memgraph/tests/unit/utils_memory.cpp

389 lines
14 KiB
C++
Raw Normal View History

#include <cstdint>
#include <cstring>
#include <limits>
#include <gtest/gtest.h>
#include "utils/memory.hpp"
class TestMemory final : public utils::MemoryResource {
public:
size_t new_count_{0};
size_t delete_count_{0};
private:
void *DoAllocate(size_t bytes, size_t alignment) override {
new_count_++;
EXPECT_TRUE(alignment != 0U && (alignment & (alignment - 1U)) == 0U)
<< "Alignment must be power of 2";
EXPECT_NE(bytes, 0);
const size_t pad_size = 32;
EXPECT_TRUE(bytes + pad_size > bytes) << "TestMemory size overflow";
EXPECT_TRUE(bytes + pad_size + alignment > bytes + alignment)
<< "TestMemory size overflow";
EXPECT_TRUE(2U * alignment > alignment) << "TestMemory alignment overflow";
// Allocate a block containing extra alignment and pad_size bytes, but
// aligned to 2 * alignment. Then we can offset the ptr so that it's never
// aligned to 2 * alignment. This ought to make allocator alignment issues
// more obvious.
void *ptr = utils::NewDeleteResource()->Allocate(
alignment + bytes + pad_size, 2U * alignment);
// Clear allocated memory to 0xFF, marking the invalid region.
memset(ptr, 0xFF, alignment + bytes + pad_size);
// Offset the ptr so it's not aligned to 2 * alignment, but still aligned to
// alignment.
ptr = static_cast<char *>(ptr) + alignment;
// Clear the valid region to 0x00, so that we can more easily test that the
// allocator is doing the right thing.
memset(ptr, 0, bytes);
return ptr;
}
void DoDeallocate(void *ptr, size_t bytes, size_t alignment) override {
delete_count_++;
// Deallocate the original ptr, before alignment adjustment.
return utils::NewDeleteResource()->Deallocate(
static_cast<char *>(ptr) - alignment, bytes, alignment);
}
bool DoIsEqual(const utils::MemoryResource &other) const noexcept override {
return this == &other;
}
};
void *CheckAllocation(utils::MemoryResource *mem, size_t bytes,
size_t alignment = alignof(std::max_align_t)) {
void *ptr = mem->Allocate(bytes, alignment);
if (alignment > alignof(std::max_align_t))
alignment = alignof(std::max_align_t);
EXPECT_TRUE(ptr);
EXPECT_EQ(reinterpret_cast<uintptr_t>(ptr) % alignment, 0)
<< "Allocated misaligned pointer!";
// There should be no 0xFF bytes because they are either padded at the end of
// the allocated block or are found in already checked allocations.
EXPECT_FALSE(memchr(ptr, 0xFF, bytes)) << "Invalid memory region!";
// Mark the checked allocation with 0xFF bytes.
memset(ptr, 0xFF, bytes);
return ptr;
}
TEST(MonotonicBufferResource, AllocationWithinInitialSize) {
TestMemory test_mem;
{
utils::MonotonicBufferResource mem(1024, &test_mem);
void *fst_ptr = CheckAllocation(&mem, 24, 1);
void *snd_ptr = CheckAllocation(&mem, 1000, 1);
EXPECT_EQ(test_mem.new_count_, 1);
EXPECT_EQ(test_mem.delete_count_, 0);
mem.Deallocate(snd_ptr, 1000, 1);
mem.Deallocate(fst_ptr, 24, 1);
EXPECT_EQ(test_mem.delete_count_, 0);
mem.Release();
EXPECT_EQ(test_mem.delete_count_, 1);
CheckAllocation(&mem, 1024);
EXPECT_EQ(test_mem.new_count_, 2);
EXPECT_EQ(test_mem.delete_count_, 1);
}
EXPECT_EQ(test_mem.delete_count_, 2);
}
TEST(MonotonicBufferResource, AllocationOverInitialSize) {
TestMemory test_mem;
{
utils::MonotonicBufferResource mem(1024, &test_mem);
CheckAllocation(&mem, 1025, 1);
EXPECT_EQ(test_mem.new_count_, 1);
}
EXPECT_EQ(test_mem.delete_count_, 1);
{
utils::MonotonicBufferResource mem(1024, &test_mem);
CheckAllocation(&mem, 1025);
EXPECT_EQ(test_mem.new_count_, 2);
}
EXPECT_EQ(test_mem.delete_count_, 2);
}
TEST(MonotonicBufferResource, AllocationOverCapacity) {
TestMemory test_mem;
{
utils::MonotonicBufferResource mem(1000, &test_mem);
CheckAllocation(&mem, 24, 1);
EXPECT_EQ(test_mem.new_count_, 1);
CheckAllocation(&mem, 976);
EXPECT_EQ(test_mem.new_count_, 2);
EXPECT_EQ(test_mem.delete_count_, 0);
mem.Release();
EXPECT_EQ(test_mem.new_count_, 2);
EXPECT_EQ(test_mem.delete_count_, 2);
CheckAllocation(&mem, 1025, 1);
EXPECT_EQ(test_mem.new_count_, 3);
CheckAllocation(&mem, 1023, 1);
// MonotonicBufferResource state after Release is called may or may not
// allocate a larger block right from the start (i.e. tracked buffer sizes
// before Release may be retained).
EXPECT_TRUE(test_mem.new_count_ >= 3);
}
EXPECT_TRUE(test_mem.delete_count_ >= 3);
}
TEST(MonotonicBufferResource, AllocationWithAlignmentNotPowerOf2) {
utils::MonotonicBufferResource mem(1024);
EXPECT_THROW(mem.Allocate(24, 3), std::bad_alloc);
EXPECT_THROW(mem.Allocate(24, 0), std::bad_alloc);
}
TEST(MonotonicBufferResource, AllocationWithSize0) {
utils::MonotonicBufferResource mem(1024);
EXPECT_THROW(mem.Allocate(0), std::bad_alloc);
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST(MonotonicBufferResource, AllocationWithAlignmentGreaterThanMaxAlign) {
TestMemory test_mem;
utils::MonotonicBufferResource mem(1024, &test_mem);
CheckAllocation(&mem, 24, 2U * alignof(std::max_align_t));
}
TEST(MonotonicBufferResource, AllocationWithSizeOverflow) {
size_t max_size = std::numeric_limits<size_t>::max();
utils::MonotonicBufferResource mem(1024);
// Setup so that the next allocation aligning max_size causes overflow.
mem.Allocate(1, 1);
EXPECT_THROW(mem.Allocate(max_size, 4), std::bad_alloc);
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST(MonotonicBufferResource, AllocationWithInitialBufferOnStack) {
TestMemory test_mem;
constexpr size_t stack_data_size = 1024;
char stack_data[stack_data_size];
memset(stack_data, 0x42, stack_data_size);
utils::MonotonicBufferResource mem(&stack_data[0], stack_data_size,
&test_mem);
{
char *ptr = reinterpret_cast<char *>(CheckAllocation(&mem, 1, 1));
EXPECT_EQ(&stack_data[0], ptr);
EXPECT_EQ(test_mem.new_count_, 0);
}
{
char *ptr = reinterpret_cast<char *>(CheckAllocation(&mem, 1023, 1));
EXPECT_EQ(&stack_data[1], ptr);
EXPECT_EQ(test_mem.new_count_, 0);
}
CheckAllocation(&mem, 1);
EXPECT_EQ(test_mem.new_count_, 1);
mem.Release();
// We will once more allocate from stack so reset it.
memset(stack_data, 0x42, stack_data_size);
EXPECT_EQ(test_mem.delete_count_, 1);
{
char *ptr = reinterpret_cast<char *>(CheckAllocation(&mem, 1024, 1));
EXPECT_EQ(&stack_data[0], ptr);
EXPECT_EQ(test_mem.new_count_, 1);
}
mem.Release();
// Next allocation doesn't fit to stack so no need to reset it.
EXPECT_EQ(test_mem.delete_count_, 1);
{
char *ptr = reinterpret_cast<char *>(CheckAllocation(&mem, 1025, 1));
EXPECT_NE(&stack_data[0], ptr);
EXPECT_EQ(test_mem.new_count_, 2);
}
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST(PoolResource, SingleSmallBlockAllocations) {
TestMemory test_mem;
const size_t max_blocks_per_chunk = 3U;
const size_t max_block_size = 64U;
utils::PoolResource mem(max_blocks_per_chunk, max_block_size, &test_mem);
// Fill the first chunk.
CheckAllocation(&mem, 64U, 1U);
// May allocate more than once due to bookkeeping.
EXPECT_GE(test_mem.new_count_, 1U);
// Reset tracking and continue filling the first chunk.
test_mem.new_count_ = 0U;
CheckAllocation(&mem, 64U, 64U);
CheckAllocation(&mem, 64U);
EXPECT_EQ(test_mem.new_count_, 0U);
// Reset tracking and fill the second chunk
test_mem.new_count_ = 0U;
CheckAllocation(&mem, 64U, 32U);
auto *ptr1 = CheckAllocation(&mem, 32U, 64U); // this will become 64b block
auto *ptr2 = CheckAllocation(&mem, 64U, 32U);
// We expect one allocation for chunk and at most one for bookkeeping.
EXPECT_TRUE(test_mem.new_count_ >= 1U && test_mem.new_count_ <= 2U);
test_mem.delete_count_ = 0U;
mem.Deallocate(ptr1, 32U, 64U);
mem.Deallocate(ptr2, 64U, 32U);
EXPECT_EQ(test_mem.delete_count_, 0U);
mem.Release();
EXPECT_GE(test_mem.delete_count_, 2U);
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST(PoolResource, MultipleSmallBlockAllocations) {
TestMemory test_mem;
const size_t max_blocks_per_chunk = 1U;
const size_t max_block_size = 64U;
utils::PoolResource mem(max_blocks_per_chunk, max_block_size, &test_mem);
CheckAllocation(&mem, 64U);
CheckAllocation(&mem, 18U, 2U);
CheckAllocation(&mem, 24U, 8U);
// May allocate more than once per chunk due to bookkeeping.
EXPECT_GE(test_mem.new_count_, 3U);
// Reset tracking and fill the second chunk
test_mem.new_count_ = 0U;
CheckAllocation(&mem, 64U);
CheckAllocation(&mem, 18U, 2U);
CheckAllocation(&mem, 24U, 8U);
// We expect one allocation for chunk and at most one for bookkeeping.
EXPECT_TRUE(test_mem.new_count_ >= 3U && test_mem.new_count_ <= 6U);
mem.Release();
EXPECT_GE(test_mem.delete_count_, 6U);
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST(PoolResource, BigBlockAllocations) {
TestMemory test_mem;
const size_t max_blocks_per_chunk = 3U;
const size_t max_block_size = 64U;
utils::PoolResource mem(max_blocks_per_chunk, max_block_size, &test_mem);
CheckAllocation(&mem, max_block_size + 1, 1U);
// May allocate more than once per block due to bookkeeping.
EXPECT_GE(test_mem.new_count_, 1U);
CheckAllocation(&mem, max_block_size + 1, 1U);
EXPECT_GE(test_mem.new_count_, 2U);
auto *ptr = CheckAllocation(&mem, max_block_size * 2, 1U);
EXPECT_GE(test_mem.new_count_, 3U);
mem.Deallocate(ptr, max_block_size * 2, 1U);
EXPECT_GE(test_mem.delete_count_, 1U);
mem.Release();
EXPECT_GE(test_mem.delete_count_, 3U);
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST(PoolResource, BlockSizeIsNotMultipleOfAlignment) {
const size_t max_blocks_per_chunk = 3U;
const size_t max_block_size = 64U;
utils::PoolResource mem(max_blocks_per_chunk, max_block_size);
EXPECT_THROW(mem.Allocate(64U, 24U), std::bad_alloc);
EXPECT_THROW(mem.Allocate(63U), std::bad_alloc);
EXPECT_THROW(mem.Allocate(max_block_size + 1, max_block_size),
std::bad_alloc);
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
TEST(PoolResource, AllocationWithOverflow) {
{
const size_t max_blocks_per_chunk = 2U;
utils::PoolResource mem(max_blocks_per_chunk,
std::numeric_limits<size_t>::max());
EXPECT_THROW(mem.Allocate(std::numeric_limits<size_t>::max(), 1U),
std::bad_alloc);
// Throws because initial chunk block is aligned to
// utils::Ceil2(block_size), which wraps in this case.
EXPECT_THROW(mem.Allocate((std::numeric_limits<size_t>::max() - 1U) /
max_blocks_per_chunk,
1U),
std::bad_alloc);
}
{
const size_t max_blocks_per_chunk = utils::impl::Pool::MaxBlocksInChunk();
utils::PoolResource mem(max_blocks_per_chunk,
std::numeric_limits<size_t>::max());
EXPECT_THROW(mem.Allocate(std::numeric_limits<size_t>::max(), 1U),
std::bad_alloc);
// Throws because initial chunk block is aligned to
// utils::Ceil2(block_size), which wraps in this case.
EXPECT_THROW(mem.Allocate((std::numeric_limits<size_t>::max() - 1U) /
max_blocks_per_chunk,
1U),
std::bad_alloc);
}
}
// NOLINTNEXTLINE(hicpp-special-member-functions)
class ContainerWithAllocatorLast final {
public:
using allocator_type = utils::Allocator<int>;
ContainerWithAllocatorLast() = default;
explicit ContainerWithAllocatorLast(int value) : value_(value) {}
ContainerWithAllocatorLast(int value, utils::MemoryResource *memory)
: memory_(memory), value_(value) {}
ContainerWithAllocatorLast(const ContainerWithAllocatorLast &other)
: value_(other.value_) {}
ContainerWithAllocatorLast(const ContainerWithAllocatorLast &other,
utils::MemoryResource *memory)
: memory_(memory), value_(other.value_) {}
utils::MemoryResource *memory_{nullptr};
int value_{0};
};
// NOLINTNEXTLINE(hicpp-special-member-functions)
class ContainerWithAllocatorFirst final {
public:
using allocator_type = utils::Allocator<int>;
ContainerWithAllocatorFirst() = default;
explicit ContainerWithAllocatorFirst(int value) : value_(value) {}
ContainerWithAllocatorFirst(std::allocator_arg_t,
utils::MemoryResource *memory, int value)
: memory_(memory), value_(value) {}
ContainerWithAllocatorFirst(const ContainerWithAllocatorFirst &other)
: value_(other.value_) {}
ContainerWithAllocatorFirst(std::allocator_arg_t,
utils::MemoryResource *memory,
const ContainerWithAllocatorFirst &other)
: memory_(memory), value_(other.value_) {}
utils::MemoryResource *memory_{nullptr};
int value_{0};
};
template <class T>
class AllocatorTest : public ::testing::Test {};
using ContainersWithAllocators =
::testing::Types<ContainerWithAllocatorLast, ContainerWithAllocatorFirst>;
TYPED_TEST_CASE(AllocatorTest, ContainersWithAllocators);
TYPED_TEST(AllocatorTest, PropagatesToStdUsesAllocator) {
std::vector<TypeParam, utils::Allocator<TypeParam>> vec(
utils::NewDeleteResource());
vec.emplace_back(42);
const auto &c = vec.front();
EXPECT_EQ(c.value_, 42);
EXPECT_EQ(c.memory_, utils::NewDeleteResource());
}
TYPED_TEST(AllocatorTest, PropagatesToStdPairUsesAllocator) {
{
std::vector<std::pair<ContainerWithAllocatorFirst, TypeParam>,
utils::Allocator<TypeParam>>
vec(utils::NewDeleteResource());
vec.emplace_back(1, 2);
const auto &pair = vec.front();
EXPECT_EQ(pair.first.value_, 1);
EXPECT_EQ(pair.second.value_, 2);
EXPECT_EQ(pair.first.memory_, utils::NewDeleteResource());
EXPECT_EQ(pair.second.memory_, utils::NewDeleteResource());
}
{
std::vector<std::pair<ContainerWithAllocatorLast, TypeParam>,
utils::Allocator<TypeParam>>
vec(utils::NewDeleteResource());
vec.emplace_back(1, 2);
const auto &pair = vec.front();
EXPECT_EQ(pair.first.value_, 1);
EXPECT_EQ(pair.second.value_, 2);
EXPECT_EQ(pair.first.memory_, utils::NewDeleteResource());
EXPECT_EQ(pair.second.memory_, utils::NewDeleteResource());
}
}