memgraph/data_structures/kdtree/build.hpp

71 lines
1.9 KiB
C++
Raw Normal View History

2015-06-19 16:04:42 +08:00
#ifndef MEMGRAPH_DATA_STRUCTURES_KDTREE_BUILD_HPP
#define MEMGRAPH_DATA_STRUCTURES_KDTREE_BUILD_HPP
#include <vector>
#include <algorithm>
#include <functional>
#include "math.hpp"
#include "kdnode.hpp"
namespace kd {
template <class T, class U>
using Nodes = std::vector<KdNode<T, U>*>;
template <class T, class U>
KdNode<T, U>* build(Nodes<T, U>& nodes, byte axis = 0)
{
// if there are no elements left, we've completed building of this branch
if(nodes.empty())
return nullptr;
// comparison function to use for sorting the elements
auto fsort = [axis](KdNode<T, U>* a, KdNode<T, U>* b) -> bool
{ return kd::math::axial_distance(a->coord, b->coord, axis) < 0; };
size_t median = nodes.size() / 2;
// partial sort nodes vector to compute median and ensure that elements
// less than median are positioned before the median so we can slice it
// nicely
// internal implementation is O(n) worst case
// tl;dr http://en.wikipedia.org/wiki/Introselect
std::nth_element(nodes.begin(), nodes.begin() + median, nodes.end(), fsort);
// set axis for the node
auto node = nodes.at(median);
node->axis = axis;
// slice the vector into two halves
auto left = Nodes<T, U>(nodes.begin(), nodes.begin() + median);
auto right = Nodes<T, U>(nodes.begin() + median + 1, nodes.end());
// recursively build left and right branches
node->left = build(left, axis ^ 1);
node->right = build(right, axis ^ 1);
return node;
}
template <class T, class U, class It>
KdNode<T, U>* build(It first, It last)
{
Nodes<T, U> kdnodes;
std::transform(first, last, std::back_inserter(kdnodes),
[&](const std::pair<Point<T>, U>& element) {
auto key = element.first;
auto data = element.second;
return new KdNode<T, U>(key, data);
});
// build the tree from the kdnodes and return the root node
return build(kdnodes);
}
}
#endif