memgraph/src/memgraph_bolt.cpp

486 lines
17 KiB
C++
Raw Normal View History

#include <algorithm>
#include <chrono>
#include <csignal>
#include <cstdint>
#include <exception>
#include <functional>
#include <limits>
#include <string>
#include <thread>
#include <gflags/gflags.h>
#include <glog/logging.h>
#include "auth/auth.hpp"
#include "communication/bolt/v1/session.hpp"
#include "config.hpp"
Split GraphDb to distributed and single node files Summary: This change, hopefully, simplifies the implementation of different kinds of GraphDb. The pimpl idiom is now simplified by removing all of the crazy inheritance. Implementations classes are just plain data stores, without any methods. The interface classes now have a more flat hierarchy: ``` GraphDb (pure interface) | +----+---------- DistributedGraphDb (pure interface) | | Single Node +-----+------+ | | Master Worker ``` DistributedGraphDb is used as an intermediate interface for all the things that should work only in distributed. Therefore, virtual calls for distributed stuff have been removed from GraphDb. Some are exposed via DistributedGraphDb, other's are only in concrete Master and Worker classes. The code which relied on those virtual calls has been refactored to either use DistributedGraphDb, take a pointer to what is actually needed or use dynamic_cast. Obviously, dynamic_cast is a temporary solution and should be replaced with another mechanism (e.g. virtual call, or some other function pointer style). The cost of the above change is some code duplication in constructors and destructors of classes. This duplication has a lot of little tweaks that make it hard to generalize, not to mention that virtual calls do not work in constructor and destructor. If we really care about generalizing this, we should think about abandoning RAII in favor of constructor + Init method. The next steps for splitting the dependencies that seem logical are: 1) Split GraphDbAccessor implementation, either via inheritance or passing in an implementation pointer. GraphDbAccessor should then only be created by a virtual call on GraphDb. 2) Split Interpreter implementation. Besides allowing single node interpreter to exist without depending on distributed, this will enable the planner and operators to be correctly separated. Reviewers: msantl, mferencevic, ipaljak Reviewed By: msantl Subscribers: dgleich, pullbot Differential Revision: https://phabricator.memgraph.io/D1493
2018-07-19 23:00:50 +08:00
#include "database/distributed_graph_db.hpp"
#include "database/graph_db.hpp"
#include "distributed/pull_rpc_clients.hpp"
#include "glue/auth.hpp"
#include "glue/communication.hpp"
#include "integrations/kafka/exceptions.hpp"
#include "integrations/kafka/streams.hpp"
#include "query/exceptions.hpp"
#include "query/interpreter.hpp"
#include "query/transaction_engine.hpp"
#include "requests/requests.hpp"
#include "stats/stats.hpp"
#include "telemetry/telemetry.hpp"
#include "utils/flag_validation.hpp"
#include "utils/signals.hpp"
#include "utils/sysinfo/memory.hpp"
2017-01-13 17:47:17 +08:00
#include "utils/terminate_handler.hpp"
#include "version.hpp"
// Common stuff for enterprise and community editions
// General purpose flags.
DEFINE_string(interface, "0.0.0.0",
"Communication interface on which to listen.");
DEFINE_VALIDATED_int32(port, 7687, "Communication port on which to listen.",
FLAG_IN_RANGE(0, std::numeric_limits<uint16_t>::max()));
DEFINE_VALIDATED_int32(num_workers,
std::max(std::thread::hardware_concurrency(), 1U),
"Number of workers (Bolt)", FLAG_IN_RANGE(1, INT32_MAX));
DEFINE_VALIDATED_int32(session_inactivity_timeout, 1800,
"Time in seconds after which inactive sessions will be "
"closed.",
FLAG_IN_RANGE(1, INT32_MAX));
DEFINE_string(cert_file, "", "Certificate file to use.");
DEFINE_string(key_file, "", "Key file to use.");
DEFINE_string(log_file, "", "Path to where the log should be stored.");
DEFINE_HIDDEN_string(
log_link_basename, "",
"Basename used for symlink creation to the last log file.");
DEFINE_uint64(memory_warning_threshold, 1024,
"Memory warning threshold, in MB. If Memgraph detects there is "
"less available RAM it will log a warning. Set to 0 to "
"disable.");
DEFINE_bool(telemetry_enabled, false,
"Set to true to enable telemetry. We collect information about the "
"running system (CPU and memory information) and information about "
"the database runtime (vertex and edge counts and resource usage) "
"to allow for easier improvement of the product.");
DECLARE_string(durability_directory);
/** Encapsulates Dbms and Interpreter that are passed through the network server
* and worker to the session. */
struct SessionData {
Split GraphDb to distributed and single node files Summary: This change, hopefully, simplifies the implementation of different kinds of GraphDb. The pimpl idiom is now simplified by removing all of the crazy inheritance. Implementations classes are just plain data stores, without any methods. The interface classes now have a more flat hierarchy: ``` GraphDb (pure interface) | +----+---------- DistributedGraphDb (pure interface) | | Single Node +-----+------+ | | Master Worker ``` DistributedGraphDb is used as an intermediate interface for all the things that should work only in distributed. Therefore, virtual calls for distributed stuff have been removed from GraphDb. Some are exposed via DistributedGraphDb, other's are only in concrete Master and Worker classes. The code which relied on those virtual calls has been refactored to either use DistributedGraphDb, take a pointer to what is actually needed or use dynamic_cast. Obviously, dynamic_cast is a temporary solution and should be replaced with another mechanism (e.g. virtual call, or some other function pointer style). The cost of the above change is some code duplication in constructors and destructors of classes. This duplication has a lot of little tweaks that make it hard to generalize, not to mention that virtual calls do not work in constructor and destructor. If we really care about generalizing this, we should think about abandoning RAII in favor of constructor + Init method. The next steps for splitting the dependencies that seem logical are: 1) Split GraphDbAccessor implementation, either via inheritance or passing in an implementation pointer. GraphDbAccessor should then only be created by a virtual call on GraphDb. 2) Split Interpreter implementation. Besides allowing single node interpreter to exist without depending on distributed, this will enable the planner and operators to be correctly separated. Reviewers: msantl, mferencevic, ipaljak Reviewed By: msantl Subscribers: dgleich, pullbot Differential Revision: https://phabricator.memgraph.io/D1493
2018-07-19 23:00:50 +08:00
database::GraphDb &db;
query::Interpreter interpreter{db};
auth::Auth auth{
std::experimental::filesystem::path(FLAGS_durability_directory) / "auth"};
};
class BoltSession final
: public communication::bolt::Session<communication::InputStream,
communication::OutputStream> {
public:
BoltSession(SessionData &data, communication::InputStream &input_stream,
communication::OutputStream &output_stream)
: communication::bolt::Session<communication::InputStream,
communication::OutputStream>(
input_stream, output_stream),
transaction_engine_(data.db, data.interpreter),
auth_(&data.auth) {}
using communication::bolt::Session<communication::InputStream,
communication::OutputStream>::TEncoder;
std::vector<std::string> Interpret(
const std::string &query,
const std::map<std::string, communication::bolt::Value> &params)
override {
std::map<std::string, query::TypedValue> params_tv;
for (const auto &kv : params)
params_tv.emplace(kv.first, glue::ToTypedValue(kv.second));
try {
auto result = transaction_engine_.Interpret(query, params_tv);
if (user_) {
const auto &permissions = user_->GetPermissions();
for (const auto &privilege : result.second) {
if (permissions.Has(glue::PrivilegeToPermission(privilege)) !=
auth::PermissionLevel::GRANT) {
transaction_engine_.Abort();
throw communication::bolt::ClientError(
"You are not authorized to execute this query! Please contact "
"your database administrator.");
}
}
}
return result.first;
} catch (const query::QueryException &e) {
// Wrap QueryException into ClientError, because we want to allow the
// client to fix their query.
throw communication::bolt::ClientError(e.what());
}
}
std::map<std::string, communication::bolt::Value> PullAll(
TEncoder *encoder) override {
try {
TypedValueResultStream stream(encoder);
const auto &summary = transaction_engine_.PullAll(&stream);
std::map<std::string, communication::bolt::Value> decoded_summary;
for (const auto &kv : summary) {
decoded_summary.emplace(kv.first, glue::ToBoltValue(kv.second));
}
return decoded_summary;
} catch (const query::QueryException &e) {
// Wrap QueryException into ClientError, because we want to allow the
// client to fix their query.
throw communication::bolt::ClientError(e.what());
}
}
void Abort() override { transaction_engine_.Abort(); }
bool Authenticate(const std::string &username,
const std::string &password) override {
if (!auth_->HasUsers()) return true;
user_ = auth_->Authenticate(username, password);
return !!user_;
}
private:
// Wrapper around TEncoder which converts TypedValue to Value
// before forwarding the calls to original TEncoder.
class TypedValueResultStream {
public:
TypedValueResultStream(TEncoder *encoder) : encoder_(encoder) {}
void Result(const std::vector<query::TypedValue> &values) {
std::vector<communication::bolt::Value> decoded_values;
decoded_values.reserve(values.size());
for (const auto &v : values) {
decoded_values.push_back(glue::ToBoltValue(v));
}
encoder_->MessageRecord(decoded_values);
}
private:
TEncoder *encoder_;
};
query::TransactionEngine transaction_engine_;
auth::Auth *auth_;
std::experimental::optional<auth::User> user_;
};
using ServerT = communication::Server<BoltSession, SessionData>;
using communication::ServerContext;
/**
* Class that implements ResultStream API for Kafka.
*
* Kafka doesn't need to stream the import results back to the client so we
* don't need any functionality here.
*/
class KafkaResultStream {
public:
void Result(const std::vector<query::TypedValue> &) {}
};
// Needed to correctly handle memgraph destruction from a signal handler.
// Without having some sort of a flag, it is possible that a signal is handled
// when we are exiting main, inside destructors of database::GraphDb and
// similar. The signal handler may then initiate another shutdown on memgraph
// which is in half destructed state, causing invalid memory access and crash.
volatile sig_atomic_t is_shutting_down = 0;
/// Set up signal handlers and register `shutdown` on SIGTERM and SIGINT.
/// In most cases you don't have to call this. If you are using a custom server
/// startup function for `WithInit`, then you probably need to use this to
/// shutdown your server.
void InitSignalHandlers(const std::function<void()> &shutdown_fun) {
// Prevent handling shutdown inside a shutdown. For example, SIGINT handler
// being interrupted by SIGTERM before is_shutting_down is set, thus causing
// double shutdown.
sigset_t block_shutdown_signals;
sigemptyset(&block_shutdown_signals);
sigaddset(&block_shutdown_signals, SIGTERM);
sigaddset(&block_shutdown_signals, SIGINT);
// Wrap the shutdown function in a safe way to prevent recursive shutdown.
auto shutdown = [shutdown_fun]() {
if (is_shutting_down) return;
is_shutting_down = 1;
shutdown_fun();
};
CHECK(utils::SignalHandler::RegisterHandler(utils::Signal::Terminate,
shutdown, block_shutdown_signals))
<< "Unable to register SIGTERM handler!";
CHECK(utils::SignalHandler::RegisterHandler(utils::Signal::Interupt, shutdown,
block_shutdown_signals))
<< "Unable to register SIGINT handler!";
// Setup SIGUSR1 to be used for reopening log files, when e.g. logrotate
// rotates our logs.
CHECK(utils::SignalHandler::RegisterHandler(utils::Signal::User1, []() {
google::CloseLogDestination(google::INFO);
})) << "Unable to register SIGUSR1 handler!";
}
/// Run the Memgraph server.
///
/// Sets up all the required state before running `memgraph_main` and does any
/// required cleanup afterwards. `get_stats_prefix` is used to obtain the
/// prefix when logging Memgraph's statistics.
///
/// Command line arguments and configuration files are read before calling any
/// of the supplied functions. Therefore, you should use flags only from those
/// functions, and *not before* invoking `WithInit`.
///
/// This should be the first and last thing a OS specific main function does.
///
/// A common example of usage is:
///
/// @code
/// int main(int argc, char *argv[]) {
/// auto get_stats_prefix = []() -> std::string { return "memgraph"; };
/// return WithInit(argc, argv, get_stats_prefix, SingleNodeMain);
/// }
/// @endcode
///
/// If you wish to start Memgraph server in another way, you can pass a
/// `memgraph_main` functions which does that. You should take care to call
/// `InitSignalHandlers` with appropriate function to shutdown the server you
/// started.
int WithInit(int argc, char **argv,
const std::function<std::string()> &get_stats_prefix,
const std::function<void()> &memgraph_main) {
gflags::SetVersionString(version_string);
// Load config before parsing arguments, so that flags from the command line
// overwrite the config.
LoadConfig();
gflags::ParseCommandLineFlags(&argc, &argv, true);
google::InitGoogleLogging(argv[0]);
google::SetLogDestination(google::INFO, FLAGS_log_file.c_str());
google::SetLogSymlink(google::INFO, FLAGS_log_link_basename.c_str());
// Unhandled exception handler init.
std::set_terminate(&utils::TerminateHandler);
stats::InitStatsLogging(get_stats_prefix());
utils::OnScopeExit stop_stats([] { stats::StopStatsLogging(); });
// Initialize the communication library.
communication::Init();
// Start memory warning logger.
utils::Scheduler mem_log_scheduler;
if (FLAGS_memory_warning_threshold > 0) {
auto free_ram = utils::sysinfo::AvailableMemoryKilobytes();
if (free_ram) {
mem_log_scheduler.Run("Memory warning", std::chrono::seconds(3), [] {
auto free_ram = utils::sysinfo::AvailableMemoryKilobytes();
if (free_ram && *free_ram / 1024 < FLAGS_memory_warning_threshold)
LOG(WARNING) << "Running out of available RAM, only "
<< *free_ram / 1024 << " MB left.";
});
} else {
// Kernel version for the `MemAvailable` value is from: man procfs
LOG(WARNING) << "You have an older kernel version (<3.14) or the /proc "
"filesystem isn't available so remaining memory warnings "
"won't be available.";
}
}
requests::Init();
memgraph_main();
return 0;
}
void SingleNodeMain() {
google::SetUsageMessage("Memgraph single-node database server");
database::SingleNode db;
SessionData session_data{db};
auto stream_writer =
[&session_data](
const std::string &query,
const std::map<std::string, communication::bolt::Value> &params) {
auto dba = session_data.db.Access();
KafkaResultStream stream;
std::map<std::string, query::TypedValue> params_tv;
for (const auto &kv : params)
params_tv.emplace(kv.first, glue::ToTypedValue(kv.second));
try {
session_data.interpreter(query, *dba, params_tv, false)
.PullAll(stream);
dba->Commit();
} catch (const query::QueryException &e) {
LOG(WARNING) << "[Kafka] query execution failed with an exception: "
<< e.what();
dba->Abort();
}
};
integrations::kafka::Streams kafka_streams{
std::experimental::filesystem::path(FLAGS_durability_directory) /
"streams",
stream_writer};
try {
// Recover possible streams.
kafka_streams.Recover();
} catch (const integrations::kafka::KafkaStreamException &e) {
LOG(ERROR) << e.what();
}
session_data.interpreter.auth_ = &session_data.auth;
session_data.interpreter.kafka_streams_ = &kafka_streams;
ServerContext context;
std::string service_name = "Bolt";
if (FLAGS_key_file != "" && FLAGS_cert_file != "") {
context = ServerContext(FLAGS_key_file, FLAGS_cert_file);
service_name = "BoltS";
}
ServerT server({FLAGS_interface, static_cast<uint16_t>(FLAGS_port)},
session_data, &context, FLAGS_session_inactivity_timeout,
service_name, FLAGS_num_workers);
// Setup telemetry
std::experimental::optional<telemetry::Telemetry> telemetry;
if (FLAGS_telemetry_enabled) {
telemetry.emplace(
"https://telemetry.memgraph.com/88b5e7e8-746a-11e8-9f85-538a9e9690cc/",
std::experimental::filesystem::path(FLAGS_durability_directory) /
"telemetry",
std::chrono::minutes(10));
telemetry->AddCollector("db", [&db]() -> nlohmann::json {
auto dba = db.Access();
return {{"vertices", dba->VerticesCount()}, {"edges", dba->EdgesCount()}};
});
}
// Handler for regular termination signals
auto shutdown = [&server] {
// Server needs to be shutdown first and then the database. This prevents a
// race condition when a transaction is accepted during server shutdown.
server.Shutdown();
};
InitSignalHandlers(shutdown);
server.AwaitShutdown();
}
// End common stuff for enterprise and community editions
#ifdef MG_COMMUNITY
int main(int argc, char **argv) {
return WithInit(argc, argv, []() { return "memgraph"; }, SingleNodeMain);
}
#else // enterprise edition
// Distributed flags.
DEFINE_HIDDEN_bool(
master, false,
"If this Memgraph server is the master in a distributed deployment.");
DEFINE_HIDDEN_bool(
worker, false,
"If this Memgraph server is a worker in a distributed deployment.");
DECLARE_int32(worker_id);
void MasterMain() {
google::SetUsageMessage("Memgraph distributed master");
database::Master db;
SessionData session_data{db};
auto stream_writer =
[&session_data](
const std::string &query,
const std::map<std::string, communication::bolt::Value> &params) {
auto dba = session_data.db.Access();
KafkaResultStream stream;
std::map<std::string, query::TypedValue> params_tv;
for (const auto &kv : params)
params_tv.emplace(kv.first, glue::ToTypedValue(kv.second));
try {
session_data.interpreter(query, *dba, params_tv, false)
.PullAll(stream);
dba->Commit();
} catch (const query::QueryException &e) {
LOG(WARNING) << "[Kafka] query execution failed with an exception: "
<< e.what();
dba->Abort();
}
};
integrations::kafka::Streams kafka_streams{
std::experimental::filesystem::path(FLAGS_durability_directory) /
"streams",
stream_writer};
try {
// Recover possible streams.
kafka_streams.Recover();
} catch (const integrations::kafka::KafkaStreamException &e) {
LOG(ERROR) << e.what();
}
session_data.interpreter.kafka_streams_ = &kafka_streams;
ServerContext context;
std::string service_name = "Bolt";
if (FLAGS_key_file != "" && FLAGS_cert_file != "") {
context = ServerContext(FLAGS_key_file, FLAGS_cert_file);
service_name = "BoltS";
}
ServerT server({FLAGS_interface, static_cast<uint16_t>(FLAGS_port)},
session_data, &context, FLAGS_session_inactivity_timeout,
service_name, FLAGS_num_workers);
// Handler for regular termination signals
auto shutdown = [&server] {
// Server needs to be shutdown first and then the database. This prevents a
// race condition when a transaction is accepted during server shutdown.
server.Shutdown();
};
InitSignalHandlers(shutdown);
server.AwaitShutdown();
}
void WorkerMain() {
google::SetUsageMessage("Memgraph distributed worker");
database::Worker db;
db.WaitForShutdown();
}
int main(int argc, char **argv) {
auto get_stats_prefix = [&]() -> std::string {
if (FLAGS_master) {
return "master";
} else if (FLAGS_worker) {
return fmt::format("worker-{}", FLAGS_worker_id);
}
return "memgraph";
};
auto memgraph_main = [&]() {
CHECK(!(FLAGS_master && FLAGS_worker))
<< "Can't run Memgraph as worker and master at the same time";
if (FLAGS_master)
MasterMain();
else if (FLAGS_worker)
WorkerMain();
else
SingleNodeMain();
};
return WithInit(argc, argv, get_stats_prefix, memgraph_main);
}
#endif // enterprise edition