memgraph/poc/astar.cpp

385 lines
10 KiB
C++
Raw Normal View History

#include <chrono>
#include <ctime>
#include <fstream>
2016-08-08 16:32:34 +08:00
#include <iostream>
#include <queue>
#include <regex>
#include <sstream>
#include <string>
#include <vector>
#include "data_structures/map/rh_hashmap.hpp"
#include "database/db.hpp"
using namespace std;
void load_graph_dummy(Db &db);
void load_csv(Db &db, char *file_path, char *edge_file_path);
class Node
{
public:
Node *parent = {nullptr};
double cost;
int depth = {0};
Vertex *vertex;
VertexRecord *record;
Node(Vertex *va, VertexRecord *record, double cost)
: cost(cost), vertex(va), record(record)
{
}
Node(Vertex *va, VertexRecord *record, double cost, Node *parent)
: cost(cost), vertex(va), parent(parent), depth(parent->depth + 1),
record(record)
{
}
VertexRecord *&get_key() { return record; }
};
// class Iterator : public Crtp<Iterator>
// {
// public:
// Vertex *operator*()
// {
// assert(head != nullptr);
// return head->vertex;
// }
//
// Vertex *operator->()
// {
// assert(head != nullptr);
// return head->vertex;
// }
//
// Iterator &operator++()
// {
// assert(head != nullptr);
// head = head->parent;
// return this->derived();
// }
//
// Iterator &operator++(int) { return operator++(); }
//
// friend bool operator==(const Iterator &a, const Iterator &b)
// {
// return a.head == b.head;
// }
//
// friend bool operator!=(const Iterator &a, const Iterator &b)
// {
// return !(a == b);
// }
//
// Iterator end() { return Iterator(); }
//
// private:
// Node *head;
// };
void found_result(Node *bef)
{
std::cout << "{score: " << bef->cost << endl;
while (bef != nullptr) {
std::cout << " " << *(bef->vertex) << endl;
bef = bef->parent;
}
}
double calc_heuristic_cost_dummy(Edge *edge, Vertex *vertex)
{
return 1 - vertex->data.props.at("score").as<Double>().value;
}
typedef bool (*EdgeFilter)(tx::Transaction &t, EdgeRecord *, Node *before);
typedef bool (*VertexFilter)(tx::Transaction &t, Vertex *, Node *before);
bool edge_filter_dummy(tx::Transaction &t, EdgeRecord *e, Node *before)
{
return true;
}
bool vertex_filter_dummy(tx::Transaction &t, Vertex *v, Node *before)
{
return true;
}
bool vertex_filter_contained_dummy(tx::Transaction &t, Vertex *v, Node *before)
{
bool found;
do {
found = false;
before = before->parent;
if (before == nullptr) {
return true;
}
for (auto edge : before->vertex->data.out) {
Vertex *e_v = edge->to()->find(t);
if (e_v == v) {
found = true;
break;
}
}
} while (found);
return false;
}
bool vertex_filter_contained(tx::Transaction &t, Vertex *v, Node *before)
{
bool found;
do {
found = false;
before = before->parent;
if (before == nullptr) {
return true;
}
} while (v->data.in.contains(before->record));
return false;
}
// Vertex filter ima max_depth funkcija te edge filter ima max_depth funkcija.
// Jedan za svaku dubinu.
// Filtri vracaju true ako element zadovoljava uvjete.
void a_star(Db &db, int64_t sys_id_start, uint max_depth, EdgeFilter e_filter[],
VertexFilter v_filter[],
double (*calc_heuristic_cost)(Edge *edge, Vertex *vertex),
int limit)
{
auto &t = db.tx_engine.begin();
RhHashMap<VertexRecord *, Node> visited;
auto cmp = [](Node *left, Node *right) { return left->cost > right->cost; };
std::priority_queue<Node *, std::vector<Node *>, decltype(cmp)> queue(cmp);
auto start_vr = db.graph.vertices.find(t, sys_id_start).vlist;
Node *start = new Node(start_vr->find(t), start_vr, 0);
queue.push(start);
int count = 0;
do {
auto now = queue.top();
queue.pop();
// if(!visited.insert(now)){
// continue;
// }
if (max_depth <= now->depth) {
found_result(now);
count++;
if (count >= limit) {
return;
}
continue;
}
for (auto edge : now->vertex->data.out) {
if (e_filter[now->depth](t, edge, now)) {
Vertex *v = edge->to()->find(t);
if (v_filter[now->depth](t, v, now)) {
Node *n = new Node(
v, edge->to(),
now->cost + calc_heuristic_cost(edge->find(t), v), now);
queue.push(n);
}
}
}
} while (!queue.empty());
std::cout << "Found: " << count << " resoults\n";
// TODO: GUBI SE MEMORIJA JER SE NODOVI NEBRISU
t.commit();
}
2016-08-08 16:32:34 +08:00
// class Data
// {
//
// private:
// size_t data = 0;
// int key;
//
// public:
// Data(int key) : key(key) {}
//
// const int &get_key() { return key; }
// };
2016-08-08 16:32:34 +08:00
int main()
{
Db db;
load_csv(db, "neo4j_nodes_export_2000.csv", "neo4j_edges_export_2000.csv");
//
// load_graph_dummy(db);
//
EdgeFilter e_filters[] = {&edge_filter_dummy, &edge_filter_dummy,
&edge_filter_dummy, &edge_filter_dummy};
VertexFilter f_filters[] = {
&vertex_filter_contained, &vertex_filter_contained,
&vertex_filter_contained, &vertex_filter_contained};
auto begin = clock();
a_star(db, 0, 3, e_filters, f_filters, &calc_heuristic_cost_dummy, 10);
clock_t end = clock();
double elapsed_ms = (double(end - begin) / CLOCKS_PER_SEC) * 1000;
std::cout << "A-star: " << elapsed_ms << " [ms]\n";
// RhHashMultiMap benchmark
// const int n_pow2 = 20;
// int n = 1 << n_pow2;
// RhHashMultiMap<int, Data, n_pow2 + 1> map;
// std::srand(time(0));
// auto data = std::vector<Data *>();
// for (int i = 0; i < n; i++) {
// data.push_back(new Data(std::rand()));
// }
//
// begin = clock();
// for (auto e : data) {
// map.add(e);
// }
// end = clock();
// elapsed_ms = (double(end - begin) / CLOCKS_PER_SEC) * 1000;
// std::cout << "Map: " << elapsed_ms << " [ms]\n";
2016-08-08 16:32:34 +08:00
return 0;
}
void split(const string &s, char delim, vector<string> &elems)
{
stringstream ss(s);
string item;
while (getline(ss, item, delim)) {
elems.push_back(item);
}
}
vector<string> split(const string &s, char delim)
{
vector<string> elems;
split(s, delim, elems);
return elems;
}
void load_csv(Db &db, char *file_path, char *edge_file_path)
{
std::fstream file(file_path);
std::fstream e_file(edge_file_path);
std::string line;
auto &t = db.tx_engine.begin();
int max_score = 1000000;
// VERTEX import
int start_vertex_id = -1;
auto v = [&](auto id, auto labels, auto gar_id, auto cat_id) {
if (start_vertex_id < 0) {
start_vertex_id = id;
}
auto vertex_accessor = db.graph.vertices.insert(t);
vertex_accessor.property("id", std::make_shared<Int32>(id));
vertex_accessor.property("garment_id", std::make_shared<Int32>(gar_id));
vertex_accessor.property("garment_category_id",
std::make_shared<Int32>(cat_id));
std::srand(id ^ 0x7482616);
vertex_accessor.property(
"score", std::make_shared<Double>((std::rand() % max_score) /
(max_score + 0.0)));
for (auto l_name : labels) {
auto &label = db.graph.label_store.find_or_create(l_name);
vertex_accessor.add_label(label);
}
return vertex_accessor.id();
};
std::getline(file, line);
vector<Vertex::Accessor> va;
int v_count = 0;
while (std::getline(file, line)) {
v_count++;
line.erase(std::remove(line.begin(), line.end(), '['), line.end());
line.erase(std::remove(line.begin(), line.end(), ']'), line.end());
line.erase(std::remove(line.begin(), line.end(), '\"'), line.end());
line.erase(std::remove(line.begin(), line.end(), ' '), line.end());
auto splited = split(line, ',');
vector<string> labels(splited.begin() + 1,
splited.begin() + splited.size() - 2);
auto id = v(stoi(splited[0]), labels, stoi(splited[splited.size() - 2]),
stoi(splited[splited.size() - 1]));
assert(va.size() == (uint64_t)id);
va.push_back(db.graph.vertices.find(t, id));
}
// EDGE IMPORT
auto e = [&](auto from, auto type, auto to) {
auto v1 = va[from - start_vertex_id];
auto v2 = va[to - start_vertex_id];
auto edge_accessor = db.graph.edges.insert(t, v1.vlist, v2.vlist);
v1.vlist->update(t)->data.out.add(edge_accessor.vlist);
v2.vlist->update(t)->data.in.add(edge_accessor.vlist);
auto &edge_type = db.graph.edge_type_store.find_or_create(type);
edge_accessor.edge_type(edge_type);
};
std::getline(e_file, line);
long count = 0;
while (std::getline(e_file, line)) {
auto splited = split(line, ',');
count++;
e(stoi(splited[2]), splited[1], stoi(splited[3]));
}
cout << "Loaded:\n Vertices: " << v_count << "\n Edges: " << count
<< endl;
t.commit();
}
void load_graph_dummy(Db &db)
{
auto &t = db.tx_engine.begin();
auto v = [&](auto id, auto score) {
auto vertex_accessor = db.graph.vertices.insert(t);
vertex_accessor.property("id", std::make_shared<Int32>(id));
vertex_accessor.property("score", std::make_shared<Double>(score));
return vertex_accessor.id();
};
Id va[] = {
v(0, 0.5), v(1, 1), v(2, 0.3), v(3, 0.15), v(4, 0.8), v(5, 0.8),
};
auto e = [&](auto from, auto type, auto to) {
auto v1 = db.graph.vertices.find(t, va[from]);
auto v2 = db.graph.vertices.find(t, va[to]);
auto edge_accessor = db.graph.edges.insert(t, v1.vlist, v2.vlist);
v1.vlist->update(t)->data.out.add(edge_accessor.vlist);
v2.vlist->update(t)->data.in.add(edge_accessor.vlist);
auto &edge_type = db.graph.edge_type_store.find_or_create(type);
edge_accessor.edge_type(edge_type);
};
e(0, "ok", 3);
e(0, "ok", 2);
e(0, "ok", 4);
e(1, "ok", 3);
e(2, "ok", 1);
e(2, "ok", 4);
e(3, "ok", 4);
e(3, "ok", 5);
e(4, "ok", 0);
e(4, "ok", 1);
e(5, "ok", 2);
t.commit();
}