memgraph/tests/unit/query_variable_start_planner.cpp

334 lines
15 KiB
C++
Raw Normal View History

2022-02-22 20:33:45 +08:00
// Copyright 2022 Memgraph Ltd.
//
// Use of this software is governed by the Business Source License
// included in the file licenses/BSL.txt; by using this file, you agree to be bound by the terms of the Business Source
// License, and you may not use this file except in compliance with the Business Source License.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0, included in the file
// licenses/APL.txt.
#include <algorithm>
#include <variant>
#include "gtest/gtest.h"
#include "query/frontend/semantic/symbol_generator.hpp"
#include "query/frontend/semantic/symbol_table.hpp"
#include "query/plan/planner.hpp"
#include "utils/algorithm.hpp"
#include "query_plan_common.hpp"
#include "formatters.hpp"
2022-02-22 20:33:45 +08:00
using namespace memgraph::query::plan;
using memgraph::query::AstStorage;
using Type = memgraph::query::EdgeAtom::Type;
using Direction = memgraph::query::EdgeAtom::Direction;
// Functions for printing resulting rows from a query.
template <class TAccessor>
std::string ToString(const std::vector<TypedValue> &row, const TAccessor &acc) {
std::ostringstream os;
2022-02-22 20:33:45 +08:00
memgraph::utils::PrintIterable(os, row, ", ", [&](auto &stream, const auto &item) { stream << ToString(item, acc); });
return os.str();
}
template <class TAccessor>
std::string ToString(const std::vector<std::vector<TypedValue>> &rows, const TAccessor &acc) {
std::ostringstream os;
2022-02-22 20:33:45 +08:00
memgraph::utils::PrintIterable(os, rows, "\n",
[&](auto &stream, const auto &item) { stream << ToString(item, acc); });
return os.str();
}
namespace {
template <class TAccessor>
void AssertRows(const std::vector<std::vector<TypedValue>> &datum, std::vector<std::vector<TypedValue>> expected,
const TAccessor &acc) {
auto row_equal = [](const auto &row1, const auto &row2) {
if (row1.size() != row2.size()) {
return false;
}
TypedValue::BoolEqual value_eq;
auto row1_it = row1.begin();
for (auto row2_it = row2.begin(); row2_it != row2.end(); ++row1_it, ++row2_it) {
if (!value_eq(*row1_it, *row2_it)) {
return false;
}
}
return true;
};
ASSERT_TRUE(std::is_permutation(datum.begin(), datum.end(), expected.begin(), expected.end(), row_equal))
<< "Actual rows:" << std::endl
<< ToString(datum, acc) << std::endl
<< "Expected rows:" << std::endl
<< ToString(expected, acc);
};
2022-02-22 20:33:45 +08:00
void CheckPlansProduce(size_t expected_plan_count, memgraph::query::CypherQuery *query, AstStorage &storage,
memgraph::query::DbAccessor *dba,
std::function<void(const std::vector<std::vector<TypedValue>> &)> check) {
2022-02-22 20:33:45 +08:00
auto symbol_table = memgraph::query::MakeSymbolTable(query);
auto planning_context = MakePlanningContext(&storage, &symbol_table, query, dba);
auto query_parts = CollectQueryParts(symbol_table, storage, query);
EXPECT_TRUE(query_parts.query_parts.size() > 0);
auto single_query_parts = query_parts.query_parts.at(0).single_query_parts;
auto plans = MakeLogicalPlanForSingleQuery<VariableStartPlanner>(single_query_parts, &planning_context);
EXPECT_EQ(std::distance(plans.begin(), plans.end()), expected_plan_count);
for (const auto &plan : plans) {
auto *produce = dynamic_cast<Produce *>(plan.get());
ASSERT_TRUE(produce);
auto context = MakeContext(storage, symbol_table, dba);
auto results = CollectProduce(*produce, &context);
check(results);
}
}
TEST(TestVariableStartPlanner, MatchReturn) {
2022-02-22 20:33:45 +08:00
memgraph::storage::Storage db;
auto storage_dba = db.Access();
2022-02-22 20:33:45 +08:00
memgraph::query::DbAccessor dba(&storage_dba);
// Make a graph (v1) -[:r]-> (v2)
auto v1 = dba.InsertVertex();
auto v2 = dba.InsertVertex();
ASSERT_TRUE(dba.InsertEdge(&v1, &v2, dba.NameToEdgeType("r")).HasValue());
dba.AdvanceCommand();
// Test MATCH (n) -[r]-> (m) RETURN n
AstStorage storage;
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), EDGE("r", Direction::OUT), NODE("m"))), RETURN("n")));
// We have 2 nodes `n` and `m` from which we could start, so expect 2 plans.
CheckPlansProduce(2, query, storage, &dba, [&](const auto &results) {
// We expect to produce only a single (v1) node.
2022-02-22 20:33:45 +08:00
AssertRows(results, {{TypedValue(memgraph::query::VertexAccessor(v1))}}, dba);
});
}
TEST(TestVariableStartPlanner, MatchTripletPatternReturn) {
2022-02-22 20:33:45 +08:00
memgraph::storage::Storage db;
auto storage_dba = db.Access();
2022-02-22 20:33:45 +08:00
memgraph::query::DbAccessor dba(&storage_dba);
// Make a graph (v1) -[:r]-> (v2) -[:r]-> (v3)
auto v1 = dba.InsertVertex();
auto v2 = dba.InsertVertex();
auto v3 = dba.InsertVertex();
ASSERT_TRUE(dba.InsertEdge(&v1, &v2, dba.NameToEdgeType("r")).HasValue());
ASSERT_TRUE(dba.InsertEdge(&v2, &v3, dba.NameToEdgeType("r")).HasValue());
dba.AdvanceCommand();
{
// Test `MATCH (n) -[r]-> (m) -[e]-> (l) RETURN n`
AstStorage storage;
auto *query = QUERY(SINGLE_QUERY(
MATCH(PATTERN(NODE("n"), EDGE("r", Direction::OUT), NODE("m"), EDGE("e", Direction::OUT), NODE("l"))),
RETURN("n")));
// We have 3 nodes: `n`, `m` and `l` from which we could start.
CheckPlansProduce(3, query, storage, &dba, [&](const auto &results) {
// We expect to produce only a single (v1) node.
2022-02-22 20:33:45 +08:00
AssertRows(results, {{TypedValue(memgraph::query::VertexAccessor(v1))}}, dba);
});
}
{
// Equivalent to `MATCH (n) -[r]-> (m), (m) -[e]-> (l) RETURN n`.
AstStorage storage;
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), EDGE("r", Direction::OUT), NODE("m")),
PATTERN(NODE("m"), EDGE("e", Direction::OUT), NODE("l"))),
RETURN("n")));
CheckPlansProduce(3, query, storage, &dba, [&](const auto &results) {
2022-02-22 20:33:45 +08:00
AssertRows(results, {{TypedValue(memgraph::query::VertexAccessor(v1))}}, dba);
});
}
}
TEST(TestVariableStartPlanner, MatchOptionalMatchReturn) {
2022-02-22 20:33:45 +08:00
memgraph::storage::Storage db;
auto storage_dba = db.Access();
2022-02-22 20:33:45 +08:00
memgraph::query::DbAccessor dba(&storage_dba);
// Make a graph (v1) -[:r]-> (v2) -[:r]-> (v3)
auto v1 = dba.InsertVertex();
auto v2 = dba.InsertVertex();
auto v3 = dba.InsertVertex();
ASSERT_TRUE(dba.InsertEdge(&v1, &v2, dba.NameToEdgeType("r")).HasValue());
ASSERT_TRUE(dba.InsertEdge(&v2, &v3, dba.NameToEdgeType("r")).HasValue());
dba.AdvanceCommand();
// Test MATCH (n) -[r]-> (m) OPTIONAL MATCH (m) -[e]-> (l) RETURN n, l
AstStorage storage;
auto *query =
QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), EDGE("r", Direction::OUT), NODE("m"))),
OPTIONAL_MATCH(PATTERN(NODE("m"), EDGE("e", Direction::OUT), NODE("l"))), RETURN("n", "l")));
// We have 2 nodes `n` and `m` from which we could start the MATCH, and 2
// nodes for OPTIONAL MATCH. This should produce 2 * 2 plans.
CheckPlansProduce(4, query, storage, &dba, [&](const auto &results) {
// We expect to produce 2 rows:
// * (v1), (v3)
// * (v2), null
AssertRows(results,
2022-02-22 20:33:45 +08:00
{{TypedValue(memgraph::query::VertexAccessor(v1)), TypedValue(memgraph::query::VertexAccessor(v3))},
{TypedValue(memgraph::query::VertexAccessor(v2)), TypedValue()}},
dba);
});
}
TEST(TestVariableStartPlanner, MatchOptionalMatchMergeReturn) {
2022-02-22 20:33:45 +08:00
memgraph::storage::Storage db;
auto storage_dba = db.Access();
2022-02-22 20:33:45 +08:00
memgraph::query::DbAccessor dba(&storage_dba);
// Graph (v1) -[:r]-> (v2)
2022-02-22 20:33:45 +08:00
memgraph::query::VertexAccessor v1(dba.InsertVertex());
memgraph::query::VertexAccessor v2(dba.InsertVertex());
auto r_type_name = "r";
auto r_type = dba.NameToEdgeType(r_type_name);
ASSERT_TRUE(dba.InsertEdge(&v1, &v2, r_type).HasValue());
dba.AdvanceCommand();
// Test MATCH (n) -[r]-> (m) OPTIONAL MATCH (m) -[e]-> (l)
// MERGE (u) -[q:r]-> (v) RETURN n, m, l, u, v
AstStorage storage;
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), EDGE("r", Direction::OUT), NODE("m"))),
OPTIONAL_MATCH(PATTERN(NODE("m"), EDGE("e", Direction::OUT), NODE("l"))),
MERGE(PATTERN(NODE("u"), EDGE("q", Direction::OUT, {r_type_name}), NODE("v"))),
RETURN("n", "m", "l", "u", "v")));
// Since MATCH, OPTIONAL MATCH and MERGE each have 2 nodes from which we can
// start, we generate 2 * 2 * 2 plans.
CheckPlansProduce(8, query, storage, &dba, [&](const auto &results) {
// We expect to produce a single row: (v1), (v2), null, (v1), (v2)
AssertRows(results, {{TypedValue(v1), TypedValue(v2), TypedValue(), TypedValue(v1), TypedValue(v2)}}, dba);
});
}
TEST(TestVariableStartPlanner, MatchWithMatchReturn) {
2022-02-22 20:33:45 +08:00
memgraph::storage::Storage db;
auto storage_dba = db.Access();
2022-02-22 20:33:45 +08:00
memgraph::query::DbAccessor dba(&storage_dba);
// Graph (v1) -[:r]-> (v2)
2022-02-22 20:33:45 +08:00
memgraph::query::VertexAccessor v1(dba.InsertVertex());
memgraph::query::VertexAccessor v2(dba.InsertVertex());
ASSERT_TRUE(dba.InsertEdge(&v1, &v2, dba.NameToEdgeType("r")).HasValue());
dba.AdvanceCommand();
// Test MATCH (n) -[r]-> (m) WITH n MATCH (m) -[r]-> (l) RETURN n, m, l
AstStorage storage;
auto *query =
QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), EDGE("r", Direction::OUT), NODE("m"))), WITH("n"),
MATCH(PATTERN(NODE("m"), EDGE("r", Direction::OUT), NODE("l"))), RETURN("n", "m", "l")));
// We can start from 2 nodes in each match. Since WITH separates query parts,
// we expect to get 2 plans for each, which totals 2 * 2.
CheckPlansProduce(4, query, storage, &dba, [&](const auto &results) {
// We expect to produce a single row: (v1), (v1), (v2)
AssertRows(results, {{TypedValue(v1), TypedValue(v1), TypedValue(v2)}}, dba);
});
}
TEST(TestVariableStartPlanner, MatchVariableExpand) {
2022-02-22 20:33:45 +08:00
memgraph::storage::Storage db;
auto storage_dba = db.Access();
2022-02-22 20:33:45 +08:00
memgraph::query::DbAccessor dba(&storage_dba);
// Graph (v1) -[:r1]-> (v2) -[:r2]-> (v3)
auto v1 = dba.InsertVertex();
auto v2 = dba.InsertVertex();
auto v3 = dba.InsertVertex();
auto r1 = *dba.InsertEdge(&v1, &v2, dba.NameToEdgeType("r1"));
auto r2 = *dba.InsertEdge(&v2, &v3, dba.NameToEdgeType("r2"));
dba.AdvanceCommand();
// Test MATCH (n) -[r*]-> (m) RETURN r
AstStorage storage;
auto edge = EDGE_VARIABLE("r", Type::DEPTH_FIRST, Direction::OUT);
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), edge, NODE("m"))), RETURN("r")));
// We expect to get a single column with the following rows:
TypedValue r1_list(std::vector<TypedValue>{TypedValue(r1)}); // [r1]
TypedValue r2_list(std::vector<TypedValue>{TypedValue(r2)}); // [r2]
// [r1, r2]
TypedValue r1_r2_list(std::vector<TypedValue>{TypedValue(r1), TypedValue(r2)});
CheckPlansProduce(2, query, storage, &dba, [&](const auto &results) {
AssertRows(results, {{r1_list}, {r2_list}, {r1_r2_list}}, dba);
});
}
TEST(TestVariableStartPlanner, MatchVariableExpandReferenceNode) {
2022-02-22 20:33:45 +08:00
memgraph::storage::Storage db;
auto storage_dba = db.Access();
2022-02-22 20:33:45 +08:00
memgraph::query::DbAccessor dba(&storage_dba);
auto id = dba.NameToProperty("id");
// Graph (v1 {id:1}) -[:r1]-> (v2 {id: 2}) -[:r2]-> (v3 {id: 3})
auto v1 = dba.InsertVertex();
2022-02-22 20:33:45 +08:00
ASSERT_TRUE(v1.SetProperty(id, memgraph::storage::PropertyValue(1)).HasValue());
auto v2 = dba.InsertVertex();
2022-02-22 20:33:45 +08:00
ASSERT_TRUE(v2.SetProperty(id, memgraph::storage::PropertyValue(2)).HasValue());
auto v3 = dba.InsertVertex();
2022-02-22 20:33:45 +08:00
ASSERT_TRUE(v3.SetProperty(id, memgraph::storage::PropertyValue(3)).HasValue());
auto r1 = *dba.InsertEdge(&v1, &v2, dba.NameToEdgeType("r1"));
auto r2 = *dba.InsertEdge(&v2, &v3, dba.NameToEdgeType("r2"));
dba.AdvanceCommand();
// Test MATCH (n) -[r*..n.id]-> (m) RETURN r
AstStorage storage;
auto edge = EDGE_VARIABLE("r", Type::DEPTH_FIRST, Direction::OUT);
edge->upper_bound_ = PROPERTY_LOOKUP("n", id);
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), edge, NODE("m"))), RETURN("r")));
// We expect to get a single column with the following rows:
// [r1] (v1 -[*..1]-> v2)
TypedValue r1_list(std::vector<TypedValue>{TypedValue(r1)});
// [r2] (v2 -[*..2]-> v3)
TypedValue r2_list(std::vector<TypedValue>{TypedValue(r2)});
CheckPlansProduce(2, query, storage, &dba, [&](const auto &results) {
AssertRows(results, {{r1_list}, {r2_list}}, dba);
});
}
TEST(TestVariableStartPlanner, MatchVariableExpandBoth) {
2022-02-22 20:33:45 +08:00
memgraph::storage::Storage db;
auto storage_dba = db.Access();
2022-02-22 20:33:45 +08:00
memgraph::query::DbAccessor dba(&storage_dba);
auto id = dba.NameToProperty("id");
// Graph (v1 {id:1}) -[:r1]-> (v2) -[:r2]-> (v3)
auto v1 = dba.InsertVertex();
2022-02-22 20:33:45 +08:00
ASSERT_TRUE(v1.SetProperty(id, memgraph::storage::PropertyValue(1)).HasValue());
auto v2 = dba.InsertVertex();
auto v3 = dba.InsertVertex();
auto r1 = *dba.InsertEdge(&v1, &v2, dba.NameToEdgeType("r1"));
auto r2 = *dba.InsertEdge(&v2, &v3, dba.NameToEdgeType("r2"));
dba.AdvanceCommand();
// Test MATCH (n {id:1}) -[r*]- (m) RETURN r
AstStorage storage;
auto edge = EDGE_VARIABLE("r", Type::DEPTH_FIRST, Direction::BOTH);
auto node_n = NODE("n");
std::get<0>(node_n->properties_)[storage.GetPropertyIx("id")] = LITERAL(1);
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(node_n, edge, NODE("m"))), RETURN("r")));
// We expect to get a single column with the following rows:
TypedValue r1_list(std::vector<TypedValue>{TypedValue(r1)}); // [r1]
// [r1, r2]
TypedValue r1_r2_list(std::vector<TypedValue>{TypedValue(r1), TypedValue(r2)});
CheckPlansProduce(2, query, storage, &dba, [&](const auto &results) {
AssertRows(results, {{r1_list}, {r1_r2_list}}, dba);
});
}
TEST(TestVariableStartPlanner, MatchBfs) {
2022-02-22 20:33:45 +08:00
memgraph::storage::Storage db;
auto storage_dba = db.Access();
2022-02-22 20:33:45 +08:00
memgraph::query::DbAccessor dba(&storage_dba);
auto id = dba.NameToProperty("id");
// Graph (v1 {id:1}) -[:r1]-> (v2 {id: 2}) -[:r2]-> (v3 {id: 3})
auto v1 = dba.InsertVertex();
2022-02-22 20:33:45 +08:00
ASSERT_TRUE(v1.SetProperty(id, memgraph::storage::PropertyValue(1)).HasValue());
auto v2 = dba.InsertVertex();
2022-02-22 20:33:45 +08:00
ASSERT_TRUE(v2.SetProperty(id, memgraph::storage::PropertyValue(2)).HasValue());
auto v3 = dba.InsertVertex();
2022-02-22 20:33:45 +08:00
ASSERT_TRUE(v3.SetProperty(id, memgraph::storage::PropertyValue(3)).HasValue());
auto r1 = *dba.InsertEdge(&v1, &v2, dba.NameToEdgeType("r1"));
ASSERT_TRUE(dba.InsertEdge(&v2, &v3, dba.NameToEdgeType("r2")).HasValue());
dba.AdvanceCommand();
Variable expansion consolidaton Summary: - Removed BreadthFirstAtom, using EdgeAtom only with a Type enum. - Both variable expansions (breadth and depth first) now have mandatory inner node and edge Identifiers. - Both variable expansions use inline property filtering and support inline lambdas. - BFS and variable expansion now have the same planning process. - Planner modified in the following ways: - Variable expansions support inline property filtering (two filters added to all_filters, one for inline, one for post-expand). - Asserting against existing_edge since we don't support that anymore. - Edge and node symbols bound after variable expansion to disallow post-expand filters to get inlined. - Some things simplified due to different handling. - BreadthFirstExpand logical operator merged into ExpandVariable. Two Cursor classes remain and are dynamically chosen from. As part of planned planner refactor we should ensure that a filter is applied only once. The current implementation is very suboptimal for property filtering in variable expansions. @buda: we will start refactoring this these days. This current planner logic is too dense and complex. It is becoming technical debt. Most of the time I spent working on this has been spent figuring the planning out, and I still needed Teon's help at times. Implementing the correct and optimal version of query execution (avoiding multiple potentially expensive filterings) was out of reach also due to tech debt. Reviewers: buda, teon.banek Reviewed By: teon.banek Subscribers: pullbot, buda Differential Revision: https://phabricator.memgraph.io/D852
2017-10-05 17:25:52 +08:00
// Test MATCH (n) -[r *bfs..10](r, n | n.id <> 3)]-> (m) RETURN r
AstStorage storage;
2022-02-22 20:33:45 +08:00
auto *bfs = storage.Create<memgraph::query::EdgeAtom>(IDENT("r"), EdgeAtom::Type::BREADTH_FIRST, Direction::OUT,
std::vector<memgraph::query::EdgeTypeIx>{});
bfs->filter_lambda_.inner_edge = IDENT("r");
bfs->filter_lambda_.inner_node = IDENT("n");
bfs->filter_lambda_.expression = NEQ(PROPERTY_LOOKUP("n", id), LITERAL(3));
bfs->upper_bound_ = LITERAL(10);
auto *query = QUERY(SINGLE_QUERY(MATCH(PATTERN(NODE("n"), bfs, NODE("m"))), RETURN("r")));
// We expect to get a single column with the following rows:
TypedValue r1_list(std::vector<TypedValue>{TypedValue(r1)}); // [r1]
CheckPlansProduce(2, query, storage, &dba, [&](const auto &results) { AssertRows(results, {{r1_list}}, dba); });
}
} // namespace