table[*n_p2->expression_] = n.sym_;
symbol_table[*n_p3->expression_] = n.sym_;
auto produce = MakeAggregationProduce(n.op_, symbol_table, storage, {n_p1},
{Aggregation::Op::COUNT},
{n_p1, n_p2, n_p3}, {n.sym_});
auto results = CollectProduce(produce.get(), symbol_table, dba);
EXPECT_EQ(results.size(), 2 * 3 * 5);
}
TEST(QueryPlan, AggregateNoInput) {
database::SingleNode db;
database::GraphDbAccessor dba(db);
AstTreeStorage storage;
SymbolTable symbol_table;
auto two = LITERAL(2);
auto output = NEXPR("two", IDENT("two"));
symbol_table[*output->expression_] = symbol_table.CreateSymbol("two", true);
auto produce = MakeAggregationProduce(nullptr, symbol_table, storage, {two},
{Aggregation::Op::COUNT}, {}, {});
auto results = CollectProduce(produce.get(), symbol_table, dba);
EXPECT_EQ(1, results.size());
EXPECT_EQ(1, results[0].size());
EXPECT_EQ(TypedValue::Type::Int, results[0][0].type());
EXPECT_EQ(1, results[0][0].Value<int64_t>());
}
TEST(QueryPlan, AggregateCountEdgeCases) {
// tests for detected bugs in the COUNT aggregation behavior
// ensure that COUNT returns correctly for
// - 0 vertices in database
// - 1 vertex in database, property not set
// - 1 vertex in database, property set
// - 2 vertices in database, property set on one
// - 2 vertices in database, property set on both
database::SingleNode db;
database::GraphDbAccessor dba(db);
auto prop = dba.Property("prop");
AstTreeStorage storage;
SymbolTable symbol_table;
auto n = MakeScanAll(storage, symbol_table, "n");
auto n_p = PROPERTY_LOOKUP("n", prop);
symbol_table[*n_p->expression_] = n.sym_;
// returns -1 when there are no results
// otherwise returns MATCH (n) RETURN count(n.prop)
auto count = [&]() {
auto produce = MakeAggregationProduce(n.op_, symbol_table, storage, {n_p},
{Aggregation::Op::COUNT}, {}, {});
auto results = CollectProduce(produce.get(), symbol_table, dba);
if (results.size() == 0) return -1L;
EXPECT_EQ(1, results.size());
EXPECT_EQ(1, results[0].size());
EXPECT_EQ(TypedValue::Type::Int, results[0][0].type());
return results[0][0].Value<int64_t>();
};
// no vertices yet in database
EXPECT_EQ(0, count());
// one vertex, no property set
dba.InsertVertex();
dba.AdvanceCommand();
EXPECT_EQ(0, count());
// one vertex, property set
for (VertexAccessor va : dba.Vertices(false)) va.PropsSet(prop, 42);
dba.AdvanceCommand();
EXPECT_EQ(1, count());
// two vertices, one with property set
dba.InsertVertex();
dba.AdvanceCommand();
EXPECT_EQ(1, count());
// two vertices, both with property set
for (VertexAccessor va : dba.Vertices(false)) va.PropsSet(prop, 42);
dba.AdvanceCommand();
EXPECT_EQ(2, count());
}
TEST(QueryPlan, AggregateFirstValueTypes) {
// testing exceptions that get emitted by the first-value
// type check
database::SingleNode db;
database::GraphDbAccessor dba(db);
auto v1 = dba.InsertVertex();
auto prop_string = dba.Property("string");
v1.PropsSet(prop_string, "johhny");
auto prop_int = dba.Property("int");
v1.PropsSet(prop_int, 12);
dba.AdvanceCommand();
AstTreeStorage storage;
SymbolTable symbol_table;
auto n = MakeScanAll(storage, symbol_table, "n");
auto n_prop_string = PROPERTY_LOOKUP("n", prop_string);
symbol_table[*n_prop_string->expression_] = n.sym_;
auto n_prop_int = PROPERTY_LOOKUP("n", prop_int);
symbol_table[*n_prop_int->expression_] = n.sym_;
auto n_id = n_prop_string->expression_;
auto aggregate = [&](Expression *expression, Aggregation::Op aggr_op) {
auto produce = MakeAggregationProduce(n.op_, symbol_table, storage,
{expression}, {aggr_op}, {}, {});
CollectProduce(produce.get(), symbol_table, dba);
};
// everything except for COUNT and COLLECT fails on a Vertex
aggregate(n_id, Aggregation::Op::COUNT);
EXPECT_THROW(aggregate(n_id, Aggregation::Op::MIN), QueryRuntimeException);
EXPECT_THROW(aggregate(n_id, Aggregation::Op::MAX), QueryRuntimeException);
EXPECT_THROW(aggregate(n_id, Aggregation::Op::AVG), QueryRuntimeException);
EXPECT_THROW(aggregate(n_id, Aggregation::Op::SUM), QueryRuntimeException);
// on strings AVG and SUM fail
aggregate(n_prop_string, Aggregation::Op::COUNT);
aggregate(n_prop_string, Aggregation::Op::MIN);
aggregate(n_prop_string, Aggregation::Op::MAX);
EXPECT_THROW(aggregate(n_prop_string, Aggregation::Op::AVG),
QueryRuntimeException);
EXPECT_THROW(aggregate(n_prop_string, Aggregation::Op::SUM),
QueryRuntimeException);
// on ints nothing fails
aggregate(n_prop_int, Aggregation::Op::COUNT);
aggregate(n_prop_int, Aggregation::Op::MIN);
aggregate(n_prop_int, Aggregation::Op::MAX);
aggregate(n_prop_int, Aggregation::Op::AVG);
aggregate(n_prop_int, Aggregation::Op::SUM);
aggregate(n_prop_int, Aggregation::Op::COLLECT_LIST);
aggregate(n_prop_int, Aggregation::Op::COLLECT_MAP);
}
TEST(QueryPlan, AggregateTypes) {
// testing exceptions that can get emitted by an aggregation
// does not check all combinations that can result in an exception
// (that logic is defined and tested by TypedValue)
database::SingleNode db;
database::GraphDbAccessor dba(db);
auto p1 = dba.Property("p1"); // has only string props
dba.InsertVertex().PropsSet(p1, "string");
dba.InsertVertex().PropsSet(p1, "str2");
auto p2 = dba.Property("p2"); // combines int and bool
dba.InsertVertex().PropsSet(p2, 42);
dba.InsertVertex().PropsSet(p2, true);
dba.AdvanceCommand();
AstTreeStorage storage;
SymbolTable symbol_table;
auto n = MakeScanAll(storage, symbol_table, "n");
auto n_p1 = PROPERTY_LOOKUP("n", p1);
symbol_table[*n_p1->expression_] = n.sym_;
auto n_p2 = PROPERTY_LOOKUP("n", p2);
symbol_table[*n_p2->expression_] = n.sym_;
auto aggregate = [&](Expression *expression, Aggregation::Op aggr_op) {
auto produce = MakeAggregationProduce(n.op_, symbol_table, storage,
{expression}, {aggr_op}, {}, {});
CollectProduce(produce.get(), symbol_table, dba);
};
// everything except for COUNT and COLLECT fails on a Vertex
auto n_id = n_p1->expression_;
aggregate(n_id, Aggregation::Op::COUNT);
aggregate(n_id, Aggregation::Op::COLLECT_LIST);
aggregate(n_id, Aggregation::Op::COLLECT_MAP);
EXPECT_THROW(aggregate(n_id, Aggregation::Op::MIN), QueryRuntimeException);
EXPECT_THROW(aggregate(n_id, Aggregation::Op::MAX), QueryRuntimeException);
EXPECT_THROW(aggregate(n_id, Aggregation::Op::AVG), QueryRuntimeException);
EXPECT_THROW(aggregate(n_id, Aggregation::Op::SUM), QueryRuntimeException);
// on strings AVG and SUM fail
aggregate(n_p1, Aggregation::Op::COUNT);
aggregate(n_p1, Aggregation::Op::COLLECT_LIST);
aggregate(n_p1, Aggregation::Op::COLLECT_MAP);
aggregate(n_p1, Aggregation::Op::MIN);
aggregate(n_p1, Aggregation::Op::MAX);
EXPECT_THROW(aggregate(n_p1, Aggregation::Op::AVG), QueryRuntimeException);
EXPECT_THROW(aggregate(n_p1, Aggregation::Op::SUM), QueryRuntimeException);
// combination of int and bool, everything except COUNT and COLLECT fails
aggregate(n_p2, Aggregation::Op::COUNT);
aggregate(n_p2, Aggregation::Op::COLLECT_LIST);
aggregate(n_p2, Aggregation::Op::COLLECT_MAP);
EXPECT_THROW(aggregate(n_p2, Aggregation::Op::MIN), QueryRuntimeException);
EXPECT_THROW(aggregate(n_p2, Aggregation::Op::MAX), QueryRuntimeException);
EXPECT_THROW(aggregate(n_p2, Aggregation::Op::AVG), QueryRuntimeException);
EXPECT_THROW(aggregate(n_p2, Aggregation::Op::SUM), QueryRuntimeException);
}
TEST(QueryPlan, Unwind) {
database::SingleNode db;
database::GraphDbAccessor dba(db);
AstTreeStorage storage;
SymbolTable symbol_table;
// UNWIND [ [1, true, "x"], [], ["bla"] ] AS x UNWIND x as y RETURN x, y
auto input_expr = storage.Create<PrimitiveLiteral>(std::vector<TypedValue>{
std::vector<TypedValue>{1, true, "x"}, std::vector<TypedValue>{},
std::vector<TypedValue>{"bla"}});
auto x = symbol_table.CreateSymbol("x", true);
auto unwind_0 = std::make_shared<plan::Unwind>(nullptr, input_expr, x);
auto x_expr = IDENT("x");
symbol_table[*x_expr] = x;
auto y = symbol_table.CreateSymbol("y", true);
auto unwind_1 = std::make_shared<plan::Unwind>(unwind_0, x_expr, y);
auto x_ne = NEXPR("x", x_expr);
symbol_table[*x_ne] = symbol_table.CreateSymbol("x_ne", true);
auto y_ne = NEXPR("y", IDENT("y"));
symbol_table[*y_ne->expression_] = y;
symbol_table[*y_ne] = symbol_table.CreateSymbol("y_ne", true);
auto produce = MakeProduce(unwind_1, x_ne, y_ne);
auto results = CollectProduce(produce.get(), symbol_table, dba);
ASSERT_EQ(4, results.size());
const std::vector<int> expected_x_card{3, 3, 3, 1};
auto expected_x_card_it = expected_x_card.begin();
const std::vector<TypedValue> expected_y{1, true, "x", "bla"};
auto expected_y_it = expected_y.begin();
for (const auto &row : results) {
ASSERT_EQ(2, row.size());
ASSERT_EQ(row[0].type(), TypedValue::Type::List);
EXPECT_EQ(row[0].Value<std::vector<TypedValue>>().size(),
*expected_x_card_it);
EXPECT_EQ(row[1].type(), expected_y_it->type());
expected_x_card_it++;
expected_y_it++;
}
}