2017-09-04 21:33:52 +08:00
|
|
|
#!/usr/bin/env python3
|
|
|
|
# -*- coding: utf-8 -*-
|
|
|
|
|
|
|
|
'''
|
|
|
|
Latency Barchart (Based on LDBC JSON output).
|
|
|
|
'''
|
|
|
|
|
|
|
|
import json
|
|
|
|
import os
|
|
|
|
import numpy as np
|
2017-09-22 02:01:10 +08:00
|
|
|
from argparse import ArgumentParser
|
|
|
|
import string
|
|
|
|
|
|
|
|
import matplotlib
|
|
|
|
# Must set 'Agg' backend before importing pyplot
|
|
|
|
# This is so the script works on headless machines (without X11)
|
|
|
|
matplotlib.use('Agg')
|
2017-09-04 21:33:52 +08:00
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
from matplotlib.cbook import get_sample_data
|
|
|
|
|
|
|
|
|
|
|
|
SCRIPT_DIR = os.path.dirname(os.path.realpath(__file__))
|
2017-09-22 02:01:10 +08:00
|
|
|
COLORS = ['#ff7300', '#008cc2'] # TODO: add more colors!
|
|
|
|
LDBC_TIME_FACTORS = {
|
|
|
|
"SECONDS": 1.0,
|
|
|
|
"MILLISECONDS": 1000.0,
|
|
|
|
"MICROSECONDS": 1000000.0,
|
|
|
|
"NANOSECONDS": 1000000000.0
|
|
|
|
}
|
|
|
|
TIME_FACTORS = {
|
|
|
|
"s": 1.0,
|
|
|
|
"ms": 1000,
|
|
|
|
"us": 1000000,
|
|
|
|
"ns": 1000000000,
|
2017-09-04 21:33:52 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
def parse_args():
|
|
|
|
argp = ArgumentParser(description=__doc__)
|
|
|
|
argp.add_argument("--vendor-titles", nargs="+",
|
2017-09-22 02:01:10 +08:00
|
|
|
default=["Memgraph", "Market leader"],
|
2017-09-04 21:33:52 +08:00
|
|
|
help="Vender titles that are going to appear "
|
|
|
|
"on the plot, e.g. legend titles.")
|
2017-09-22 02:01:10 +08:00
|
|
|
argp.add_argument("--plot-title", default="",
|
2017-09-04 21:33:52 +08:00
|
|
|
help="Plot title.")
|
|
|
|
argp.add_argument("--logo-path", default=None,
|
|
|
|
help="Path to the logo that is going to be presented"
|
|
|
|
" instead of title.")
|
2017-09-22 02:01:10 +08:00
|
|
|
argp.add_argument("--results", nargs="+", required=True,
|
2017-09-04 21:33:52 +08:00
|
|
|
help="Path to the folder with result files in format "
|
|
|
|
"{{vendor-reference}}-LDBC-results.json")
|
2017-09-22 02:01:10 +08:00
|
|
|
argp.add_argument("--time-unit", choices=("s", "ms", "us", "ns"),
|
|
|
|
default="ms", help="The time unit that should be used.")
|
|
|
|
argp.add_argument("--output", default="",
|
|
|
|
help="Save plot to file (instead of displaying it).")
|
2017-09-12 17:07:28 +08:00
|
|
|
argp.add_argument("--max-label-width", default=11, type=int,
|
|
|
|
help="Maximum length of the x-axis labels (-1 is unlimited)")
|
2017-09-04 21:33:52 +08:00
|
|
|
return argp.parse_args()
|
|
|
|
|
|
|
|
|
|
|
|
def autolabel(ax, rects):
|
|
|
|
"""
|
|
|
|
Attach a text label above each bar displaying its height
|
|
|
|
"""
|
|
|
|
for rect in rects:
|
|
|
|
height = rect.get_height()
|
|
|
|
# TODO: adjust more vendors
|
|
|
|
ax.text(rect.get_x() + rect.get_width()/2., 1.00*height,
|
|
|
|
'%d' % int(height),
|
|
|
|
ha='center', va='bottom')
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
# Read the arguments.
|
|
|
|
args = parse_args()
|
|
|
|
|
|
|
|
# Prepare the datastructure.
|
2017-09-22 02:01:10 +08:00
|
|
|
vendors = []
|
|
|
|
for i, results_file, vendor_title in zip(range(len(args.results)),
|
|
|
|
args.results,
|
|
|
|
args.vendor_titles):
|
|
|
|
vendor = {}
|
|
|
|
vendor['title'] = vendor_title
|
|
|
|
vendor['results_file'] = results_file
|
|
|
|
vendor['color'] = COLORS[i]
|
|
|
|
vendor['results'] = []
|
|
|
|
vendors.append(vendor)
|
2017-09-04 21:33:52 +08:00
|
|
|
assert len(vendors) == 2, "The graph is tailored for only 2 vendors."
|
|
|
|
|
|
|
|
# Collect the benchmark data.
|
|
|
|
print("LDBC Latency Data")
|
2017-09-22 02:01:10 +08:00
|
|
|
for vendor in vendors:
|
|
|
|
with open(vendor['results_file']) as results_file:
|
2017-09-04 21:33:52 +08:00
|
|
|
results_data = json.load(results_file)
|
|
|
|
for query_data in results_data["all_metrics"]:
|
2017-09-22 02:01:10 +08:00
|
|
|
mean_runtime = (query_data["run_time"]["mean"] /
|
|
|
|
LDBC_TIME_FACTORS[results_data["unit"]] *
|
|
|
|
TIME_FACTORS[args.time_unit])
|
2017-09-04 21:33:52 +08:00
|
|
|
query_name = query_data['name']
|
2017-09-22 02:01:10 +08:00
|
|
|
vendor['results'].append((query_name, mean_runtime))
|
|
|
|
|
|
|
|
# Sort results.
|
|
|
|
for vendor in vendors:
|
|
|
|
vendor['results'].sort(key=lambda item: int("".join(filter(
|
|
|
|
lambda x: x in string.digits, item[0]))))
|
|
|
|
|
|
|
|
# Print results.
|
|
|
|
for vendor in vendors:
|
|
|
|
print("Vendor:", vendor['title'])
|
|
|
|
for query_name, latency in vendor['results']:
|
|
|
|
print("{} -> {:.3f}{}".format(query_name, latency, args.time_unit))
|
2017-09-04 21:33:52 +08:00
|
|
|
|
|
|
|
# Consistency check.
|
2017-09-22 02:01:10 +08:00
|
|
|
all_query_names = [tuple(res[0] for res in vd['results']) for vd in vendors]
|
2017-09-04 21:33:52 +08:00
|
|
|
assert len(set(all_query_names)) == 1, \
|
|
|
|
"Queries between different vendors are different!"
|
|
|
|
query_names = all_query_names[0]
|
|
|
|
|
|
|
|
# Plot.
|
|
|
|
ind = np.arange(len(query_names)) # the x locations for the groups
|
|
|
|
width = 0.40 # the width of the bars
|
|
|
|
fig, ax = plt.subplots() # figure setup
|
2017-09-22 02:01:10 +08:00
|
|
|
fig.set_size_inches(1920 / 96, 1080 / 96) # set figure size
|
|
|
|
ax.set_ylabel('Mean Latency (%s)' % (args.time_unit)) # YAxis title
|
2017-09-04 21:33:52 +08:00
|
|
|
ax.set_facecolor('#dcdcdc') # plot bg color (light gray)
|
|
|
|
ax.set_xticks(ind + width / len(vendors)) # TODO: adjust (more vendors)
|
2017-09-07 17:07:27 +08:00
|
|
|
|
|
|
|
def shorten_query_name(query_name):
|
2017-09-12 17:07:28 +08:00
|
|
|
# Long query names on the x-axis don't look compelling.
|
2017-09-07 17:07:27 +08:00
|
|
|
if query_name.lower().startswith('ldbc'):
|
|
|
|
query_name = query_name[4:]
|
2017-09-12 17:07:28 +08:00
|
|
|
if len(query_name) > args.max_label_width:
|
|
|
|
query_name = query_name[:args.max_label_width] + '\N{HORIZONTAL ELLIPSIS}'
|
2017-09-07 17:07:27 +08:00
|
|
|
return query_name
|
2017-09-12 17:07:28 +08:00
|
|
|
labels = query_names
|
|
|
|
if args.max_label_width == 0:
|
|
|
|
labels = ["Q{}".format(i) for i, _ in enumerate(query_names)]
|
|
|
|
elif args.max_label_width > 0:
|
|
|
|
labels = map(shorten_query_name, query_names)
|
|
|
|
ax.set_xticklabels(labels, rotation=30)
|
2017-09-04 21:33:52 +08:00
|
|
|
# set only horizontal grid lines
|
|
|
|
for line in ax.get_xgridlines():
|
|
|
|
line.set_linestyle(' ')
|
|
|
|
for line in ax.get_ygridlines():
|
|
|
|
line.set_linestyle('--')
|
|
|
|
ax.set_axisbelow(True) # put the grid below all other elements
|
|
|
|
plt.grid(True) # show grid
|
2017-09-22 02:01:10 +08:00
|
|
|
# Set plot title
|
|
|
|
ax.set_title(args.plot_title)
|
2017-09-04 21:33:52 +08:00
|
|
|
# Draw logo or plot title
|
2017-09-22 02:01:10 +08:00
|
|
|
if args.logo_path != None:
|
2017-09-04 21:33:52 +08:00
|
|
|
# TODO: improve the logo positioning
|
2017-09-22 02:01:10 +08:00
|
|
|
im = plt.imread(get_sample_data(os.path.join(os.getcwd(),
|
|
|
|
args.logo_path)))
|
2017-09-04 21:33:52 +08:00
|
|
|
plt.gcf().subplots_adjust(top=0.85)
|
2017-09-22 02:01:10 +08:00
|
|
|
newax = fig.add_axes([0.46, 0.85, 0.12, 0.15], anchor='N')
|
2017-09-04 21:33:52 +08:00
|
|
|
newax.imshow(im)
|
|
|
|
newax.axis('off')
|
|
|
|
# Draw bars
|
2017-09-22 02:01:10 +08:00
|
|
|
for index, vendor in enumerate(vendors):
|
|
|
|
latencies = [res[1] for res in vendor['results']]
|
|
|
|
rects = ax.bar(ind + index * width, latencies, width,
|
|
|
|
color=vendor['color'])
|
|
|
|
vendor['rects'] = rects
|
2017-09-04 21:33:52 +08:00
|
|
|
autolabel(ax, rects)
|
2017-09-22 02:01:10 +08:00
|
|
|
rects = [vd['rects'][0] for vd in vendors]
|
|
|
|
titles = [vd['title'] for vd in vendors]
|
2017-09-04 21:33:52 +08:00
|
|
|
ax.legend(rects, titles) # Draw the legend.
|
2017-09-22 02:01:10 +08:00
|
|
|
|
|
|
|
if args.output == "":
|
|
|
|
plt.show()
|
|
|
|
else:
|
|
|
|
plt.savefig(args.output, dpi=96)
|
|
|
|
|
2017-09-04 21:33:52 +08:00
|
|
|
|
2017-09-07 17:07:27 +08:00
|
|
|
|
2017-09-04 21:33:52 +08:00
|
|
|
if __name__ == '__main__':
|
|
|
|
main()
|