memgraph/tools/plot_gbench_json

129 lines
4.1 KiB
Plaintext
Raw Normal View History

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
A tool for plotting Google benchmark results using matplotlib. Requires
Python3, matplotlib and gbench data in JSON format.
Does a few nice things for you:
1. Can be used with file input (cmd line arg) or reading from stdin
2. Groups benchmarks into multiple plots based on benchmark name.
This is currently implemented to work well with template based
benchmarks, it might required mods.
3. Automatically detects the need for log-scale on both axes.
Missing features:
1. Proper support for benchmarks that use two arguments.
2. Proper handling for all types of benchmark structures, name parsing
in this implementation is made for template-based benches.
3. Plotting to image files. This implementation plots to the GUI (you can
save images there).
Usage:
# Generate benchmark data in json format using:
> ./my_bench --benchmark_out_format=json --benchmark_out=data.json
# Use that data with plotter:
> ./plot_bench_json data.json
Alternatively you can route stuff and avoid using an intermediary file:
sh > ./my_bench --benchmark_out_format=json --benchmark_out=/dev/stderr 2>&1 >/dev/null | grep "^[{} ]" | plot_gbench_json
Maybe there is a nicer way to route it?
"""
import re
import fileinput
import json
from collections import defaultdict
from matplotlib import pyplot as plt
def convert_num(string):
"""
Converts stuff like "100" and "3k" to numbers.
"""
suffix_re = re.search("\D+$", string)
if not suffix_re:
return float(string)
suffix = string[suffix_re.start():]
number = float(string[:suffix_re.start()])
if suffix == "k":
number *= 1000
else:
raise ValueError("Unknown number suffix: " + suffix)
return number
def is_exponential_growth(numbers):
"""
Tries to determine if the given numbers progress more in logarithmic then
in linear fashion. Assumes numbers increase monotonically.
"""
diffs = [n2 - n1 for (n1, n2) in zip(numbers, numbers[1:])]
factors = [n2 / n1 for (n1, n2) in zip(numbers, numbers[1:])]
# constant diff implies linear increase, constant factor implies exp
# which is more constant?
diff_rms = [(d - (sum(diffs) / len(diffs))) ** 2 for d in diffs]
factor_rms = [(f - (sum(factors) / len(factors))) ** 2 for f in factors]
return sum(factor_rms) < sum(diff_rms)
def main():
data = json.loads("".join(fileinput.input()).strip())
# structure: {bench_name: [(x, y, time_unit), ...]
benchmarks = defaultdict(list)
for bench in data["benchmarks"]:
name, x = bench["name"].rsplit("/", 1)
benchmarks[name].append((convert_num(x), bench["real_time"],
bench["time_unit"]))
# group benchmarks on name prefix
# one group will be one plot with possibly multiple lines
benchmarks_groups = defaultdict(dict)
for name, data in benchmarks.items():
name_split = re.split("\W", name, 1)
if len(name_split) == 2:
group, element = name_split
benchmarks_groups[group][element] = data
else:
benchmarks_groups["__all_benchmarks__"][name] = data
# validate all the time units per group (one plot)
for measurements in benchmarks_groups.values():
units = set()
for measurement in measurements.values():
units.update(k[2] for k in measurement)
if len(units) > 1:
raise ValueError(
"Multiple time units in a single plot: %r" % units)
# plot all groups
for group_name, measurements in benchmarks_groups.items():
plt.figure()
log_x, log_y = False, False
for line, values in measurements.items():
x, y, _ = zip(*values)
log_x |= is_exponential_growth(x)
log_y |= is_exponential_growth(y)
plt.plot(x, y, label=line)
if log_x:
plt.xscale("log")
if log_y:
plt.yscale("log")
plt.title(group_name)
plt.legend()
plt.grid()
plt.show()
if __name__ == "__main__":
main()