memgraph/tests/mgbench/workloads/ldbc_bi.py

666 lines
26 KiB
Python
Raw Normal View History

# Copyright 2023 Memgraph Ltd.
#
# Use of this software is governed by the Business Source License
# included in the file licenses/BSL.txt; by using this file, you agree to be bound by the terms of the Business Source
# License, and you may not use this file except in compliance with the Business Source License.
#
# As of the Change Date specified in that file, in accordance with
# the Business Source License, use of this software will be governed
# by the Apache License, Version 2.0, included in the file
# licenses/APL.txt.
# --- DISCLAIMER: This is NOT an official implementation of an LDBC Benchmark. ---
import inspect
import random
from pathlib import Path
import helpers
from benchmark_context import BenchmarkContext
from workloads.base import Workload
from workloads.importers.importer_ldbc_bi import ImporterLDBCBI
class LDBC_BI(Workload):
NAME = "ldbc_bi"
VARIANTS = ["sf1", "sf3", "sf10"]
DEFAULT_VARIANT = "sf1"
URL_FILE = {
"sf1": "https://s3.eu-west-1.amazonaws.com/deps.memgraph.io/dataset/ldbc/benchmark/bi/ldbc_bi_sf1.cypher.gz",
"sf3": "https://s3.eu-west-1.amazonaws.com/deps.memgraph.io/dataset/ldbc/benchmark/bi/ldbc_bi_sf3.cypher.gz",
"sf10": "https://s3.eu-west-1.amazonaws.com/deps.memgraph.io/dataset/ldbc/benchmark/bi/ldbc_bi_sf10.cypher.gz",
}
URL_CSV = {
"sf1": "https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/bi-pre-audit/bi-sf1-composite-projected-fk.tar.zst",
"sf3": "https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/bi-pre-audit/bi-sf3-composite-projected-fk.tar.zst",
"sf10": "https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/bi-pre-audit/bi-sf10-composite-projected-fk.tar.zst",
}
SIZES = {
"sf1": {"vertices": 2997352, "edges": 17196776},
"sf3": {"vertices": 1, "edges": 1},
"sf10": {"vertices": 1, "edges": 1},
}
LOCAL_INDEX_FILES = None
URL_INDEX_FILE = {
"memgraph": "https://s3.eu-west-1.amazonaws.com/deps.memgraph.io/dataset/ldbc/benchmark/bi/memgraph_bi_index.cypher",
"neo4j": "https://s3.eu-west-1.amazonaws.com/deps.memgraph.io/dataset/ldbc/benchmark/bi/neo4j_bi_index.cypher",
}
QUERY_PARAMETERS = {
"sf1": "https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/bi-pre-audit/parameters-2022-10-01.zip",
"sf3": "https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/bi-pre-audit/parameters-2022-10-01.zip",
"sf10": "https://pub-383410a98aef4cb686f0c7601eddd25f.r2.dev/bi-pre-audit/parameters-2022-10-01.zip",
}
def custom_import(self) -> bool:
importer = ImporterLDBCBI(
benchmark_context=self.benchmark_context,
dataset_name=self.NAME,
variant=self._variant,
index_file=self._file_index,
csv_dict=self.URL_CSV,
)
return importer.execute_import()
def _prepare_parameters_directory(self):
parameters = Path() / ".cache" / "datasets" / self.NAME / self._variant / "parameters"
parameters.mkdir(parents=True, exist_ok=True)
if parameters.exists() and any(parameters.iterdir()):
print("Files downloaded.")
else:
print("Downloading files")
downloaded_file = helpers.download_file(self.QUERY_PARAMETERS[self._variant], parameters.parent.absolute())
print("Unpacking the file..." + downloaded_file)
helpers.unpack_zip(Path(downloaded_file))
return parameters / ("parameters-" + self._variant)
def _get_query_parameters(self) -> dict:
func_name = inspect.stack()[1].function
parameters = {}
for file in self._parameters_dir.glob("bi-*.csv"):
file_name_query_id = file.name.split("-")[1][0:-4]
func_name_id = func_name.split("_")[-2]
if file_name_query_id == func_name_id or file_name_query_id == func_name_id + "a":
with file.open("r") as input:
lines = input.readlines()
header = lines[0].strip("\n").split("|")
position = random.randint(1, len(lines) - 1)
data = lines[position].strip("\n").split("|")
for i in range(len(header)):
key, value_type = header[i].split(":")
if value_type == "DATETIME":
# Drop time zone
converted = data[i][0:-6]
parameters[key] = converted
elif value_type == "DATE":
converted = data[i] + "T00:00:00"
parameters[key] = converted
elif value_type == "INT":
parameters[key] = int(data[i])
elif value_type == "STRING[]":
elements = data[i].split(";")
parameters[key] = elements
else:
parameters[key] = data[i]
break
return parameters
def __init__(self, variant=None, benchmark_context: BenchmarkContext = None):
super().__init__(variant, benchmark_context=benchmark_context)
self._parameters_dir = self._prepare_parameters_directory()
def benchmark__bi__query_1_analytical(self):
memgraph = (
"""
MATCH (message:Message)
WHERE message.creationDate < localDateTime($datetime)
WITH count(message) AS totalMessageCountInt
WITH toFloat(totalMessageCountInt) AS totalMessageCount
MATCH (message:Message)
WHERE message.creationDate < localDateTime($datetime)
AND message.content IS NOT NULL
WITH
totalMessageCount,
message,
message.creationDate.year AS year
WITH
totalMessageCount,
year,
message:Comment AS isComment,
CASE
WHEN message.length < 40 THEN 0
WHEN message.length < 80 THEN 1
WHEN message.length < 160 THEN 2
ELSE 3
END AS lengthCategory,
count(message) AS messageCount,
sum(message.length) / toFloat(count(message)) AS averageMessageLength,
sum(message.length) AS sumMessageLength
RETURN
year,
isComment,
lengthCategory,
messageCount,
averageMessageLength,
sumMessageLength,
messageCount / totalMessageCount AS percentageOfMessages
ORDER BY
year DESC,
isComment ASC,
lengthCategory ASC
""".replace(
"\n", ""
),
self._get_query_parameters(),
)
neo4j = (
"""
MATCH (message:Message)
WHERE message.creationDate < DateTime($datetime)
WITH count(message) AS totalMessageCountInt
WITH toFloat(totalMessageCountInt) AS totalMessageCount
MATCH (message:Message)
WHERE message.creationDate < DateTime($datetime)
AND message.content IS NOT NULL
WITH
totalMessageCount,
message,
message.creationDate.year AS year
WITH
totalMessageCount,
year,
message:Comment AS isComment,
CASE
WHEN message.length < 40 THEN 0
WHEN message.length < 80 THEN 1
WHEN message.length < 160 THEN 2
ELSE 3
END AS lengthCategory,
count(message) AS messageCount,
sum(message.length) / toFloat(count(message)) AS averageMessageLength,
sum(message.length) AS sumMessageLength
RETURN
year,
isComment,
lengthCategory,
messageCount,
averageMessageLength,
sumMessageLength,
messageCount / totalMessageCount AS percentageOfMessages
ORDER BY
year DESC,
isComment ASC,
lengthCategory ASC
""".replace(
"\n", ""
),
self._get_query_parameters(),
)
if self._vendor == "memgraph":
return memgraph
else:
return neo4j
def benchmark__bi__query_2_analytical(self):
memgraph = (
"""
MATCH (tag:Tag)-[:HAS_TYPE]->(:TagClass {name: $tagClass})
OPTIONAL MATCH (message1:Message)-[:HAS_TAG]->(tag)
WHERE localDateTime($date) <= message1.creationDate
AND message1.creationDate < localDateTime($date) + duration({day: 100})
WITH tag, count(message1) AS countWindow1
OPTIONAL MATCH (message2:Message)-[:HAS_TAG]->(tag)
WHERE localDateTime($date) + duration({day: 100}) <= message2.creationDate
AND message2.creationDate < localDateTime($date) + duration({day: 200})
WITH
tag,
countWindow1,
count(message2) AS countWindow2
RETURN
tag.name,
countWindow1,
countWindow2,
abs(countWindow1 - countWindow2) AS diff
ORDER BY
diff DESC,
tag.name ASC
LIMIT 100
""".replace(
"\n", ""
),
self._get_query_parameters(),
)
neo4j = (
"""
MATCH (tag:Tag)-[:HAS_TYPE]->(:TagClass {name: $tagClass})
OPTIONAL MATCH (message1:Message)-[:HAS_TAG]->(tag)
WHERE DateTime($date) <= message1.creationDate
AND message1.creationDate < DateTime($date) + duration({days: 100})
WITH tag, count(message1) AS countWindow1
OPTIONAL MATCH (message2:Message)-[:HAS_TAG]->(tag)
WHERE DateTime($date) + duration({days: 100}) <= message2.creationDate
AND message2.creationDate < DateTime($date) + duration({days: 200})
WITH
tag,
countWindow1,
count(message2) AS countWindow2
RETURN
tag.name,
countWindow1,
countWindow2,
abs(countWindow1 - countWindow2) AS diff
ORDER BY
diff DESC,
tag.name ASC
LIMIT 100
""".replace(
"\n", ""
),
self._get_query_parameters(),
)
if self._vendor == "memgraph":
return memgraph
else:
return neo4j
def benchmark__bi__query_3_analytical(self):
return (
"""
MATCH
(:Country {name: $country})<-[:IS_PART_OF]-(:City)<-[:IS_LOCATED_IN]-
(person:Person)<-[:HAS_MODERATOR]-(forum:Forum)-[:CONTAINER_OF]->
(post:Post)<-[:REPLY_OF*0..]-(message:Message)-[:HAS_TAG]->(:Tag)-[:HAS_TYPE]->(:TagClass {name: $tagClass})
RETURN
forum.id as id,
forum.title,
person.id,
count(DISTINCT message) AS messageCount
ORDER BY
messageCount DESC,
id ASC
LIMIT 20
""".replace(
"\n", ""
),
self._get_query_parameters(),
)
def benchmark__bi__query_5_analytical(self):
return (
"""
MATCH (tag:Tag {name: $tag})<-[:HAS_TAG]-(message:Message)-[:HAS_CREATOR]->(person:Person)
OPTIONAL MATCH (message)<-[likes:LIKES]-(:Person)
WITH person, message, count(likes) AS likeCount
OPTIONAL MATCH (message)<-[:REPLY_OF]-(reply:Comment)
WITH person, message, likeCount, count(reply) AS replyCount
WITH person, count(message) AS messageCount, sum(likeCount) AS likeCount, sum(replyCount) AS replyCount
RETURN
person.id,
replyCount,
likeCount,
messageCount,
1*messageCount + 2*replyCount + 10*likeCount AS score
ORDER BY
score DESC,
person.id ASC
LIMIT 100
""".replace(
"\n", ""
),
self._get_query_parameters(),
)
def benchmark__bi__query_6_analytical(self):
return (
"""
MATCH (tag:Tag {name: $tag})<-[:HAS_TAG]-(message1:Message)-[:HAS_CREATOR]->(person1:Person)
OPTIONAL MATCH (message1)<-[:LIKES]-(person2:Person)
OPTIONAL MATCH (person2)<-[:HAS_CREATOR]-(message2:Message)<-[like:LIKES]-(person3:Person)
RETURN
person1.id as id,
count(DISTINCT like) AS authorityScore
ORDER BY
authorityScore DESC,
id ASC
LIMIT 100
""".replace(
"\n", ""
),
self._get_query_parameters(),
)
def benchmark__bi__query_7_analytical(self):
memgraph = (
"""
MATCH
(tag:Tag {name: $tag})<-[:HAS_TAG]-(message:Message),
(message)<-[:REPLY_OF]-(comment:Comment)-[:HAS_TAG]->(relatedTag:Tag)
OPTIONAL MATCH (comment)-[:HAS_TAG]->(tag)
WHERE tag IS NOT NULL
RETURN
relatedTag,
count(DISTINCT comment) AS count
ORDER BY
relatedTag.name ASC,
count DESC
LIMIT 100
""".replace(
"\n", ""
),
self._get_query_parameters(),
)
neo4j = (
"""
MATCH
(tag:Tag {name: $tag})<-[:HAS_TAG]-(message:Message),
(message)<-[:REPLY_OF]-(comment:Comment)-[:HAS_TAG]->(relatedTag:Tag)
WHERE NOT (comment)-[:HAS_TAG]->(tag)
RETURN
relatedTag.name,
count(DISTINCT comment) AS count
ORDER BY
relatedTag.name ASC,
count DESC
LIMIT 100
""".replace(
"\n", ""
),
self._get_query_parameters(),
)
if self._vendor == "memgraph":
return memgraph
else:
return neo4j
def benchmark__bi__query_9_analytical(self):
memgraph = (
"""
MATCH (person:Person)<-[:HAS_CREATOR]-(post:Post)<-[:REPLY_OF*0..]-(reply:Message)
WHERE post.creationDate >= localDateTime($startDate)
AND post.creationDate <= localDateTime($endDate)
AND reply.creationDate >= localDateTime($startDate)
AND reply.creationDate <= localDateTime($endDate)
RETURN
person.id as id,
person.firstName,
person.lastName,
count(DISTINCT post) AS threadCount,
count(DISTINCT reply) AS messageCount
ORDER BY
messageCount DESC,
id ASC
LIMIT 100
""".replace(
"\n", ""
),
self._get_query_parameters(),
)
neo4j = (
"""
MATCH (person:Person)<-[:HAS_CREATOR]-(post:Post)<-[:REPLY_OF*0..]-(reply:Message)
WHERE post.creationDate >= DateTime($startDate)
AND post.creationDate <= DateTime($endDate)
AND reply.creationDate >= DateTime($startDate)
AND reply.creationDate <= DateTime($endDate)
RETURN
person.id as id,
person.firstName,
person.lastName,
count(DISTINCT post) AS threadCount,
count(DISTINCT reply) AS messageCount
ORDER BY
messageCount DESC,
id ASC
LIMIT 100
""".replace(
"\n", ""
),
self._get_query_parameters(),
)
if self._vendor == "memgraph":
return memgraph
else:
return neo4j
def benchmark__bi__query_11_analytical(self):
return (
"""
MATCH (a:Person)-[:IS_LOCATED_IN]->(:City)-[:IS_PART_OF]->(country:Country {name: $country}),
(a)-[k1:KNOWS]-(b:Person)
WHERE a.id < b.id
AND localDateTime($startDate) <= k1.creationDate AND k1.creationDate <= localDateTime($endDate)
WITH DISTINCT country, a, b
MATCH (b)-[:IS_LOCATED_IN]->(:City)-[:IS_PART_OF]->(country)
WITH DISTINCT country, a, b
MATCH (b)-[k2:KNOWS]-(c:Person),
(c)-[:IS_LOCATED_IN]->(:City)-[:IS_PART_OF]->(country)
WHERE b.id < c.id
AND localDateTime($startDate) <= k2.creationDate AND k2.creationDate <= localDateTime($endDate)
WITH DISTINCT a, b, c
MATCH (c)-[k3:KNOWS]-(a)
WHERE localDateTime($startDate) <= k3.creationDate AND k3.creationDate <= localDateTime($endDate)
WITH DISTINCT a, b, c
RETURN count(*) AS count
""".replace(
"\n", ""
),
self._get_query_parameters(),
)
def benchmark__bi__query_12_analytical(self):
return (
"""
MATCH (person:Person)
OPTIONAL MATCH (person)<-[:HAS_CREATOR]-(message:Message)-[:REPLY_OF*0..]->(post:Post)
WHERE message.content IS NOT NULL
AND message.length < $lengthThreshold
AND message.creationDate > localDateTime($startDate)
AND post.language IN $languages
WITH
person,
count(message) AS messageCount
RETURN
messageCount,
count(person) AS personCount
ORDER BY
personCount DESC,
messageCount DESC
""".replace(
"\n", ""
),
self._get_query_parameters(),
)
def benchmark__bi__query_13_analytical(self):
memgraph = (
"""
MATCH (country:Country {name: $country})<-[:IS_PART_OF]-(:City)<-[:IS_LOCATED_IN]-(zombie:Person)
WHERE zombie.creationDate < localDateTime($endDate)
WITH country, zombie
OPTIONAL MATCH (zombie)<-[:HAS_CREATOR]-(message:Message)
WHERE message.creationDate < localDateTime($endDate)
WITH
country,
zombie,
count(message) AS messageCount
WITH
country,
zombie,
12 * (localDateTime($endDate).year - zombie.creationDate.year )
+ (localDateTime($endDate).month - zombie.creationDate.month)
+ 1 AS months,
messageCount
WHERE messageCount / months < 1
WITH
country,
collect(zombie) AS zombies
UNWIND zombies AS zombie
OPTIONAL MATCH
(zombie)<-[:HAS_CREATOR]-(message:Message)<-[:LIKES]-(likerZombie:Person)
WHERE likerZombie IN zombies
WITH
zombie,
count(likerZombie) AS zombieLikeCount
OPTIONAL MATCH
(zombie)<-[:HAS_CREATOR]-(message:Message)<-[:LIKES]-(likerPerson:Person)
WHERE likerPerson.creationDate < localDateTime($endDate)
WITH
zombie,
zombieLikeCount,
count(likerPerson) AS totalLikeCount
RETURN
zombie.id,
zombieLikeCount,
totalLikeCount,
CASE totalLikeCount
WHEN 0 THEN 0.0
ELSE zombieLikeCount / toFloat(totalLikeCount)
END AS zombieScore
ORDER BY
zombieScore DESC,
zombie.id ASC
LIMIT 100
""".replace(
"\n", ""
),
self._get_query_parameters(),
)
neo4j = (
"""
MATCH (country:Country {name: $country})<-[:IS_PART_OF]-(:City)<-[:IS_LOCATED_IN]-(zombie:Person)
WHERE zombie.creationDate < DateTime($endDate)
WITH country, zombie
OPTIONAL MATCH (zombie)<-[:HAS_CREATOR]-(message:Message)
WHERE message.creationDate < DateTime($endDate)
WITH
country,
zombie,
count(message) AS messageCount
WITH
country,
zombie,
12 * (DateTime($endDate).year - zombie.creationDate.year )
+ (DateTime($endDate).month - zombie.creationDate.month)
+ 1 AS months,
messageCount
WHERE messageCount / months < 1
WITH
country,
collect(zombie) AS zombies
UNWIND zombies AS zombie
OPTIONAL MATCH
(zombie)<-[:HAS_CREATOR]-(message:Message)<-[:LIKES]-(likerZombie:Person)
WHERE likerZombie IN zombies
WITH
zombie,
count(likerZombie) AS zombieLikeCount
OPTIONAL MATCH
(zombie)<-[:HAS_CREATOR]-(message:Message)<-[:LIKES]-(likerPerson:Person)
WHERE likerPerson.creationDate < DateTime($endDate)
WITH
zombie,
zombieLikeCount,
count(likerPerson) AS totalLikeCount
RETURN
zombie.id,
zombieLikeCount,
totalLikeCount,
CASE totalLikeCount
WHEN 0 THEN 0.0
ELSE zombieLikeCount / toFloat(totalLikeCount)
END AS zombieScore
ORDER BY
zombieScore DESC,
zombie.id ASC
LIMIT 100
""".replace(
"\n", ""
),
self._get_query_parameters(),
)
if self._vendor == "memgraph":
return memgraph
else:
return neo4j
def benchmark__bi__query_14_analytical(self):
return (
"""
MATCH
(country1:Country {name: $country1})<-[:IS_PART_OF]-(city1:City)<-[:IS_LOCATED_IN]-(person1:Person),
(country2:Country {name: $country2})<-[:IS_PART_OF]-(city2:City)<-[:IS_LOCATED_IN]-(person2:Person),
(person1)-[:KNOWS]-(person2)
WITH person1, person2, city1, 0 AS score
OPTIONAL MATCH (person1)<-[:HAS_CREATOR]-(c:Comment)-[:REPLY_OF]->(:Message)-[:HAS_CREATOR]->(person2)
WITH DISTINCT person1, person2, city1, score + (CASE c WHEN null THEN 0 ELSE 4 END) AS score
OPTIONAL MATCH (person1)<-[:HAS_CREATOR]-(m:Message)<-[:REPLY_OF]-(:Comment)-[:HAS_CREATOR]->(person2)
WITH DISTINCT person1, person2, city1, score + (CASE m WHEN null THEN 0 ELSE 1 END) AS score
OPTIONAL MATCH (person1)-[:LIKES]->(m:Message)-[:HAS_CREATOR]->(person2)
WITH DISTINCT person1, person2, city1, score + (CASE m WHEN null THEN 0 ELSE 10 END) AS score
OPTIONAL MATCH (person1)<-[:HAS_CREATOR]-(m:Message)<-[:LIKES]-(person2)
WITH DISTINCT person1, person2, city1, score + (CASE m WHEN null THEN 0 ELSE 1 END) AS score
ORDER BY
city1.name ASC,
score DESC,
person1.id ASC,
person2.id ASC
WITH city1, collect({score: score, person1Id: person1.id, person2Id: person2.id})[0] AS top
RETURN
top.person1Id,
top.person2Id,
city1.name,
top.score
ORDER BY
top.score DESC,
top.person1Id ASC,
top.person2Id ASC
LIMIT 100
""".replace(
"\n", ""
),
self._get_query_parameters(),
)
def benchmark__bi__query_18_analytical(self):
memgraph = (
"""
MATCH (tag:Tag {name: $tag})<-[:HAS_INTEREST]-(person1:Person)-[:KNOWS]-(mutualFriend:Person)-[:KNOWS]-(person2:Person)-[:HAS_INTEREST]->(tag)
OPTIONAL MATCH (person1)-[:KNOWS]-(person2)
WHERE person1 <> person2
RETURN person1.id AS person1Id, person2.id AS person2Id, count(DISTINCT mutualFriend) AS mutualFriendCount
ORDER BY mutualFriendCount DESC, person1Id ASC, person2Id ASC
LIMIT 20
""".replace(
"\n", ""
),
self._get_query_parameters(),
)
neo4j = (
"""
MATCH (tag:Tag {name: $tag})<-[:HAS_INTEREST]-(person1:Person)-[:KNOWS]-(mutualFriend:Person)-[:KNOWS]-(person2:Person)-[:HAS_INTEREST]->(tag)
WHERE person1 <> person2
AND NOT (person1)-[:KNOWS]-(person2)
RETURN person1.id AS person1Id, person2.id AS person2Id, count(DISTINCT mutualFriend) AS mutualFriendCount
ORDER BY mutualFriendCount DESC, person1Id ASC, person2Id ASC
LIMIT 20
""".replace(
"\n", ""
),
self._get_query_parameters(),
)
if self._vendor == "memgraph":
return memgraph
else:
return neo4j