memgraph/tests/mgbench/datasets.py

479 lines
18 KiB
Python
Raw Normal View History

# Copyright 2022 Memgraph Ltd.
#
# Use of this software is governed by the Business Source License
# included in the file licenses/BSL.txt; by using this file, you agree to be bound by the terms of the Business Source
# License, and you may not use this file except in compliance with the Business Source License.
#
# As of the Change Date specified in that file, in accordance with
# the Business Source License, use of this software will be governed
# by the Apache License, Version 2.0, included in the file
# licenses/APL.txt.
import random
import helpers
# Base dataset class used as a template to create each individual dataset. All
# common logic is handled here.
class Dataset:
# Name of the dataset.
NAME = "Base dataset"
# List of all variants of the dataset that exist.
VARIANTS = ["default"]
# One of the available variants that should be used as the default variant.
DEFAULT_VARIANT = "default"
# List of query files that should be used to import the dataset.
FILES = {
"default": "/foo/bar",
}
INDEX = None
INDEX_FILES = {"default": ""}
# List of query file URLs that should be used to import the dataset.
URLS = None
# Number of vertices/edges for each variant.
SIZES = {
"default": {"vertices": 0, "edges": 0},
}
# Indicates whether the dataset has properties on edges.
PROPERTIES_ON_EDGES = False
def __init__(self, variant=None, vendor=None):
"""
Accepts a `variant` variable that indicates which variant
of the dataset should be executed.
"""
if variant is None:
variant = self.DEFAULT_VARIANT
if variant not in self.VARIANTS:
raise ValueError("Invalid test variant!")
2022-09-06 22:21:32 +08:00
if (self.FILES and variant not in self.FILES) and (self.URLS and variant not in self.URLS):
raise ValueError("The variant doesn't have a defined URL or " "file path!")
if variant not in self.SIZES:
2022-09-06 22:21:32 +08:00
raise ValueError("The variant doesn't have a defined dataset " "size!")
if vendor not in self.INDEX_FILES:
raise ValueError("Vendor does not have INDEX for dataset!")
self._variant = variant
self._vendor = vendor
if self.FILES is not None:
self._file = self.FILES.get(variant, None)
else:
self._file = None
if self.URLS is not None:
self._url = self.URLS.get(variant, None)
else:
self._url = None
if self.INDEX_FILES is not None:
self._index = self.INDEX_FILES.get(vendor, None)
else:
self._index = None
self._size = self.SIZES[variant]
if "vertices" not in self._size or "edges" not in self._size:
2022-09-06 22:21:32 +08:00
raise ValueError("The size defined for this variant doesn't " "have the number of vertices and/or edges!")
self._num_vertices = self._size["vertices"]
self._num_edges = self._size["edges"]
def prepare(self, directory):
if self._file is not None:
print("Using dataset file:", self._file)
else:
# TODO: add support for JSON datasets
cached_input, exists = directory.get_file("dataset.cypher")
if not exists:
print("Downloading dataset file:", self._url)
downloaded_file = helpers.download_file(self._url, directory.get_path())
print("Unpacking and caching file:", downloaded_file)
helpers.unpack_and_move_file(downloaded_file, cached_input)
print("Using cached dataset file:", cached_input)
self._file = cached_input
cached_index, exists = directory.get_file(self._vendor + ".cypher")
if not exists:
print("Downloading index file:", self._index)
downloaded_file = helpers.download_file(self._index, directory.get_path())
print("Unpacking and caching file:", downloaded_file)
helpers.unpack_and_move_file(downloaded_file, cached_index)
print("Using cached index file:", cached_index)
self._index = cached_index
def get_variant(self):
"""Returns the current variant of the dataset."""
return self._variant
def get_index(self):
"""Get index file, defined by vendor"""
return self._index
def get_file(self):
"""
Returns path to the file that contains dataset creation queries.
"""
return self._file
def get_size(self):
"""Returns number of vertices/edges for the current variant."""
return self._size
# All tests should be query generator functions that output all of the
# queries that should be executed by the runner. The functions should be
# named `benchmark__GROUPNAME__TESTNAME` and should not accept any
# arguments.
class Pokec(Dataset):
NAME = "pokec"
VARIANTS = ["small", "medium", "large"]
DEFAULT_VARIANT = "small"
FILES = None
URLS = {
"small": "https://s3.eu-west-1.amazonaws.com/deps.memgraph.io/dataset/pokec/benchmark/pokec_small_import.cypher",
"medium": "https://s3.eu-west-1.amazonaws.com/deps.memgraph.io/dataset/pokec/benchmark/pokec_medium_import.cypher",
"large": "https://s3.eu-west-1.amazonaws.com/deps.memgraph.io/dataset/pokec/benchmark/pokec_large.setup.cypher.gz",
}
SIZES = {
"small": {"vertices": 10000, "edges": 121716},
"medium": {"vertices": 100000, "edges": 1768515},
"large": {"vertices": 1632803, "edges": 30622564},
}
INDEX = None
INDEX_FILES = {
"memgraph": "https://s3.eu-west-1.amazonaws.com/deps.memgraph.io/dataset/pokec/benchmark/memgraph.cypher",
"neo4j": "https://s3.eu-west-1.amazonaws.com/deps.memgraph.io/dataset/pokec/benchmark/neo4j.cypher",
}
PROPERTIES_ON_EDGES = False
# Helpers used to generate the queries
def _get_random_vertex(self):
# All vertices in the Pokec dataset have an ID in the range
# [1, _num_vertices].
return random.randint(1, self._num_vertices)
def _get_random_from_to(self):
vertex_from = self._get_random_vertex()
vertex_to = vertex_from
while vertex_to == vertex_from:
vertex_to = self._get_random_vertex()
return (vertex_from, vertex_to)
# Arango benchmarks
def benchmark__arango__single_vertex_read(self):
2022-09-06 22:21:32 +08:00
return ("MATCH (n:User {id : $id}) RETURN n", {"id": self._get_random_vertex()})
def benchmark__arango__single_vertex_write(self):
return (
"CREATE (n:UserTemp {id : $id}) RETURN n",
{"id": random.randint(1, self._num_vertices * 10)},
)
def benchmark__arango__single_edge_write(self):
vertex_from, vertex_to = self._get_random_from_to()
2022-09-06 22:21:32 +08:00
return (
"MATCH (n:User {id: $from}), (m:User {id: $to}) WITH n, m " "CREATE (n)-[e:Temp]->(m) RETURN e",
{"from": vertex_from, "to": vertex_to},
)
def benchmark__arango__aggregate(self):
return ("MATCH (n:User) RETURN n.age, COUNT(*)", {})
2022-12-03 19:48:44 +08:00
def benchmark__arango__aggregate_with_distinct(self):
return ("MATCH (n:User) RETURN COUNT(DISTINCT n.age)", {})
def benchmark__arango__aggregate_with_filter(self):
return ("MATCH (n:User) WHERE n.age >= 18 RETURN n.age, COUNT(*)", {})
def benchmark__arango__expansion_1(self):
return (
"MATCH (s:User {id: $id})-->(n:User) " "RETURN n.id",
{"id": self._get_random_vertex()},
)
def benchmark__arango__expansion_1_with_filter(self):
2022-09-06 22:21:32 +08:00
return (
"MATCH (s:User {id: $id})-->(n:User) " "WHERE n.age >= 18 " "RETURN n.id",
{"id": self._get_random_vertex()},
)
def benchmark__arango__expansion_2(self):
return (
"MATCH (s:User {id: $id})-->()-->(n:User) " "RETURN DISTINCT n.id",
{"id": self._get_random_vertex()},
)
def benchmark__arango__expansion_2_with_filter(self):
2022-09-06 22:21:32 +08:00
return (
"MATCH (s:User {id: $id})-->()-->(n:User) " "WHERE n.age >= 18 " "RETURN DISTINCT n.id",
{"id": self._get_random_vertex()},
)
def benchmark__arango__expansion_3(self):
2022-09-06 22:21:32 +08:00
return (
"MATCH (s:User {id: $id})-->()-->()-->(n:User) " "RETURN DISTINCT n.id",
{"id": self._get_random_vertex()},
)
def benchmark__arango__expansion_3_with_filter(self):
2022-09-06 22:21:32 +08:00
return (
"MATCH (s:User {id: $id})-->()-->()-->(n:User) " "WHERE n.age >= 18 " "RETURN DISTINCT n.id",
{"id": self._get_random_vertex()},
)
def benchmark__arango__expansion_4(self):
2022-09-06 22:21:32 +08:00
return (
"MATCH (s:User {id: $id})-->()-->()-->()-->(n:User) " "RETURN DISTINCT n.id",
{"id": self._get_random_vertex()},
)
def benchmark__arango__expansion_4_with_filter(self):
2022-09-06 22:21:32 +08:00
return (
"MATCH (s:User {id: $id})-->()-->()-->()-->(n:User) " "WHERE n.age >= 18 " "RETURN DISTINCT n.id",
{"id": self._get_random_vertex()},
)
def benchmark__arango__neighbours_2(self):
return (
"MATCH (s:User {id: $id})-[*1..2]->(n:User) " "RETURN DISTINCT n.id",
{"id": self._get_random_vertex()},
)
def benchmark__arango__neighbours_2_with_filter(self):
2022-09-06 22:21:32 +08:00
return (
"MATCH (s:User {id: $id})-[*1..2]->(n:User) " "WHERE n.age >= 18 " "RETURN DISTINCT n.id",
{"id": self._get_random_vertex()},
)
def benchmark__arango__neighbours_2_with_data(self):
2022-09-06 22:21:32 +08:00
return (
"MATCH (s:User {id: $id})-[*1..2]->(n:User) " "RETURN DISTINCT n.id, n",
{"id": self._get_random_vertex()},
)
def benchmark__arango__neighbours_2_with_data_and_filter(self):
2022-09-06 22:21:32 +08:00
return (
"MATCH (s:User {id: $id})-[*1..2]->(n:User) " "WHERE n.age >= 18 " "RETURN DISTINCT n.id, n",
{"id": self._get_random_vertex()},
)
def benchmark__arango__shortest_path(self):
vertex_from, vertex_to = self._get_random_from_to()
2022-09-06 22:21:32 +08:00
return (
"MATCH (n:User {id: $from}), (m:User {id: $to}) WITH n, m "
"MATCH p=(n)-[*bfs..15]->(m) "
"RETURN extract(n in nodes(p) | n.id) AS path",
{"from": vertex_from, "to": vertex_to},
)
def benchmark__arango__shortest_path_with_filter(self):
vertex_from, vertex_to = self._get_random_from_to()
2022-09-06 22:21:32 +08:00
return (
"MATCH (n:User {id: $from}), (m:User {id: $to}) WITH n, m "
"MATCH p=(n)-[*bfs..15 (e, n | n.age >= 18)]->(m) "
"RETURN extract(n in nodes(p) | n.id) AS path",
{"from": vertex_from, "to": vertex_to},
)
def benchmark__arango__allshortest_paths(self):
vertex_from, vertex_to = self._get_random_from_to()
return (
"MATCH (n:User {id: $from}), (m:User {id: $to}) WITH n, m "
"MATCH p=(n)-[*allshortest 2 (r, n | 1) total_weight]->(m) "
"RETURN extract(n in nodes(p) | n.id) AS path",
{"from": vertex_from, "to": vertex_to},
)
# Our benchmark queries
def benchmark__create__edge(self):
vertex_from, vertex_to = self._get_random_from_to()
2022-09-06 22:21:32 +08:00
return (
"MATCH (a:User {id: $from}), (b:User {id: $to}) " "CREATE (a)-[:TempEdge]->(b)",
{"from": vertex_from, "to": vertex_to},
)
def benchmark__create__pattern(self):
return ("CREATE ()-[:TempEdge]->()", {})
def benchmark__create__vertex(self):
return ("CREATE ()", {})
def benchmark__create__vertex_big(self):
2022-09-06 22:21:32 +08:00
return (
"CREATE (:L1:L2:L3:L4:L5:L6:L7 {p1: true, p2: 42, "
'p3: "Here is some text that is not extremely short", '
'p4:"Short text", p5: 234.434, p6: 11.11, p7: false})',
{},
)
def benchmark__aggregation__count(self):
return ("MATCH (n) RETURN count(n), count(n.age)", {})
def benchmark__aggregation__min_max_avg(self):
return ("MATCH (n) RETURN min(n.age), max(n.age), avg(n.age)", {})
def benchmark__match__pattern_cycle(self):
return (
"MATCH (n:User {id: $id})-[e1]->(m)-[e2]->(n) " "RETURN e1, m, e2",
{"id": self._get_random_vertex()},
)
def benchmark__match__pattern_long(self):
2022-09-06 22:21:32 +08:00
return (
"MATCH (n1:User {id: $id})-[e1]->(n2)-[e2]->" "(n3)-[e3]->(n4)<-[e4]-(n5) " "RETURN n5 LIMIT 1",
{"id": self._get_random_vertex()},
)
def benchmark__match__pattern_short(self):
return (
"MATCH (n:User {id: $id})-[e]->(m) " "RETURN m LIMIT 1",
{"id": self._get_random_vertex()},
)
def benchmark__match__vertex_on_label_property(self):
return (
"MATCH (n:User) WITH n WHERE n.id = $id RETURN n",
{"id": self._get_random_vertex()},
)
def benchmark__match__vertex_on_label_property_index(self):
2022-09-06 22:21:32 +08:00
return ("MATCH (n:User {id: $id}) RETURN n", {"id": self._get_random_vertex()})
def benchmark__match__vertex_on_property(self):
2022-09-06 22:21:32 +08:00
return ("MATCH (n {id: $id}) RETURN n", {"id": self._get_random_vertex()})
def benchmark__update__vertex_on_property(self):
return (
"MATCH (n {id: $id}) SET n.property = -1",
{"id": self._get_random_vertex()},
)
# Basic benchmark queries
def benchmark__basic__single_vertex_read_read(self):
return ("MATCH (n:User {id : $id}) RETURN n", {"id": self._get_random_vertex()})
def benchmark__basic__single_vertex_write_write(self):
return (
"CREATE (n:UserTemp {id : $id}) RETURN n",
{"id": random.randint(1, self._num_vertices * 10)},
)
def benchmark__basic__single_vertex_property_update_update(self):
return (
"MATCH (n {id: $id}) SET n.property = -1",
{"id": self._get_random_vertex()},
)
def benchmark__basic__single_edge_write_write(self):
vertex_from, vertex_to = self._get_random_from_to()
return (
"MATCH (n:User {id: $from}), (m:User {id: $to}) WITH n, m " "CREATE (n)-[e:Temp]->(m) RETURN e",
{"from": vertex_from, "to": vertex_to},
)
def benchmark__basic__aggregate_aggregate(self):
return ("MATCH (n:User) RETURN n.age, COUNT(*)", {})
def benchmark__basic__aggregate_count_aggregate(self):
return ("MATCH (n) RETURN count(n), count(n.age)", {})
def benchmark__basic__aggregate_with_filter_aggregate(self):
return ("MATCH (n:User) WHERE n.age >= 18 RETURN n.age, COUNT(*)", {})
def benchmark__basic__min_max_avg_aggregate(self):
return ("MATCH (n) RETURN min(n.age), max(n.age), avg(n.age)", {})
def benchmark__basic__expansion_1_analytical(self):
return (
"MATCH (s:User {id: $id})-->(n:User) " "RETURN n.id",
{"id": self._get_random_vertex()},
)
def benchmark__basic__expansion_1_with_filter_analytical(self):
return (
"MATCH (s:User {id: $id})-->(n:User) " "WHERE n.age >= 18 " "RETURN n.id",
{"id": self._get_random_vertex()},
)
def benchmark__basic__expansion_2_analytical(self):
return (
"MATCH (s:User {id: $id})-->()-->(n:User) " "RETURN DISTINCT n.id",
{"id": self._get_random_vertex()},
)
def benchmark__basic__expansion_2_with_filter_analytical(self):
return (
"MATCH (s:User {id: $id})-->()-->(n:User) " "WHERE n.age >= 18 " "RETURN DISTINCT n.id",
{"id": self._get_random_vertex()},
)
def benchmark__basic__expansion_3_analytical(self):
return (
"MATCH (s:User {id: $id})-->()-->()-->(n:User) " "RETURN DISTINCT n.id",
{"id": self._get_random_vertex()},
)
def benchmark__basic__expansion_3_with_filter_analytical(self):
return (
"MATCH (s:User {id: $id})-->()-->()-->(n:User) " "WHERE n.age >= 18 " "RETURN DISTINCT n.id",
{"id": self._get_random_vertex()},
)
def benchmark__basic__expansion_4_analytical(self):
return (
"MATCH (s:User {id: $id})-->()-->()-->()-->(n:User) " "RETURN DISTINCT n.id",
{"id": self._get_random_vertex()},
)
def benchmark__basic__expansion_4_with_filter_analytical(self):
return (
"MATCH (s:User {id: $id})-->()-->()-->()-->(n:User) " "WHERE n.age >= 18 " "RETURN DISTINCT n.id",
{"id": self._get_random_vertex()},
)
def benchmark__basic__neighbours_2_analytical(self):
return (
"MATCH (s:User {id: $id})-[*1..2]->(n:User) " "RETURN DISTINCT n.id",
{"id": self._get_random_vertex()},
)
def benchmark__basic__neighbours_2_with_filter_analytical(self):
return (
"MATCH (s:User {id: $id})-[*1..2]->(n:User) " "WHERE n.age >= 18 " "RETURN DISTINCT n.id",
{"id": self._get_random_vertex()},
)
def benchmark__basic__neighbours_2_with_data_analytical(self):
return (
"MATCH (s:User {id: $id})-[*1..2]->(n:User) " "RETURN DISTINCT n.id, n",
{"id": self._get_random_vertex()},
)
def benchmark__basic__neighbours_2_with_data_and_filter_analytical(self):
return (
"MATCH (s:User {id: $id})-[*1..2]->(n:User) " "WHERE n.age >= 18 " "RETURN DISTINCT n.id, n",
{"id": self._get_random_vertex()},
)
def benchmark__basic__pattern_cycle_analytical(self):
return (
"MATCH (n:User {id: $id})-[e1]->(m)-[e2]->(n) " "RETURN e1, m, e2",
{"id": self._get_random_vertex()},
)
def benchmark__basic__pattern_long_analytical(self):
return (
"MATCH (n1:User {id: $id})-[e1]->(n2)-[e2]->" "(n3)-[e3]->(n4)<-[e4]-(n5) " "RETURN n5 LIMIT 1",
{"id": self._get_random_vertex()},
)
def benchmark__basic__pattern_short_analytical(self):
return (
"MATCH (n:User {id: $id})-[e]->(m) " "RETURN m LIMIT 1",
{"id": self._get_random_vertex()},
)