memgraph/tests/simulation/shard_request_manager.cpp

322 lines
13 KiB
C++
Raw Normal View History

// Copyright 2022 Memgraph Ltd.
//
// Use of this software is governed by the Business Source License
// included in the file licenses/BSL.txt; by using this file, you agree to be bound by the terms of the Business Source
// License, and you may not use this file except in compliance with the Business Source License.
//
// As of the Change Date specified in that file, in accordance with
// the Business Source License, use of this software will be governed
// by the Apache License, Version 2.0, included in the file
// licenses/APL.txt.
#include <chrono>
#include <deque>
#include <iostream>
#include <map>
#include <optional>
#include <set>
#include <thread>
#include <vector>
#include "common.hpp"
#include "common/types.hpp"
#include "coordinator/coordinator_client.hpp"
#include "coordinator/coordinator_rsm.hpp"
#include "io/address.hpp"
#include "io/errors.hpp"
#include "io/rsm/raft.hpp"
#include "io/rsm/rsm_client.hpp"
#include "io/rsm/shard_rsm.hpp"
#include "io/simulator/simulator.hpp"
#include "io/simulator/simulator_transport.hpp"
#include "query/v2/accessors.hpp"
#include "query/v2/conversions.hpp"
#include "query/v2/requests.hpp"
#include "query/v2/shard_request_manager.hpp"
#include "storage/v3/property_value.hpp"
#include "utils/result.hpp"
using memgraph::coordinator::AddressAndStatus;
using CompoundKey = memgraph::coordinator::PrimaryKey;
using memgraph::coordinator::Coordinator;
using memgraph::coordinator::CoordinatorClient;
using memgraph::coordinator::CoordinatorRsm;
using memgraph::coordinator::HlcRequest;
using memgraph::coordinator::HlcResponse;
using memgraph::coordinator::Shard;
using memgraph::coordinator::ShardMap;
using memgraph::coordinator::Shards;
using memgraph::coordinator::Status;
using memgraph::io::Address;
using memgraph::io::Io;
using memgraph::io::ResponseEnvelope;
using memgraph::io::ResponseFuture;
using memgraph::io::Time;
using memgraph::io::TimedOut;
using memgraph::io::rsm::Raft;
using memgraph::io::rsm::ReadRequest;
using memgraph::io::rsm::ReadResponse;
using memgraph::io::rsm::StorageReadRequest;
using memgraph::io::rsm::StorageReadResponse;
using memgraph::io::rsm::StorageWriteRequest;
using memgraph::io::rsm::StorageWriteResponse;
using memgraph::io::rsm::WriteRequest;
using memgraph::io::rsm::WriteResponse;
using memgraph::io::simulator::Simulator;
using memgraph::io::simulator::SimulatorConfig;
using memgraph::io::simulator::SimulatorStats;
using memgraph::io::simulator::SimulatorTransport;
using memgraph::msgs::CreateVerticesRequest;
using memgraph::msgs::CreateVerticesResponse;
using memgraph::msgs::ListedValues;
using memgraph::msgs::NewVertexLabel;
using memgraph::msgs::ScanVerticesRequest;
using memgraph::msgs::ScanVerticesResponse;
using memgraph::storage::v3::LabelId;
using memgraph::storage::v3::SchemaProperty;
using memgraph::utils::BasicResult;
namespace {
ShardMap CreateDummyShardmap(memgraph::coordinator::Address a_io_1, memgraph::coordinator::Address a_io_2,
memgraph::coordinator::Address a_io_3, memgraph::coordinator::Address b_io_1,
memgraph::coordinator::Address b_io_2, memgraph::coordinator::Address b_io_3) {
static const std::string label_name = std::string("test_label");
ShardMap sm;
// register new properties
const std::vector<std::string> property_names = {"property_1", "property_2"};
const auto properties = sm.AllocatePropertyIds(property_names);
const auto property_id_1 = properties.at("property_1");
const auto property_id_2 = properties.at("property_2");
const auto type_1 = memgraph::common::SchemaType::INT;
const auto type_2 = memgraph::common::SchemaType::INT;
// register new label space
std::vector<SchemaProperty> schema = {
SchemaProperty{.property_id = property_id_1, .type = type_1},
SchemaProperty{.property_id = property_id_2, .type = type_2},
};
auto label_success = sm.InitializeNewLabel(label_name, schema, 1, sm.shard_map_version);
MG_ASSERT(label_success);
const LabelId label_id = sm.labels.at(label_name);
auto &label_space = sm.label_spaces.at(label_id);
Shards &shards_for_label = label_space.shards;
shards_for_label.clear();
// add first shard at [0, 0]
AddressAndStatus aas1_1{.address = a_io_1, .status = Status::CONSENSUS_PARTICIPANT};
AddressAndStatus aas1_2{.address = a_io_2, .status = Status::CONSENSUS_PARTICIPANT};
AddressAndStatus aas1_3{.address = a_io_3, .status = Status::CONSENSUS_PARTICIPANT};
Shard shard1 = {aas1_1, aas1_2, aas1_3};
auto key1 = memgraph::storage::v3::PropertyValue(0);
auto key2 = memgraph::storage::v3::PropertyValue(0);
CompoundKey compound_key_1 = {key1, key2};
shards_for_label[compound_key_1] = shard1;
// add second shard at [12, 13]
AddressAndStatus aas2_1{.address = b_io_1, .status = Status::CONSENSUS_PARTICIPANT};
AddressAndStatus aas2_2{.address = b_io_2, .status = Status::CONSENSUS_PARTICIPANT};
AddressAndStatus aas2_3{.address = b_io_3, .status = Status::CONSENSUS_PARTICIPANT};
Shard shard2 = {aas2_1, aas2_2, aas2_3};
auto key3 = memgraph::storage::v3::PropertyValue(12);
auto key4 = memgraph::storage::v3::PropertyValue(13);
CompoundKey compound_key_2 = {key3, key4};
shards_for_label[compound_key_2] = shard2;
return sm;
}
} // namespace
using WriteRequests = CreateVerticesRequest;
using WriteResponses = CreateVerticesResponse;
using ReadRequests = std::variant<ScanVerticesRequest, ExpandOneRequest>;
using ReadResponses = std::variant<ScanVerticesResponse, ExpandOneResponse>;
using ConcreteCoordinatorRsm = CoordinatorRsm<SimulatorTransport>;
using ConcreteStorageRsm =
Raft<SimulatorTransport, MockedShardRsm, WriteRequests, WriteResponses, ReadRequests, ReadResponses>;
template <typename IoImpl>
void RunStorageRaft(Raft<IoImpl, MockedShardRsm, WriteRequests, WriteResponses, ReadRequests, ReadResponses> server) {
server.Run();
}
template <typename ShardRequestManager>
void TestScanAll(ShardRequestManager &io) {
memgraph::msgs::ExecutionState<ScanVerticesRequest> state{.label = "test_label"};
auto result = io.Request(state);
MG_ASSERT(result.size() == 2);
{
auto prop = result[0].GetProperty(memgraph::msgs::PropertyId::FromUint(0));
MG_ASSERT(prop.int_v == 0);
prop = result[1].GetProperty(memgraph::msgs::PropertyId::FromUint(0));
MG_ASSERT(prop.int_v == 444);
}
result = io.Request(state);
{
MG_ASSERT(result.size() == 1);
auto prop = result[0].GetProperty(memgraph::msgs::PropertyId::FromUint(0));
MG_ASSERT(prop.int_v == 1);
}
// Exhaust it, request should be empty
result = io.Request(state);
MG_ASSERT(result.size() == 0);
}
template <typename ShardRequestManager>
void TestCreateVertices(ShardRequestManager &io) {
using PropVal = memgraph::msgs::Value;
memgraph::msgs::ExecutionState<CreateVerticesRequest> state;
std::vector<memgraph::msgs::NewVertex> new_vertices;
auto label_id = io.LabelNameToLabelId("test_label");
memgraph::msgs::NewVertex a1{.primary_key = {PropVal(int64_t(1)), PropVal(int64_t(0))}};
a1.label_ids.push_back({label_id});
memgraph::msgs::NewVertex a2{.primary_key = {PropVal(int64_t(13)), PropVal(int64_t(13))}};
a2.label_ids.push_back({label_id});
new_vertices.push_back(std::move(a1));
new_vertices.push_back(std::move(a2));
auto result = io.Request(state, std::move(new_vertices));
MG_ASSERT(result.size() == 2);
}
template <typename ShardRequestManager>
void TestExpand(ShardRequestManager &io) {}
template <typename ShardRequestManager>
void TestAggregate(ShardRequestManager &io) {}
int main() {
// SimulatorConfig config{
// .drop_percent = 0,
// .perform_timeouts = false,
// .scramble_messages = false,
// .rng_seed = 0,
// .start_time = Time::min() + std::chrono::microseconds{256 * 1024},
// .abort_time = Time::min() + std::chrono::microseconds{2 * 8 * 1024 * 1024},
// };
// auto simulator = Simulator(config);
// const auto one_second = std::chrono::seconds(1);
// Io<SimulatorTransport> cli_io = simulator.RegisterNew();
// cli_io.SetDefaultTimeout(one_second);
// // Register
// Io<SimulatorTransport> a_io_1 = simulator.RegisterNew();
// a_io_1.SetDefaultTimeout(one_second);
// Io<SimulatorTransport> a_io_2 = simulator.RegisterNew();
// a_io_2.SetDefaultTimeout(one_second);
// Io<SimulatorTransport> a_io_3 = simulator.RegisterNew();
// a_io_3.SetDefaultTimeout(one_second);
// Io<SimulatorTransport> b_io_1 = simulator.RegisterNew();
// b_io_1.SetDefaultTimeout(one_second);
// Io<SimulatorTransport> b_io_2 = simulator.RegisterNew();
// b_io_2.SetDefaultTimeout(one_second);
// Io<SimulatorTransport> b_io_3 = simulator.RegisterNew();
// b_io_3.SetDefaultTimeout(one_second);
// // Preconfigure coordinator with kv shard 'A' and 'B'
// auto sm1 = CreateDummyShardmap(a_io_1.GetAddress(), a_io_2.GetAddress(), a_io_3.GetAddress(), b_io_1.GetAddress(),
// b_io_2.GetAddress(), b_io_3.GetAddress());
// auto sm2 = CreateDummyShardmap(a_io_1.GetAddress(), a_io_2.GetAddress(), a_io_3.GetAddress(), b_io_1.GetAddress(),
// b_io_2.GetAddress(), b_io_3.GetAddress());
// auto sm3 = CreateDummyShardmap(a_io_1.GetAddress(), a_io_2.GetAddress(), a_io_3.GetAddress(), b_io_1.GetAddress(),
// b_io_2.GetAddress(), b_io_3.GetAddress());
// // Spin up shard A
// std::vector<Address> a_addrs = {a_io_1.GetAddress(), a_io_2.GetAddress(), a_io_3.GetAddress()};
// std::vector<Address> a_1_peers = {a_addrs[1], a_addrs[2]};
// std::vector<Address> a_2_peers = {a_addrs[0], a_addrs[2]};
// std::vector<Address> a_3_peers = {a_addrs[0], a_addrs[1]};
// ConcreteStorageRsm a_1{std::move(a_io_1), a_1_peers, MockedShardRsm{}};
// ConcreteStorageRsm a_2{std::move(a_io_2), a_2_peers, MockedShardRsm{}};
// ConcreteStorageRsm a_3{std::move(a_io_3), a_3_peers, MockedShardRsm{}};
// auto a_thread_1 = std::jthread(RunStorageRaft<SimulatorTransport>, std::move(a_1));
// simulator.IncrementServerCountAndWaitForQuiescentState(a_addrs[0]);
// auto a_thread_2 = std::jthread(RunStorageRaft<SimulatorTransport>, std::move(a_2));
// simulator.IncrementServerCountAndWaitForQuiescentState(a_addrs[1]);
// auto a_thread_3 = std::jthread(RunStorageRaft<SimulatorTransport>, std::move(a_3));
// simulator.IncrementServerCountAndWaitForQuiescentState(a_addrs[2]);
// // Spin up shard B
// std::vector<Address> b_addrs = {b_io_1.GetAddress(), b_io_2.GetAddress(), b_io_3.GetAddress()};
// std::vector<Address> b_1_peers = {b_addrs[1], b_addrs[2]};
// std::vector<Address> b_2_peers = {b_addrs[0], b_addrs[2]};
// std::vector<Address> b_3_peers = {b_addrs[0], b_addrs[1]};
// ConcreteStorageRsm b_1{std::move(b_io_1), b_1_peers, MockedShardRsm{}};
// ConcreteStorageRsm b_2{std::move(b_io_2), b_2_peers, MockedShardRsm{}};
// ConcreteStorageRsm b_3{std::move(b_io_3), b_3_peers, MockedShardRsm{}};
// auto b_thread_1 = std::jthread(RunStorageRaft<SimulatorTransport>, std::move(b_1));
// simulator.IncrementServerCountAndWaitForQuiescentState(b_addrs[0]);
// auto b_thread_2 = std::jthread(RunStorageRaft<SimulatorTransport>, std::move(b_2));
// simulator.IncrementServerCountAndWaitForQuiescentState(b_addrs[1]);
// auto b_thread_3 = std::jthread(RunStorageRaft<SimulatorTransport>, std::move(b_3));
// simulator.IncrementServerCountAndWaitForQuiescentState(b_addrs[2]);
// // Spin up coordinators
// Io<SimulatorTransport> c_io_1 = simulator.RegisterNew();
// c_io_1.SetDefaultTimeout(one_second);
// Io<SimulatorTransport> c_io_2 = simulator.RegisterNew();
// c_io_2.SetDefaultTimeout(one_second);
// Io<SimulatorTransport> c_io_3 = simulator.RegisterNew();
// c_io_3.SetDefaultTimeout(one_second);
// std::vector<Address> c_addrs = {c_io_1.GetAddress(), c_io_2.GetAddress(), c_io_3.GetAddress()};
// std::vector<Address> c_1_peers = {c_addrs[1], c_addrs[2]};
// std::vector<Address> c_2_peers = {c_addrs[0], c_addrs[2]};
// std::vector<Address> c_3_peers = {c_addrs[0], c_addrs[1]};
// ConcreteCoordinatorRsm c_1{std::move(c_io_1), c_1_peers, Coordinator{(sm1)}};
// ConcreteCoordinatorRsm c_2{std::move(c_io_2), c_2_peers, Coordinator{(sm2)}};
// ConcreteCoordinatorRsm c_3{std::move(c_io_3), c_3_peers, Coordinator{(sm3)}};
// auto c_thread_1 = std::jthread([c_1]() mutable { c_1.Run(); });
// simulator.IncrementServerCountAndWaitForQuiescentState(c_addrs[0]);
// auto c_thread_2 = std::jthread([c_2]() mutable { c_2.Run(); });
// simulator.IncrementServerCountAndWaitForQuiescentState(c_addrs[1]);
// auto c_thread_3 = std::jthread([c_3]() mutable { c_3.Run(); });
// simulator.IncrementServerCountAndWaitForQuiescentState(c_addrs[2]);
// std::cout << "beginning test after servers have become quiescent" << std::endl;
// // Have client contact coordinator RSM for a new transaction ID and
// // also get the current shard map
// CoordinatorClient<SimulatorTransport> coordinator_client(cli_io, c_addrs[0], c_addrs);
// memgraph::msgs::ShardRequestManager<SimulatorTransport> io(std::move(coordinator_client), std::move(cli_io));
// io.StartTransaction();
// TestScanAll(io);
// TestCreateVertices(io);
// simulator.ShutDown();
return 0;
}