memgraph/include/utils/iterator/flat_map.hpp

82 lines
2.1 KiB
C++
Raw Normal View History

2016-08-30 15:53:02 +08:00
#pragma once
#include "utils/iterator/composable.hpp"
#include "utils/iterator/iterator_base.hpp"
2016-08-30 15:53:02 +08:00
namespace iter
{
// Class which maps values returned by I iterator into iterators of type J
// ,which
// return value of type T, with function OP.
// function.
// T - type of return value
// I - iterator type
// J - iterator type returned from OP
// OP - type of mapper function
template <class T, class I, class J, class OP>
class FlatMap : public IteratorBase<T>,
public Composable<T, FlatMap<T, I, J, OP>>
2016-08-30 15:53:02 +08:00
{
public:
FlatMap() = delete;
// FlatMap operation is designed to be used in chained calls which operate
// on a
// iterator. FlatMap will in that usecase receive other iterator by value
// and
// std::move is a optimization for it.
FlatMap(I &&iter, OP &&op) : iter(std::move(iter)), op(std::move(op)) {}
FlatMap(FlatMap &&m)
: iter(std::move(m.iter)), op(std::move(m.op)),
sub_iter(std::move(m.sub_iter))
{
}
~FlatMap() final {}
Option<T> next() final
{
do {
if (!sub_iter.is_present()) {
auto item = iter.next();
if (item.is_present()) {
sub_iter = Option<J>(op(item.take()));
} else {
return Option<T>();
}
}
auto item = sub_iter.get().next();
if (item.is_present()) {
return std::move(item);
} else {
sub_iter.take();
}
} while (true);
}
Count count() final
{
// TODO: Correct count, are at least correcter
return iter.count();
}
private:
I iter;
Option<J> sub_iter;
OP op;
};
template <class I, class OP>
auto make_flat_map(I &&iter, OP &&op)
{
// Compiler cant deduce type T and J. decltype is here to help with it.
return FlatMap<decltype(op(iter.next().take()).next().take()), I,
decltype(op(iter.next().take())), OP>(std::move(iter),
std::move(op));
}
}