2017-06-01 20:23:01 +08:00
|
|
|
#include <algorithm>
|
|
|
|
|
|
|
|
#include "gtest/gtest.h"
|
|
|
|
|
|
|
|
#include "query/frontend/semantic/symbol_generator.hpp"
|
|
|
|
#include "query/frontend/semantic/symbol_table.hpp"
|
|
|
|
#include "query/plan/planner.hpp"
|
|
|
|
#include "utils/algorithm.hpp"
|
|
|
|
|
|
|
|
#include "query_plan_common.hpp"
|
|
|
|
|
|
|
|
using namespace query::plan;
|
2018-05-22 22:45:52 +08:00
|
|
|
using query::AstStorage;
|
2018-10-18 17:16:32 +08:00
|
|
|
using Type = query::EdgeAtom::Type;
|
2017-06-01 20:23:01 +08:00
|
|
|
using Direction = query::EdgeAtom::Direction;
|
|
|
|
|
|
|
|
namespace std {
|
|
|
|
|
|
|
|
// Overloads for printing resulting rows from a query.
|
|
|
|
std::ostream &operator<<(std::ostream &stream,
|
|
|
|
const std::vector<TypedValue> &row) {
|
2017-09-26 18:51:52 +08:00
|
|
|
utils::PrintIterable(stream, row);
|
2017-06-01 20:23:01 +08:00
|
|
|
return stream;
|
|
|
|
}
|
|
|
|
std::ostream &operator<<(std::ostream &stream,
|
|
|
|
const std::vector<std::vector<TypedValue>> &rows) {
|
2017-09-26 18:51:52 +08:00
|
|
|
utils::PrintIterable(stream, rows, "\n");
|
2017-06-01 20:23:01 +08:00
|
|
|
return stream;
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace std
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
void AssertRows(const std::vector<std::vector<TypedValue>> &datum,
|
|
|
|
std::vector<std::vector<TypedValue>> expected) {
|
|
|
|
auto row_equal = [](const auto &row1, const auto &row2) {
|
|
|
|
if (row1.size() != row2.size()) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
TypedValue::BoolEqual value_eq;
|
|
|
|
auto row1_it = row1.begin();
|
|
|
|
for (auto row2_it = row2.begin(); row2_it != row2.end();
|
|
|
|
++row1_it, ++row2_it) {
|
|
|
|
if (!value_eq(*row1_it, *row2_it)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
};
|
|
|
|
ASSERT_TRUE(std::is_permutation(datum.begin(), datum.end(), expected.begin(),
|
|
|
|
expected.end(), row_equal))
|
|
|
|
<< "Actual rows:" << std::endl
|
|
|
|
<< datum << std::endl
|
|
|
|
<< "Expected rows:" << std::endl
|
|
|
|
<< expected;
|
|
|
|
};
|
|
|
|
|
|
|
|
void CheckPlansProduce(
|
2018-10-19 22:18:44 +08:00
|
|
|
size_t expected_plan_count, query::CypherQuery *query, AstStorage &storage,
|
Remove GraphDbAccessor and storage types from Ast
Summary:
This diff removes the need for a database when parsing a query and
creating an Ast. Instead of storing storage::{Label,Property,EdgeType}
in Ast nodes, we store the name and an index into all of the names. This
allows for easy creation of a map from {Label,Property,EdgeType} index
into the concrete storage type. Obviously, this comes with a performance
penalty during execution, but it should be minor. The upside is that the
query/frontend minimally depends on storage (PropertyValue), which makes
writing tests easier as well as running them a lot faster (there is no
database setup). This is most noticeable in the ast_serialization test
which took a long time due to start up of a distributed database.
Reviewers: mtomic, llugovic
Reviewed By: mtomic
Subscribers: mferencevic, pullbot
Differential Revision: https://phabricator.memgraph.io/D1774
2019-01-14 21:41:37 +08:00
|
|
|
database::GraphDbAccessor *dba,
|
2017-06-01 20:23:01 +08:00
|
|
|
std::function<void(const std::vector<std::vector<TypedValue>> &)> check) {
|
2018-10-30 22:29:12 +08:00
|
|
|
auto symbol_table = query::MakeSymbolTable(query);
|
2018-10-10 21:19:34 +08:00
|
|
|
auto planning_context =
|
Remove GraphDbAccessor and storage types from Ast
Summary:
This diff removes the need for a database when parsing a query and
creating an Ast. Instead of storing storage::{Label,Property,EdgeType}
in Ast nodes, we store the name and an index into all of the names. This
allows for easy creation of a map from {Label,Property,EdgeType} index
into the concrete storage type. Obviously, this comes with a performance
penalty during execution, but it should be minor. The upside is that the
query/frontend minimally depends on storage (PropertyValue), which makes
writing tests easier as well as running them a lot faster (there is no
database setup). This is most noticeable in the ast_serialization test
which took a long time due to start up of a distributed database.
Reviewers: mtomic, llugovic
Reviewed By: mtomic
Subscribers: mferencevic, pullbot
Differential Revision: https://phabricator.memgraph.io/D1774
2019-01-14 21:41:37 +08:00
|
|
|
MakePlanningContext(&storage, &symbol_table, query, dba);
|
2018-10-10 21:19:34 +08:00
|
|
|
auto query_parts = CollectQueryParts(symbol_table, storage, query);
|
2017-11-29 20:55:02 +08:00
|
|
|
EXPECT_TRUE(query_parts.query_parts.size() > 0);
|
|
|
|
auto single_query_parts = query_parts.query_parts.at(0).single_query_parts;
|
|
|
|
auto plans = MakeLogicalPlanForSingleQuery<VariableStartPlanner>(
|
Remove GraphDbAccessor and storage types from Ast
Summary:
This diff removes the need for a database when parsing a query and
creating an Ast. Instead of storing storage::{Label,Property,EdgeType}
in Ast nodes, we store the name and an index into all of the names. This
allows for easy creation of a map from {Label,Property,EdgeType} index
into the concrete storage type. Obviously, this comes with a performance
penalty during execution, but it should be minor. The upside is that the
query/frontend minimally depends on storage (PropertyValue), which makes
writing tests easier as well as running them a lot faster (there is no
database setup). This is most noticeable in the ast_serialization test
which took a long time due to start up of a distributed database.
Reviewers: mtomic, llugovic
Reviewed By: mtomic
Subscribers: mferencevic, pullbot
Differential Revision: https://phabricator.memgraph.io/D1774
2019-01-14 21:41:37 +08:00
|
|
|
single_query_parts, &planning_context);
|
2017-06-01 20:23:01 +08:00
|
|
|
EXPECT_EQ(std::distance(plans.begin(), plans.end()), expected_plan_count);
|
|
|
|
for (const auto &plan : plans) {
|
|
|
|
auto *produce = dynamic_cast<Produce *>(plan.get());
|
|
|
|
ASSERT_TRUE(produce);
|
2019-01-16 18:30:17 +08:00
|
|
|
auto context = MakeContext(storage, symbol_table, dba);
|
Remove GraphDbAccessor and storage types from Ast
Summary:
This diff removes the need for a database when parsing a query and
creating an Ast. Instead of storing storage::{Label,Property,EdgeType}
in Ast nodes, we store the name and an index into all of the names. This
allows for easy creation of a map from {Label,Property,EdgeType} index
into the concrete storage type. Obviously, this comes with a performance
penalty during execution, but it should be minor. The upside is that the
query/frontend minimally depends on storage (PropertyValue), which makes
writing tests easier as well as running them a lot faster (there is no
database setup). This is most noticeable in the ast_serialization test
which took a long time due to start up of a distributed database.
Reviewers: mtomic, llugovic
Reviewed By: mtomic
Subscribers: mferencevic, pullbot
Differential Revision: https://phabricator.memgraph.io/D1774
2019-01-14 21:41:37 +08:00
|
|
|
auto results = CollectProduce(*produce, &context);
|
2017-06-01 20:23:01 +08:00
|
|
|
check(results);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(TestVariableStartPlanner, MatchReturn) {
|
2018-10-09 17:09:10 +08:00
|
|
|
database::GraphDb db;
|
2018-07-26 15:08:21 +08:00
|
|
|
auto dba = db.Access();
|
2017-06-01 20:23:01 +08:00
|
|
|
// Make a graph (v1) -[:r]-> (v2)
|
2019-04-15 17:36:43 +08:00
|
|
|
auto v1 = dba.InsertVertex();
|
|
|
|
auto v2 = dba.InsertVertex();
|
|
|
|
dba.InsertEdge(v1, v2, dba.EdgeType("r"));
|
|
|
|
dba.AdvanceCommand();
|
2017-06-01 20:23:01 +08:00
|
|
|
// Test MATCH (n) -[r]-> (m) RETURN n
|
2018-05-22 22:45:52 +08:00
|
|
|
AstStorage storage;
|
2018-10-10 21:19:34 +08:00
|
|
|
auto *query = QUERY(SINGLE_QUERY(
|
2017-11-29 20:55:02 +08:00
|
|
|
MATCH(PATTERN(NODE("n"), EDGE("r", Direction::OUT), NODE("m"))),
|
|
|
|
RETURN("n")));
|
2017-06-01 20:23:01 +08:00
|
|
|
// We have 2 nodes `n` and `m` from which we could start, so expect 2 plans.
|
2019-04-15 17:36:43 +08:00
|
|
|
CheckPlansProduce(2, query, storage, &dba, [&](const auto &results) {
|
2017-06-01 20:23:01 +08:00
|
|
|
// We expect to produce only a single (v1) node.
|
2019-06-06 19:16:37 +08:00
|
|
|
AssertRows(results, {{TypedValue(v1)}});
|
2017-06-01 20:23:01 +08:00
|
|
|
});
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(TestVariableStartPlanner, MatchTripletPatternReturn) {
|
2018-10-09 17:09:10 +08:00
|
|
|
database::GraphDb db;
|
2018-07-26 15:08:21 +08:00
|
|
|
auto dba = db.Access();
|
2017-06-01 20:23:01 +08:00
|
|
|
// Make a graph (v1) -[:r]-> (v2) -[:r]-> (v3)
|
2019-04-15 17:36:43 +08:00
|
|
|
auto v1 = dba.InsertVertex();
|
|
|
|
auto v2 = dba.InsertVertex();
|
|
|
|
auto v3 = dba.InsertVertex();
|
|
|
|
dba.InsertEdge(v1, v2, dba.EdgeType("r"));
|
|
|
|
dba.InsertEdge(v2, v3, dba.EdgeType("r"));
|
|
|
|
dba.AdvanceCommand();
|
2017-06-01 20:23:01 +08:00
|
|
|
{
|
|
|
|
// Test `MATCH (n) -[r]-> (m) -[e]-> (l) RETURN n`
|
2018-05-22 22:45:52 +08:00
|
|
|
AstStorage storage;
|
2018-10-10 21:19:34 +08:00
|
|
|
auto *query = QUERY(SINGLE_QUERY(
|
2017-11-29 20:55:02 +08:00
|
|
|
MATCH(PATTERN(NODE("n"), EDGE("r", Direction::OUT), NODE("m"),
|
|
|
|
EDGE("e", Direction::OUT), NODE("l"))),
|
|
|
|
RETURN("n")));
|
2017-06-01 20:23:01 +08:00
|
|
|
// We have 3 nodes: `n`, `m` and `l` from which we could start.
|
2019-04-15 17:36:43 +08:00
|
|
|
CheckPlansProduce(3, query, storage, &dba, [&](const auto &results) {
|
2017-06-01 20:23:01 +08:00
|
|
|
// We expect to produce only a single (v1) node.
|
2019-06-06 19:16:37 +08:00
|
|
|
AssertRows(results, {{TypedValue(v1)}});
|
2017-06-01 20:23:01 +08:00
|
|
|
});
|
|
|
|
}
|
|
|
|
{
|
|
|
|
// Equivalent to `MATCH (n) -[r]-> (m), (m) -[e]-> (l) RETURN n`.
|
2018-05-22 22:45:52 +08:00
|
|
|
AstStorage storage;
|
2018-10-10 21:19:34 +08:00
|
|
|
auto *query = QUERY(SINGLE_QUERY(
|
2017-11-29 20:55:02 +08:00
|
|
|
MATCH(PATTERN(NODE("n"), EDGE("r", Direction::OUT), NODE("m")),
|
|
|
|
PATTERN(NODE("m"), EDGE("e", Direction::OUT), NODE("l"))),
|
|
|
|
RETURN("n")));
|
2019-04-15 17:36:43 +08:00
|
|
|
CheckPlansProduce(3, query, storage, &dba, [&](const auto &results) {
|
2019-06-06 19:16:37 +08:00
|
|
|
AssertRows(results, {{TypedValue(v1)}});
|
2017-06-01 20:23:01 +08:00
|
|
|
});
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(TestVariableStartPlanner, MatchOptionalMatchReturn) {
|
2018-10-09 17:09:10 +08:00
|
|
|
database::GraphDb db;
|
2018-07-26 15:08:21 +08:00
|
|
|
auto dba = db.Access();
|
2017-06-01 20:23:01 +08:00
|
|
|
// Make a graph (v1) -[:r]-> (v2) -[:r]-> (v3)
|
2019-04-15 17:36:43 +08:00
|
|
|
auto v1 = dba.InsertVertex();
|
|
|
|
auto v2 = dba.InsertVertex();
|
|
|
|
auto v3 = dba.InsertVertex();
|
|
|
|
dba.InsertEdge(v1, v2, dba.EdgeType("r"));
|
|
|
|
dba.InsertEdge(v2, v3, dba.EdgeType("r"));
|
|
|
|
dba.AdvanceCommand();
|
2017-06-01 20:23:01 +08:00
|
|
|
// Test MATCH (n) -[r]-> (m) OPTIONAL MATCH (m) -[e]-> (l) RETURN n, l
|
2018-05-22 22:45:52 +08:00
|
|
|
AstStorage storage;
|
2018-10-10 21:19:34 +08:00
|
|
|
auto *query = QUERY(SINGLE_QUERY(
|
2017-10-05 17:25:52 +08:00
|
|
|
MATCH(PATTERN(NODE("n"), EDGE("r", Direction::OUT), NODE("m"))),
|
|
|
|
OPTIONAL_MATCH(PATTERN(NODE("m"), EDGE("e", Direction::OUT), NODE("l"))),
|
2017-11-29 20:55:02 +08:00
|
|
|
RETURN("n", "l")));
|
2017-06-01 20:23:01 +08:00
|
|
|
// We have 2 nodes `n` and `m` from which we could start the MATCH, and 2
|
|
|
|
// nodes for OPTIONAL MATCH. This should produce 2 * 2 plans.
|
2019-04-15 17:36:43 +08:00
|
|
|
CheckPlansProduce(4, query, storage, &dba, [&](const auto &results) {
|
2017-06-01 20:23:01 +08:00
|
|
|
// We expect to produce 2 rows:
|
|
|
|
// * (v1), (v3)
|
|
|
|
// * (v2), null
|
2019-06-06 19:16:37 +08:00
|
|
|
AssertRows(results, {{TypedValue(v1), TypedValue(v3)},
|
|
|
|
{TypedValue(v2), TypedValue()}});
|
2017-06-01 20:23:01 +08:00
|
|
|
});
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(TestVariableStartPlanner, MatchOptionalMatchMergeReturn) {
|
2018-10-09 17:09:10 +08:00
|
|
|
database::GraphDb db;
|
2018-07-26 15:08:21 +08:00
|
|
|
auto dba = db.Access();
|
2017-06-01 20:23:01 +08:00
|
|
|
// Graph (v1) -[:r]-> (v2)
|
2019-04-15 17:36:43 +08:00
|
|
|
auto v1 = dba.InsertVertex();
|
|
|
|
auto v2 = dba.InsertVertex();
|
Remove GraphDbAccessor and storage types from Ast
Summary:
This diff removes the need for a database when parsing a query and
creating an Ast. Instead of storing storage::{Label,Property,EdgeType}
in Ast nodes, we store the name and an index into all of the names. This
allows for easy creation of a map from {Label,Property,EdgeType} index
into the concrete storage type. Obviously, this comes with a performance
penalty during execution, but it should be minor. The upside is that the
query/frontend minimally depends on storage (PropertyValue), which makes
writing tests easier as well as running them a lot faster (there is no
database setup). This is most noticeable in the ast_serialization test
which took a long time due to start up of a distributed database.
Reviewers: mtomic, llugovic
Reviewed By: mtomic
Subscribers: mferencevic, pullbot
Differential Revision: https://phabricator.memgraph.io/D1774
2019-01-14 21:41:37 +08:00
|
|
|
auto r_type_name = "r";
|
2019-04-15 17:36:43 +08:00
|
|
|
auto r_type = dba.EdgeType(r_type_name);
|
|
|
|
dba.InsertEdge(v1, v2, r_type);
|
|
|
|
dba.AdvanceCommand();
|
2017-06-01 20:23:01 +08:00
|
|
|
// Test MATCH (n) -[r]-> (m) OPTIONAL MATCH (m) -[e]-> (l)
|
|
|
|
// MERGE (u) -[q:r]-> (v) RETURN n, m, l, u, v
|
2018-05-22 22:45:52 +08:00
|
|
|
AstStorage storage;
|
2018-10-10 21:19:34 +08:00
|
|
|
auto *query = QUERY(SINGLE_QUERY(
|
2017-10-05 17:25:52 +08:00
|
|
|
MATCH(PATTERN(NODE("n"), EDGE("r", Direction::OUT), NODE("m"))),
|
|
|
|
OPTIONAL_MATCH(PATTERN(NODE("m"), EDGE("e", Direction::OUT), NODE("l"))),
|
Remove GraphDbAccessor and storage types from Ast
Summary:
This diff removes the need for a database when parsing a query and
creating an Ast. Instead of storing storage::{Label,Property,EdgeType}
in Ast nodes, we store the name and an index into all of the names. This
allows for easy creation of a map from {Label,Property,EdgeType} index
into the concrete storage type. Obviously, this comes with a performance
penalty during execution, but it should be minor. The upside is that the
query/frontend minimally depends on storage (PropertyValue), which makes
writing tests easier as well as running them a lot faster (there is no
database setup). This is most noticeable in the ast_serialization test
which took a long time due to start up of a distributed database.
Reviewers: mtomic, llugovic
Reviewed By: mtomic
Subscribers: mferencevic, pullbot
Differential Revision: https://phabricator.memgraph.io/D1774
2019-01-14 21:41:37 +08:00
|
|
|
MERGE(PATTERN(NODE("u"), EDGE("q", Direction::OUT, {r_type_name}),
|
|
|
|
NODE("v"))),
|
2017-11-29 20:55:02 +08:00
|
|
|
RETURN("n", "m", "l", "u", "v")));
|
2017-06-01 20:23:01 +08:00
|
|
|
// Since MATCH, OPTIONAL MATCH and MERGE each have 2 nodes from which we can
|
|
|
|
// start, we generate 2 * 2 * 2 plans.
|
2019-04-15 17:36:43 +08:00
|
|
|
CheckPlansProduce(8, query, storage, &dba, [&](const auto &results) {
|
2017-06-01 20:23:01 +08:00
|
|
|
// We expect to produce a single row: (v1), (v2), null, (v1), (v2)
|
2019-06-06 19:16:37 +08:00
|
|
|
AssertRows(results, {{TypedValue(v1), TypedValue(v2), TypedValue(),
|
|
|
|
TypedValue(v1), TypedValue(v2)}});
|
2017-06-01 20:23:01 +08:00
|
|
|
});
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(TestVariableStartPlanner, MatchWithMatchReturn) {
|
2018-10-09 17:09:10 +08:00
|
|
|
database::GraphDb db;
|
2018-07-26 15:08:21 +08:00
|
|
|
auto dba = db.Access();
|
2017-06-01 20:23:01 +08:00
|
|
|
// Graph (v1) -[:r]-> (v2)
|
2019-04-15 17:36:43 +08:00
|
|
|
auto v1 = dba.InsertVertex();
|
|
|
|
auto v2 = dba.InsertVertex();
|
|
|
|
dba.InsertEdge(v1, v2, dba.EdgeType("r"));
|
|
|
|
dba.AdvanceCommand();
|
2017-06-01 20:23:01 +08:00
|
|
|
// Test MATCH (n) -[r]-> (m) WITH n MATCH (m) -[r]-> (l) RETURN n, m, l
|
2018-05-22 22:45:52 +08:00
|
|
|
AstStorage storage;
|
2018-10-10 21:19:34 +08:00
|
|
|
auto *query = QUERY(SINGLE_QUERY(
|
2017-11-29 20:55:02 +08:00
|
|
|
MATCH(PATTERN(NODE("n"), EDGE("r", Direction::OUT), NODE("m"))),
|
|
|
|
WITH("n"),
|
|
|
|
MATCH(PATTERN(NODE("m"), EDGE("r", Direction::OUT), NODE("l"))),
|
|
|
|
RETURN("n", "m", "l")));
|
2017-06-01 20:23:01 +08:00
|
|
|
// We can start from 2 nodes in each match. Since WITH separates query parts,
|
|
|
|
// we expect to get 2 plans for each, which totals 2 * 2.
|
2019-04-15 17:36:43 +08:00
|
|
|
CheckPlansProduce(4, query, storage, &dba, [&](const auto &results) {
|
2017-06-01 20:23:01 +08:00
|
|
|
// We expect to produce a single row: (v1), (v1), (v2)
|
2019-06-06 19:16:37 +08:00
|
|
|
AssertRows(results, {{TypedValue(v1), TypedValue(v1), TypedValue(v2)}});
|
2017-06-01 20:23:01 +08:00
|
|
|
});
|
|
|
|
}
|
|
|
|
|
2017-08-21 15:41:26 +08:00
|
|
|
TEST(TestVariableStartPlanner, MatchVariableExpand) {
|
2018-10-09 17:09:10 +08:00
|
|
|
database::GraphDb db;
|
2018-07-26 15:08:21 +08:00
|
|
|
auto dba = db.Access();
|
2017-08-21 15:41:26 +08:00
|
|
|
// Graph (v1) -[:r1]-> (v2) -[:r2]-> (v3)
|
2019-04-15 17:36:43 +08:00
|
|
|
auto v1 = dba.InsertVertex();
|
|
|
|
auto v2 = dba.InsertVertex();
|
|
|
|
auto v3 = dba.InsertVertex();
|
|
|
|
auto r1 = dba.InsertEdge(v1, v2, dba.EdgeType("r1"));
|
|
|
|
auto r2 = dba.InsertEdge(v2, v3, dba.EdgeType("r2"));
|
|
|
|
dba.AdvanceCommand();
|
2017-08-21 15:41:26 +08:00
|
|
|
// Test MATCH (n) -[r*]-> (m) RETURN r
|
2018-05-22 22:45:52 +08:00
|
|
|
AstStorage storage;
|
2018-10-18 17:16:32 +08:00
|
|
|
auto edge = EDGE_VARIABLE("r", Type::DEPTH_FIRST, Direction::OUT);
|
2018-10-10 21:19:34 +08:00
|
|
|
auto *query = QUERY(
|
|
|
|
SINGLE_QUERY(MATCH(PATTERN(NODE("n"), edge, NODE("m"))), RETURN("r")));
|
2017-08-21 15:41:26 +08:00
|
|
|
// We expect to get a single column with the following rows:
|
2019-06-06 19:16:37 +08:00
|
|
|
TypedValue r1_list(std::vector<TypedValue>{TypedValue(r1)}); // [r1]
|
|
|
|
TypedValue r2_list(std::vector<TypedValue>{TypedValue(r2)}); // [r2]
|
|
|
|
// [r1, r2]
|
|
|
|
TypedValue r1_r2_list(
|
|
|
|
std::vector<TypedValue>{TypedValue(r1), TypedValue(r2)});
|
2019-04-15 17:36:43 +08:00
|
|
|
CheckPlansProduce(2, query, storage, &dba, [&](const auto &results) {
|
2017-08-21 15:41:26 +08:00
|
|
|
AssertRows(results, {{r1_list}, {r2_list}, {r1_r2_list}});
|
|
|
|
});
|
|
|
|
}
|
|
|
|
|
2017-08-22 22:24:40 +08:00
|
|
|
TEST(TestVariableStartPlanner, MatchVariableExpandReferenceNode) {
|
2018-10-09 17:09:10 +08:00
|
|
|
database::GraphDb db;
|
2019-04-15 17:36:43 +08:00
|
|
|
auto dba = db.Access();
|
2017-10-30 17:43:25 +08:00
|
|
|
auto id = dba.Property("id");
|
2017-08-22 22:24:40 +08:00
|
|
|
// Graph (v1 {id:1}) -[:r1]-> (v2 {id: 2}) -[:r2]-> (v3 {id: 3})
|
2017-10-30 17:43:25 +08:00
|
|
|
auto v1 = dba.InsertVertex();
|
2019-08-28 19:10:27 +08:00
|
|
|
v1.PropsSet(id, PropertyValue(1));
|
2017-10-30 17:43:25 +08:00
|
|
|
auto v2 = dba.InsertVertex();
|
2019-08-28 19:10:27 +08:00
|
|
|
v2.PropsSet(id, PropertyValue(2));
|
2017-10-30 17:43:25 +08:00
|
|
|
auto v3 = dba.InsertVertex();
|
2019-08-28 19:10:27 +08:00
|
|
|
v3.PropsSet(id, PropertyValue(3));
|
2017-10-30 17:43:25 +08:00
|
|
|
auto r1 = dba.InsertEdge(v1, v2, dba.EdgeType("r1"));
|
|
|
|
auto r2 = dba.InsertEdge(v2, v3, dba.EdgeType("r2"));
|
|
|
|
dba.AdvanceCommand();
|
2017-08-22 22:24:40 +08:00
|
|
|
// Test MATCH (n) -[r*..n.id]-> (m) RETURN r
|
2018-05-22 22:45:52 +08:00
|
|
|
AstStorage storage;
|
2018-10-18 17:16:32 +08:00
|
|
|
auto edge = EDGE_VARIABLE("r", Type::DEPTH_FIRST, Direction::OUT);
|
2017-08-22 22:24:40 +08:00
|
|
|
edge->upper_bound_ = PROPERTY_LOOKUP("n", id);
|
2018-10-10 21:19:34 +08:00
|
|
|
auto *query = QUERY(
|
|
|
|
SINGLE_QUERY(MATCH(PATTERN(NODE("n"), edge, NODE("m"))), RETURN("r")));
|
2017-08-22 22:24:40 +08:00
|
|
|
// We expect to get a single column with the following rows:
|
2019-06-06 19:16:37 +08:00
|
|
|
// [r1] (v1 -[*..1]-> v2)
|
|
|
|
TypedValue r1_list(std::vector<TypedValue>{TypedValue(r1)});
|
|
|
|
// [r2] (v2 -[*..2]-> v3)
|
|
|
|
TypedValue r2_list(std::vector<TypedValue>{TypedValue(r2)});
|
Remove GraphDbAccessor and storage types from Ast
Summary:
This diff removes the need for a database when parsing a query and
creating an Ast. Instead of storing storage::{Label,Property,EdgeType}
in Ast nodes, we store the name and an index into all of the names. This
allows for easy creation of a map from {Label,Property,EdgeType} index
into the concrete storage type. Obviously, this comes with a performance
penalty during execution, but it should be minor. The upside is that the
query/frontend minimally depends on storage (PropertyValue), which makes
writing tests easier as well as running them a lot faster (there is no
database setup). This is most noticeable in the ast_serialization test
which took a long time due to start up of a distributed database.
Reviewers: mtomic, llugovic
Reviewed By: mtomic
Subscribers: mferencevic, pullbot
Differential Revision: https://phabricator.memgraph.io/D1774
2019-01-14 21:41:37 +08:00
|
|
|
CheckPlansProduce(2, query, storage, &dba, [&](const auto &results) {
|
2017-08-22 22:24:40 +08:00
|
|
|
AssertRows(results, {{r1_list}, {r2_list}});
|
|
|
|
});
|
|
|
|
}
|
|
|
|
|
2017-09-04 20:09:24 +08:00
|
|
|
TEST(TestVariableStartPlanner, MatchVariableExpandBoth) {
|
2018-10-09 17:09:10 +08:00
|
|
|
database::GraphDb db;
|
2018-07-26 15:08:21 +08:00
|
|
|
auto dba = db.Access();
|
2019-04-15 17:36:43 +08:00
|
|
|
auto id = dba.Property("id");
|
2017-09-04 20:09:24 +08:00
|
|
|
// Graph (v1 {id:1}) -[:r1]-> (v2) -[:r2]-> (v3)
|
2019-04-15 17:36:43 +08:00
|
|
|
auto v1 = dba.InsertVertex();
|
2019-08-28 19:10:27 +08:00
|
|
|
v1.PropsSet(id, PropertyValue(1));
|
2019-04-15 17:36:43 +08:00
|
|
|
auto v2 = dba.InsertVertex();
|
|
|
|
auto v3 = dba.InsertVertex();
|
|
|
|
auto r1 = dba.InsertEdge(v1, v2, dba.EdgeType("r1"));
|
|
|
|
auto r2 = dba.InsertEdge(v2, v3, dba.EdgeType("r2"));
|
|
|
|
dba.AdvanceCommand();
|
2017-09-04 20:09:24 +08:00
|
|
|
// Test MATCH (n {id:1}) -[r*]- (m) RETURN r
|
2018-05-22 22:45:52 +08:00
|
|
|
AstStorage storage;
|
2018-10-18 17:16:32 +08:00
|
|
|
auto edge = EDGE_VARIABLE("r", Type::DEPTH_FIRST, Direction::BOTH);
|
2017-09-04 20:09:24 +08:00
|
|
|
auto node_n = NODE("n");
|
Remove GraphDbAccessor and storage types from Ast
Summary:
This diff removes the need for a database when parsing a query and
creating an Ast. Instead of storing storage::{Label,Property,EdgeType}
in Ast nodes, we store the name and an index into all of the names. This
allows for easy creation of a map from {Label,Property,EdgeType} index
into the concrete storage type. Obviously, this comes with a performance
penalty during execution, but it should be minor. The upside is that the
query/frontend minimally depends on storage (PropertyValue), which makes
writing tests easier as well as running them a lot faster (there is no
database setup). This is most noticeable in the ast_serialization test
which took a long time due to start up of a distributed database.
Reviewers: mtomic, llugovic
Reviewed By: mtomic
Subscribers: mferencevic, pullbot
Differential Revision: https://phabricator.memgraph.io/D1774
2019-01-14 21:41:37 +08:00
|
|
|
node_n->properties_[storage.GetPropertyIx("id")] = LITERAL(1);
|
2018-10-10 21:19:34 +08:00
|
|
|
auto *query =
|
|
|
|
QUERY(SINGLE_QUERY(MATCH(PATTERN(node_n, edge, NODE("m"))), RETURN("r")));
|
2017-09-04 20:09:24 +08:00
|
|
|
// We expect to get a single column with the following rows:
|
2019-06-06 19:16:37 +08:00
|
|
|
TypedValue r1_list(std::vector<TypedValue>{TypedValue(r1)}); // [r1]
|
|
|
|
// [r1, r2]
|
|
|
|
TypedValue r1_r2_list(
|
|
|
|
std::vector<TypedValue>{TypedValue(r1), TypedValue(r2)});
|
2019-04-15 17:36:43 +08:00
|
|
|
CheckPlansProduce(2, query, storage, &dba, [&](const auto &results) {
|
2017-09-04 20:09:24 +08:00
|
|
|
AssertRows(results, {{r1_list}, {r1_r2_list}});
|
|
|
|
});
|
|
|
|
}
|
|
|
|
|
2017-08-22 22:24:40 +08:00
|
|
|
TEST(TestVariableStartPlanner, MatchBfs) {
|
2018-10-09 17:09:10 +08:00
|
|
|
database::GraphDb db;
|
2019-04-15 17:36:43 +08:00
|
|
|
auto dba = db.Access();
|
2017-10-30 17:43:25 +08:00
|
|
|
auto id = dba.Property("id");
|
2017-08-22 22:24:40 +08:00
|
|
|
// Graph (v1 {id:1}) -[:r1]-> (v2 {id: 2}) -[:r2]-> (v3 {id: 3})
|
2017-10-30 17:43:25 +08:00
|
|
|
auto v1 = dba.InsertVertex();
|
2019-08-28 19:10:27 +08:00
|
|
|
v1.PropsSet(id, PropertyValue(1));
|
2017-10-30 17:43:25 +08:00
|
|
|
auto v2 = dba.InsertVertex();
|
2019-08-28 19:10:27 +08:00
|
|
|
v2.PropsSet(id, PropertyValue(2));
|
2017-10-30 17:43:25 +08:00
|
|
|
auto v3 = dba.InsertVertex();
|
2019-08-28 19:10:27 +08:00
|
|
|
v3.PropsSet(id, PropertyValue(3));
|
2017-10-30 17:43:25 +08:00
|
|
|
auto r1 = dba.InsertEdge(v1, v2, dba.EdgeType("r1"));
|
|
|
|
dba.InsertEdge(v2, v3, dba.EdgeType("r2"));
|
|
|
|
dba.AdvanceCommand();
|
2017-10-05 17:25:52 +08:00
|
|
|
// Test MATCH (n) -[r *bfs..10](r, n | n.id <> 3)]-> (m) RETURN r
|
2018-05-22 22:45:52 +08:00
|
|
|
AstStorage storage;
|
2017-10-05 17:25:52 +08:00
|
|
|
auto *bfs = storage.Create<query::EdgeAtom>(
|
|
|
|
IDENT("r"), EdgeAtom::Type::BREADTH_FIRST, Direction::OUT,
|
Remove GraphDbAccessor and storage types from Ast
Summary:
This diff removes the need for a database when parsing a query and
creating an Ast. Instead of storing storage::{Label,Property,EdgeType}
in Ast nodes, we store the name and an index into all of the names. This
allows for easy creation of a map from {Label,Property,EdgeType} index
into the concrete storage type. Obviously, this comes with a performance
penalty during execution, but it should be minor. The upside is that the
query/frontend minimally depends on storage (PropertyValue), which makes
writing tests easier as well as running them a lot faster (there is no
database setup). This is most noticeable in the ast_serialization test
which took a long time due to start up of a distributed database.
Reviewers: mtomic, llugovic
Reviewed By: mtomic
Subscribers: mferencevic, pullbot
Differential Revision: https://phabricator.memgraph.io/D1774
2019-01-14 21:41:37 +08:00
|
|
|
std::vector<query::EdgeTypeIx>{});
|
2018-02-08 19:57:12 +08:00
|
|
|
bfs->filter_lambda_.inner_edge = IDENT("r");
|
|
|
|
bfs->filter_lambda_.inner_node = IDENT("n");
|
|
|
|
bfs->filter_lambda_.expression = NEQ(PROPERTY_LOOKUP("n", id), LITERAL(3));
|
2017-09-27 20:57:41 +08:00
|
|
|
bfs->upper_bound_ = LITERAL(10);
|
2018-10-10 21:19:34 +08:00
|
|
|
auto *query = QUERY(
|
|
|
|
SINGLE_QUERY(MATCH(PATTERN(NODE("n"), bfs, NODE("m"))), RETURN("r")));
|
2017-08-22 22:24:40 +08:00
|
|
|
// We expect to get a single column with the following rows:
|
2019-06-06 19:16:37 +08:00
|
|
|
TypedValue r1_list(std::vector<TypedValue>{TypedValue(r1)}); // [r1]
|
Remove GraphDbAccessor and storage types from Ast
Summary:
This diff removes the need for a database when parsing a query and
creating an Ast. Instead of storing storage::{Label,Property,EdgeType}
in Ast nodes, we store the name and an index into all of the names. This
allows for easy creation of a map from {Label,Property,EdgeType} index
into the concrete storage type. Obviously, this comes with a performance
penalty during execution, but it should be minor. The upside is that the
query/frontend minimally depends on storage (PropertyValue), which makes
writing tests easier as well as running them a lot faster (there is no
database setup). This is most noticeable in the ast_serialization test
which took a long time due to start up of a distributed database.
Reviewers: mtomic, llugovic
Reviewed By: mtomic
Subscribers: mferencevic, pullbot
Differential Revision: https://phabricator.memgraph.io/D1774
2019-01-14 21:41:37 +08:00
|
|
|
CheckPlansProduce(2, query, storage, &dba, [&](const auto &results) {
|
2017-08-22 22:24:40 +08:00
|
|
|
AssertRows(results, {{r1_list}});
|
|
|
|
});
|
|
|
|
}
|
|
|
|
|
2017-06-01 20:23:01 +08:00
|
|
|
} // namespace
|