mirror of
https://github.com/mirror/wget.git
synced 2025-01-10 04:10:50 +08:00
2042 lines
58 KiB
C
2042 lines
58 KiB
C
/* Various utility functions.
|
||
Copyright (C) 2005 Free Software Foundation, Inc.
|
||
|
||
This file is part of GNU Wget.
|
||
|
||
GNU Wget is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
GNU Wget is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with Wget; if not, write to the Free Software
|
||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
||
|
||
In addition, as a special exception, the Free Software Foundation
|
||
gives permission to link the code of its release of Wget with the
|
||
OpenSSL project's "OpenSSL" library (or with modified versions of it
|
||
that use the same license as the "OpenSSL" library), and distribute
|
||
the linked executables. You must obey the GNU General Public License
|
||
in all respects for all of the code used other than "OpenSSL". If you
|
||
modify this file, you may extend this exception to your version of the
|
||
file, but you are not obligated to do so. If you do not wish to do
|
||
so, delete this exception statement from your version. */
|
||
|
||
#include <config.h>
|
||
|
||
#include <stdio.h>
|
||
#include <stdlib.h>
|
||
#include <string.h>
|
||
#include <time.h>
|
||
#ifdef HAVE_SYS_TIME_H
|
||
# include <sys/time.h>
|
||
#endif
|
||
#ifdef HAVE_UNISTD_H
|
||
# include <unistd.h>
|
||
#endif
|
||
#ifdef HAVE_MMAP
|
||
# include <sys/mman.h>
|
||
#endif
|
||
#ifdef HAVE_PWD_H
|
||
# include <pwd.h>
|
||
#endif
|
||
#ifdef HAVE_UTIME_H
|
||
# include <utime.h>
|
||
#endif
|
||
#ifdef HAVE_SYS_UTIME_H
|
||
# include <sys/utime.h>
|
||
#endif
|
||
#include <errno.h>
|
||
#ifdef NeXT
|
||
# include <libc.h> /* for access() */
|
||
#endif
|
||
#include <fcntl.h>
|
||
#include <assert.h>
|
||
#include <stdarg.h>
|
||
#ifdef HAVE_LOCALE_H
|
||
# include <locale.h>
|
||
#endif
|
||
|
||
/* For TIOCGWINSZ and friends: */
|
||
#ifdef HAVE_SYS_IOCTL_H
|
||
# include <sys/ioctl.h>
|
||
#endif
|
||
#ifdef HAVE_TERMIOS_H
|
||
# include <termios.h>
|
||
#endif
|
||
|
||
/* Needed for run_with_timeout. */
|
||
#include <signal.h>
|
||
#ifdef HAVE_SETJMP_H
|
||
# include <setjmp.h>
|
||
#endif
|
||
|
||
#ifndef HAVE_SIGSETJMP
|
||
/* If sigsetjmp is a macro, configure won't pick it up. */
|
||
# ifdef sigsetjmp
|
||
# define HAVE_SIGSETJMP
|
||
# endif
|
||
#endif
|
||
|
||
#undef USE_SIGNAL_TIMEOUT
|
||
#if defined(HAVE_SIGSETJMP) || defined(HAVE_SIGBLOCK)
|
||
# define USE_SIGNAL_TIMEOUT
|
||
#endif
|
||
|
||
#include "wget.h"
|
||
#include "utils.h"
|
||
#include "hash.h"
|
||
|
||
/* Utility function: like xstrdup(), but also lowercases S. */
|
||
|
||
char *
|
||
xstrdup_lower (const char *s)
|
||
{
|
||
char *copy = xstrdup (s);
|
||
char *p = copy;
|
||
for (; *p; p++)
|
||
*p = TOLOWER (*p);
|
||
return copy;
|
||
}
|
||
|
||
/* Copy the string formed by two pointers (one on the beginning, other
|
||
on the char after the last char) to a new, malloc-ed location.
|
||
0-terminate it. */
|
||
char *
|
||
strdupdelim (const char *beg, const char *end)
|
||
{
|
||
char *res = xmalloc (end - beg + 1);
|
||
memcpy (res, beg, end - beg);
|
||
res[end - beg] = '\0';
|
||
return res;
|
||
}
|
||
|
||
/* Parse a string containing comma-separated elements, and return a
|
||
vector of char pointers with the elements. Spaces following the
|
||
commas are ignored. */
|
||
char **
|
||
sepstring (const char *s)
|
||
{
|
||
char **res;
|
||
const char *p;
|
||
int i = 0;
|
||
|
||
if (!s || !*s)
|
||
return NULL;
|
||
res = NULL;
|
||
p = s;
|
||
while (*s)
|
||
{
|
||
if (*s == ',')
|
||
{
|
||
res = xrealloc (res, (i + 2) * sizeof (char *));
|
||
res[i] = strdupdelim (p, s);
|
||
res[++i] = NULL;
|
||
++s;
|
||
/* Skip the blanks following the ','. */
|
||
while (ISSPACE (*s))
|
||
++s;
|
||
p = s;
|
||
}
|
||
else
|
||
++s;
|
||
}
|
||
res = xrealloc (res, (i + 2) * sizeof (char *));
|
||
res[i] = strdupdelim (p, s);
|
||
res[i + 1] = NULL;
|
||
return res;
|
||
}
|
||
|
||
/* Like sprintf, but allocates a string of sufficient size with malloc
|
||
and returns it. GNU libc has a similar function named asprintf,
|
||
which requires the pointer to the string to be passed. */
|
||
|
||
char *
|
||
aprintf (const char *fmt, ...)
|
||
{
|
||
/* This function is implemented using vsnprintf, which we provide
|
||
for the systems that don't have it. Therefore, it should be 100%
|
||
portable. */
|
||
|
||
int size = 32;
|
||
char *str = xmalloc (size);
|
||
|
||
while (1)
|
||
{
|
||
int n;
|
||
va_list args;
|
||
|
||
/* See log_vprintf_internal for explanation why it's OK to rely
|
||
on the return value of vsnprintf. */
|
||
|
||
va_start (args, fmt);
|
||
n = vsnprintf (str, size, fmt, args);
|
||
va_end (args);
|
||
|
||
/* If the printing worked, return the string. */
|
||
if (n > -1 && n < size)
|
||
return str;
|
||
|
||
/* Else try again with a larger buffer. */
|
||
if (n > -1) /* C99 */
|
||
size = n + 1; /* precisely what is needed */
|
||
else
|
||
size <<= 1; /* twice the old size */
|
||
str = xrealloc (str, size);
|
||
}
|
||
}
|
||
|
||
/* Concatenate the NULL-terminated list of string arguments into
|
||
freshly allocated space. */
|
||
|
||
char *
|
||
concat_strings (const char *str0, ...)
|
||
{
|
||
va_list args;
|
||
int saved_lengths[5]; /* inspired by Apache's apr_pstrcat */
|
||
char *ret, *p;
|
||
|
||
const char *next_str;
|
||
int total_length = 0;
|
||
int argcount;
|
||
|
||
/* Calculate the length of and allocate the resulting string. */
|
||
|
||
argcount = 0;
|
||
va_start (args, str0);
|
||
for (next_str = str0; next_str != NULL; next_str = va_arg (args, char *))
|
||
{
|
||
int len = strlen (next_str);
|
||
if (argcount < countof (saved_lengths))
|
||
saved_lengths[argcount++] = len;
|
||
total_length += len;
|
||
}
|
||
va_end (args);
|
||
p = ret = xmalloc (total_length + 1);
|
||
|
||
/* Copy the strings into the allocated space. */
|
||
|
||
argcount = 0;
|
||
va_start (args, str0);
|
||
for (next_str = str0; next_str != NULL; next_str = va_arg (args, char *))
|
||
{
|
||
int len;
|
||
if (argcount < countof (saved_lengths))
|
||
len = saved_lengths[argcount++];
|
||
else
|
||
len = strlen (next_str);
|
||
memcpy (p, next_str, len);
|
||
p += len;
|
||
}
|
||
va_end (args);
|
||
*p = '\0';
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Return pointer to a static char[] buffer in which zero-terminated
|
||
string-representation of TM (in form hh:mm:ss) is printed.
|
||
|
||
If TM is NULL, the current time will be used. */
|
||
|
||
char *
|
||
time_str (time_t *tm)
|
||
{
|
||
static char output[15];
|
||
struct tm *ptm;
|
||
time_t secs = tm ? *tm : time (NULL);
|
||
|
||
if (secs == -1)
|
||
{
|
||
/* In case of error, return the empty string. Maybe we should
|
||
just abort if this happens? */
|
||
*output = '\0';
|
||
return output;
|
||
}
|
||
ptm = localtime (&secs);
|
||
sprintf (output, "%02d:%02d:%02d", ptm->tm_hour, ptm->tm_min, ptm->tm_sec);
|
||
return output;
|
||
}
|
||
|
||
/* Like the above, but include the date: YYYY-MM-DD hh:mm:ss. */
|
||
|
||
char *
|
||
datetime_str (time_t *tm)
|
||
{
|
||
static char output[20]; /* "YYYY-MM-DD hh:mm:ss" + \0 */
|
||
struct tm *ptm;
|
||
time_t secs = tm ? *tm : time (NULL);
|
||
|
||
if (secs == -1)
|
||
{
|
||
/* In case of error, return the empty string. Maybe we should
|
||
just abort if this happens? */
|
||
*output = '\0';
|
||
return output;
|
||
}
|
||
ptm = localtime (&secs);
|
||
sprintf (output, "%04d-%02d-%02d %02d:%02d:%02d",
|
||
ptm->tm_year + 1900, ptm->tm_mon + 1, ptm->tm_mday,
|
||
ptm->tm_hour, ptm->tm_min, ptm->tm_sec);
|
||
return output;
|
||
}
|
||
|
||
/* The Windows versions of the following two functions are defined in
|
||
mswindows.c. */
|
||
|
||
#ifndef WINDOWS
|
||
void
|
||
fork_to_background (void)
|
||
{
|
||
pid_t pid;
|
||
/* Whether we arrange our own version of opt.lfilename here. */
|
||
bool logfile_changed = false;
|
||
|
||
if (!opt.lfilename)
|
||
{
|
||
/* We must create the file immediately to avoid either a race
|
||
condition (which arises from using unique_name and failing to
|
||
use fopen_excl) or lying to the user about the log file name
|
||
(which arises from using unique_name, printing the name, and
|
||
using fopen_excl later on.) */
|
||
FILE *new_log_fp = unique_create (DEFAULT_LOGFILE, false, &opt.lfilename);
|
||
if (new_log_fp)
|
||
{
|
||
logfile_changed = true;
|
||
fclose (new_log_fp);
|
||
}
|
||
}
|
||
pid = fork ();
|
||
if (pid < 0)
|
||
{
|
||
/* parent, error */
|
||
perror ("fork");
|
||
exit (1);
|
||
}
|
||
else if (pid != 0)
|
||
{
|
||
/* parent, no error */
|
||
printf (_("Continuing in background, pid %d.\n"), (int) pid);
|
||
if (logfile_changed)
|
||
printf (_("Output will be written to `%s'.\n"), opt.lfilename);
|
||
exit (0); /* #### should we use _exit()? */
|
||
}
|
||
|
||
/* child: give up the privileges and keep running. */
|
||
setsid ();
|
||
freopen ("/dev/null", "r", stdin);
|
||
freopen ("/dev/null", "w", stdout);
|
||
freopen ("/dev/null", "w", stderr);
|
||
}
|
||
#endif /* not WINDOWS */
|
||
|
||
/* "Touch" FILE, i.e. make its mtime ("modified time") equal the time
|
||
specified with TM. The atime ("access time") is set to the current
|
||
time. */
|
||
|
||
void
|
||
touch (const char *file, time_t tm)
|
||
{
|
||
#ifdef HAVE_STRUCT_UTIMBUF
|
||
struct utimbuf times;
|
||
#else
|
||
struct {
|
||
time_t actime;
|
||
time_t modtime;
|
||
} times;
|
||
#endif
|
||
times.modtime = tm;
|
||
times.actime = time (NULL);
|
||
if (utime (file, ×) == -1)
|
||
logprintf (LOG_NOTQUIET, "utime(%s): %s\n", file, strerror (errno));
|
||
}
|
||
|
||
/* Checks if FILE is a symbolic link, and removes it if it is. Does
|
||
nothing under MS-Windows. */
|
||
int
|
||
remove_link (const char *file)
|
||
{
|
||
int err = 0;
|
||
struct_stat st;
|
||
|
||
if (lstat (file, &st) == 0 && S_ISLNK (st.st_mode))
|
||
{
|
||
DEBUGP (("Unlinking %s (symlink).\n", file));
|
||
err = unlink (file);
|
||
if (err != 0)
|
||
logprintf (LOG_VERBOSE, _("Failed to unlink symlink `%s': %s\n"),
|
||
file, strerror (errno));
|
||
}
|
||
return err;
|
||
}
|
||
|
||
/* Does FILENAME exist? This is quite a lousy implementation, since
|
||
it supplies no error codes -- only a yes-or-no answer. Thus it
|
||
will return that a file does not exist if, e.g., the directory is
|
||
unreadable. I don't mind it too much currently, though. The
|
||
proper way should, of course, be to have a third, error state,
|
||
other than true/false, but that would introduce uncalled-for
|
||
additional complexity to the callers. */
|
||
bool
|
||
file_exists_p (const char *filename)
|
||
{
|
||
#ifdef HAVE_ACCESS
|
||
return access (filename, F_OK) >= 0;
|
||
#else
|
||
struct_stat buf;
|
||
return stat (filename, &buf) >= 0;
|
||
#endif
|
||
}
|
||
|
||
/* Returns 0 if PATH is a directory, 1 otherwise (any kind of file).
|
||
Returns 0 on error. */
|
||
bool
|
||
file_non_directory_p (const char *path)
|
||
{
|
||
struct_stat buf;
|
||
/* Use lstat() rather than stat() so that symbolic links pointing to
|
||
directories can be identified correctly. */
|
||
if (lstat (path, &buf) != 0)
|
||
return false;
|
||
return S_ISDIR (buf.st_mode) ? false : true;
|
||
}
|
||
|
||
/* Return the size of file named by FILENAME, or -1 if it cannot be
|
||
opened or seeked into. */
|
||
wgint
|
||
file_size (const char *filename)
|
||
{
|
||
#if defined(HAVE_FSEEKO) && defined(HAVE_FTELLO)
|
||
wgint size;
|
||
/* We use fseek rather than stat to determine the file size because
|
||
that way we can also verify that the file is readable without
|
||
explicitly checking for permissions. Inspired by the POST patch
|
||
by Arnaud Wylie. */
|
||
FILE *fp = fopen (filename, "rb");
|
||
if (!fp)
|
||
return -1;
|
||
fseeko (fp, 0, SEEK_END);
|
||
size = ftello (fp);
|
||
fclose (fp);
|
||
return size;
|
||
#else
|
||
struct_stat st;
|
||
if (stat (filename, &st) < 0)
|
||
return -1;
|
||
return st.st_size;
|
||
#endif
|
||
}
|
||
|
||
/* stat file names named PREFIX.1, PREFIX.2, etc., until one that
|
||
doesn't exist is found. Return a freshly allocated copy of the
|
||
unused file name. */
|
||
|
||
static char *
|
||
unique_name_1 (const char *prefix)
|
||
{
|
||
int count = 1;
|
||
int plen = strlen (prefix);
|
||
char *template = (char *)alloca (plen + 1 + 24);
|
||
char *template_tail = template + plen;
|
||
|
||
memcpy (template, prefix, plen);
|
||
*template_tail++ = '.';
|
||
|
||
do
|
||
number_to_string (template_tail, count++);
|
||
while (file_exists_p (template));
|
||
|
||
return xstrdup (template);
|
||
}
|
||
|
||
/* Return a unique file name, based on FILE.
|
||
|
||
More precisely, if FILE doesn't exist, it is returned unmodified.
|
||
If not, FILE.1 is tried, then FILE.2, etc. The first FILE.<number>
|
||
file name that doesn't exist is returned.
|
||
|
||
The resulting file is not created, only verified that it didn't
|
||
exist at the point in time when the function was called.
|
||
Therefore, where security matters, don't rely that the file created
|
||
by this function exists until you open it with O_EXCL or
|
||
equivalent.
|
||
|
||
If ALLOW_PASSTHROUGH is 0, it always returns a freshly allocated
|
||
string. Otherwise, it may return FILE if the file doesn't exist
|
||
(and therefore doesn't need changing). */
|
||
|
||
char *
|
||
unique_name (const char *file, bool allow_passthrough)
|
||
{
|
||
/* If the FILE itself doesn't exist, return it without
|
||
modification. */
|
||
if (!file_exists_p (file))
|
||
return allow_passthrough ? (char *)file : xstrdup (file);
|
||
|
||
/* Otherwise, find a numeric suffix that results in unused file name
|
||
and return it. */
|
||
return unique_name_1 (file);
|
||
}
|
||
|
||
/* Create a file based on NAME, except without overwriting an existing
|
||
file with that name. Providing O_EXCL is correctly implemented,
|
||
this function does not have the race condition associated with
|
||
opening the file returned by unique_name. */
|
||
|
||
FILE *
|
||
unique_create (const char *name, bool binary, char **opened_name)
|
||
{
|
||
/* unique file name, based on NAME */
|
||
char *uname = unique_name (name, false);
|
||
FILE *fp;
|
||
while ((fp = fopen_excl (uname, binary)) == NULL && errno == EEXIST)
|
||
{
|
||
xfree (uname);
|
||
uname = unique_name (name, false);
|
||
}
|
||
if (opened_name && fp != NULL)
|
||
{
|
||
if (fp)
|
||
*opened_name = uname;
|
||
else
|
||
{
|
||
*opened_name = NULL;
|
||
xfree (uname);
|
||
}
|
||
}
|
||
else
|
||
xfree (uname);
|
||
return fp;
|
||
}
|
||
|
||
/* Open the file for writing, with the addition that the file is
|
||
opened "exclusively". This means that, if the file already exists,
|
||
this function will *fail* and errno will be set to EEXIST. If
|
||
BINARY is set, the file will be opened in binary mode, equivalent
|
||
to fopen's "wb".
|
||
|
||
If opening the file fails for any reason, including the file having
|
||
previously existed, this function returns NULL and sets errno
|
||
appropriately. */
|
||
|
||
FILE *
|
||
fopen_excl (const char *fname, bool binary)
|
||
{
|
||
int fd;
|
||
#ifdef O_EXCL
|
||
int flags = O_WRONLY | O_CREAT | O_EXCL;
|
||
# ifdef O_BINARY
|
||
if (binary)
|
||
flags |= O_BINARY;
|
||
# endif
|
||
fd = open (fname, flags, 0666);
|
||
if (fd < 0)
|
||
return NULL;
|
||
return fdopen (fd, binary ? "wb" : "w");
|
||
#else /* not O_EXCL */
|
||
/* Manually check whether the file exists. This is prone to race
|
||
conditions, but systems without O_EXCL haven't deserved
|
||
better. */
|
||
if (file_exists_p (fname))
|
||
{
|
||
errno = EEXIST;
|
||
return NULL;
|
||
}
|
||
return fopen (fname, binary ? "wb" : "w");
|
||
#endif /* not O_EXCL */
|
||
}
|
||
|
||
/* Create DIRECTORY. If some of the pathname components of DIRECTORY
|
||
are missing, create them first. In case any mkdir() call fails,
|
||
return its error status. Returns 0 on successful completion.
|
||
|
||
The behaviour of this function should be identical to the behaviour
|
||
of `mkdir -p' on systems where mkdir supports the `-p' option. */
|
||
int
|
||
make_directory (const char *directory)
|
||
{
|
||
int i, ret, quit = 0;
|
||
char *dir;
|
||
|
||
/* Make a copy of dir, to be able to write to it. Otherwise, the
|
||
function is unsafe if called with a read-only char *argument. */
|
||
STRDUP_ALLOCA (dir, directory);
|
||
|
||
/* If the first character of dir is '/', skip it (and thus enable
|
||
creation of absolute-pathname directories. */
|
||
for (i = (*dir == '/'); 1; ++i)
|
||
{
|
||
for (; dir[i] && dir[i] != '/'; i++)
|
||
;
|
||
if (!dir[i])
|
||
quit = 1;
|
||
dir[i] = '\0';
|
||
/* Check whether the directory already exists. Allow creation of
|
||
of intermediate directories to fail, as the initial path components
|
||
are not necessarily directories! */
|
||
if (!file_exists_p (dir))
|
||
ret = mkdir (dir, 0777);
|
||
else
|
||
ret = 0;
|
||
if (quit)
|
||
break;
|
||
else
|
||
dir[i] = '/';
|
||
}
|
||
return ret;
|
||
}
|
||
|
||
/* Merge BASE with FILE. BASE can be a directory or a file name, FILE
|
||
should be a file name.
|
||
|
||
file_merge("/foo/bar", "baz") => "/foo/baz"
|
||
file_merge("/foo/bar/", "baz") => "/foo/bar/baz"
|
||
file_merge("foo", "bar") => "bar"
|
||
|
||
In other words, it's a simpler and gentler version of uri_merge_1. */
|
||
|
||
char *
|
||
file_merge (const char *base, const char *file)
|
||
{
|
||
char *result;
|
||
const char *cut = (const char *)strrchr (base, '/');
|
||
|
||
if (!cut)
|
||
return xstrdup (file);
|
||
|
||
result = xmalloc (cut - base + 1 + strlen (file) + 1);
|
||
memcpy (result, base, cut - base);
|
||
result[cut - base] = '/';
|
||
strcpy (result + (cut - base) + 1, file);
|
||
|
||
return result;
|
||
}
|
||
|
||
static bool in_acclist (const char *const *, const char *, bool);
|
||
|
||
/* Determine whether a file is acceptable to be followed, according to
|
||
lists of patterns to accept/reject. */
|
||
bool
|
||
acceptable (const char *s)
|
||
{
|
||
int l = strlen (s);
|
||
|
||
while (l && s[l] != '/')
|
||
--l;
|
||
if (s[l] == '/')
|
||
s += (l + 1);
|
||
if (opt.accepts)
|
||
{
|
||
if (opt.rejects)
|
||
return (in_acclist ((const char *const *)opt.accepts, s, true)
|
||
&& !in_acclist ((const char *const *)opt.rejects, s, true));
|
||
else
|
||
return in_acclist ((const char *const *)opt.accepts, s, true);
|
||
}
|
||
else if (opt.rejects)
|
||
return !in_acclist ((const char *const *)opt.rejects, s, true);
|
||
return true;
|
||
}
|
||
|
||
/* Compare S1 and S2 frontally; S2 must begin with S1. E.g. if S1 is
|
||
`/something', frontcmp() will return 1 only if S2 begins with
|
||
`/something'. Otherwise, 0 is returned. */
|
||
bool
|
||
frontcmp (const char *s1, const char *s2)
|
||
{
|
||
for (; *s1 && *s2 && (*s1 == *s2); ++s1, ++s2);
|
||
return *s1 == '\0';
|
||
}
|
||
|
||
/* Iterate through STRLIST, and return the first element that matches
|
||
S, through wildcards or front comparison (as appropriate). */
|
||
static char *
|
||
proclist (char **strlist, const char *s, enum accd flags)
|
||
{
|
||
char **x;
|
||
for (x = strlist; *x; x++)
|
||
{
|
||
/* Remove leading '/' if ALLABS */
|
||
char *p = *x + ((flags & ALLABS) && (**x == '/'));
|
||
if (has_wildcards_p (p))
|
||
{
|
||
if (fnmatch (p, s, FNM_PATHNAME) == 0)
|
||
break;
|
||
}
|
||
else
|
||
{
|
||
if (frontcmp (p, s))
|
||
break;
|
||
}
|
||
}
|
||
return *x;
|
||
}
|
||
|
||
/* Returns whether DIRECTORY is acceptable for download, wrt the
|
||
include/exclude lists.
|
||
|
||
If FLAGS is ALLABS, the leading `/' is ignored in paths; relative
|
||
and absolute paths may be freely intermixed. */
|
||
bool
|
||
accdir (const char *directory, enum accd flags)
|
||
{
|
||
/* Remove starting '/'. */
|
||
if (flags & ALLABS && *directory == '/')
|
||
++directory;
|
||
if (opt.includes)
|
||
{
|
||
if (!proclist (opt.includes, directory, flags))
|
||
return false;
|
||
}
|
||
if (opt.excludes)
|
||
{
|
||
if (proclist (opt.excludes, directory, flags))
|
||
return false;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/* Return true if STRING ends with TAIL. For instance:
|
||
|
||
match_tail ("abc", "bc", false) -> 1
|
||
match_tail ("abc", "ab", false) -> 0
|
||
match_tail ("abc", "abc", false) -> 1
|
||
|
||
If FOLD_CASE is true, the comparison will be case-insensitive. */
|
||
|
||
bool
|
||
match_tail (const char *string, const char *tail, bool fold_case)
|
||
{
|
||
int i, j;
|
||
|
||
/* We want this to be fast, so we code two loops, one with
|
||
case-folding, one without. */
|
||
|
||
if (!fold_case)
|
||
{
|
||
for (i = strlen (string), j = strlen (tail); i >= 0 && j >= 0; i--, j--)
|
||
if (string[i] != tail[j])
|
||
break;
|
||
}
|
||
else
|
||
{
|
||
for (i = strlen (string), j = strlen (tail); i >= 0 && j >= 0; i--, j--)
|
||
if (TOLOWER (string[i]) != TOLOWER (tail[j]))
|
||
break;
|
||
}
|
||
|
||
/* If the tail was exhausted, the match was succesful. */
|
||
if (j == -1)
|
||
return true;
|
||
else
|
||
return false;
|
||
}
|
||
|
||
/* Checks whether string S matches each element of ACCEPTS. A list
|
||
element are matched either with fnmatch() or match_tail(),
|
||
according to whether the element contains wildcards or not.
|
||
|
||
If the BACKWARD is false, don't do backward comparison -- just compare
|
||
them normally. */
|
||
static bool
|
||
in_acclist (const char *const *accepts, const char *s, bool backward)
|
||
{
|
||
for (; *accepts; accepts++)
|
||
{
|
||
if (has_wildcards_p (*accepts))
|
||
{
|
||
/* fnmatch returns 0 if the pattern *does* match the
|
||
string. */
|
||
if (fnmatch (*accepts, s, 0) == 0)
|
||
return true;
|
||
}
|
||
else
|
||
{
|
||
if (backward)
|
||
{
|
||
if (match_tail (s, *accepts, 0))
|
||
return true;
|
||
}
|
||
else
|
||
{
|
||
if (!strcmp (s, *accepts))
|
||
return true;
|
||
}
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* Return the location of STR's suffix (file extension). Examples:
|
||
suffix ("foo.bar") -> "bar"
|
||
suffix ("foo.bar.baz") -> "baz"
|
||
suffix ("/foo/bar") -> NULL
|
||
suffix ("/foo.bar/baz") -> NULL */
|
||
char *
|
||
suffix (const char *str)
|
||
{
|
||
int i;
|
||
|
||
for (i = strlen (str); i && str[i] != '/' && str[i] != '.'; i--)
|
||
;
|
||
|
||
if (str[i++] == '.')
|
||
return (char *)str + i;
|
||
else
|
||
return NULL;
|
||
}
|
||
|
||
/* Return true if S contains globbing wildcards (`*', `?', `[' or
|
||
`]'). */
|
||
|
||
bool
|
||
has_wildcards_p (const char *s)
|
||
{
|
||
for (; *s; s++)
|
||
if (*s == '*' || *s == '?' || *s == '[' || *s == ']')
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
/* Return true if FNAME ends with a typical HTML suffix. The
|
||
following (case-insensitive) suffixes are presumed to be HTML
|
||
files:
|
||
|
||
html
|
||
htm
|
||
?html (`?' matches one character)
|
||
|
||
#### CAVEAT. This is not necessarily a good indication that FNAME
|
||
refers to a file that contains HTML! */
|
||
bool
|
||
has_html_suffix_p (const char *fname)
|
||
{
|
||
char *suf;
|
||
|
||
if ((suf = suffix (fname)) == NULL)
|
||
return false;
|
||
if (!strcasecmp (suf, "html"))
|
||
return true;
|
||
if (!strcasecmp (suf, "htm"))
|
||
return true;
|
||
if (suf[0] && !strcasecmp (suf + 1, "html"))
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
/* Read a line from FP and return the pointer to freshly allocated
|
||
storage. The storage space is obtained through malloc() and should
|
||
be freed with free() when it is no longer needed.
|
||
|
||
The length of the line is not limited, except by available memory.
|
||
The newline character at the end of line is retained. The line is
|
||
terminated with a zero character.
|
||
|
||
After end-of-file is encountered without anything being read, NULL
|
||
is returned. NULL is also returned on error. To distinguish
|
||
between these two cases, use the stdio function ferror(). */
|
||
|
||
char *
|
||
read_whole_line (FILE *fp)
|
||
{
|
||
int length = 0;
|
||
int bufsize = 82;
|
||
char *line = xmalloc (bufsize);
|
||
|
||
while (fgets (line + length, bufsize - length, fp))
|
||
{
|
||
length += strlen (line + length);
|
||
if (length == 0)
|
||
/* Possible for example when reading from a binary file where
|
||
a line begins with \0. */
|
||
continue;
|
||
|
||
if (line[length - 1] == '\n')
|
||
break;
|
||
|
||
/* fgets() guarantees to read the whole line, or to use up the
|
||
space we've given it. We can double the buffer
|
||
unconditionally. */
|
||
bufsize <<= 1;
|
||
line = xrealloc (line, bufsize);
|
||
}
|
||
if (length == 0 || ferror (fp))
|
||
{
|
||
xfree (line);
|
||
return NULL;
|
||
}
|
||
if (length + 1 < bufsize)
|
||
/* Relieve the memory from our exponential greediness. We say
|
||
`length + 1' because the terminating \0 is not included in
|
||
LENGTH. We don't need to zero-terminate the string ourselves,
|
||
though, because fgets() does that. */
|
||
line = xrealloc (line, length + 1);
|
||
return line;
|
||
}
|
||
|
||
/* Read FILE into memory. A pointer to `struct file_memory' are
|
||
returned; use struct element `content' to access file contents, and
|
||
the element `length' to know the file length. `content' is *not*
|
||
zero-terminated, and you should *not* read or write beyond the [0,
|
||
length) range of characters.
|
||
|
||
After you are done with the file contents, call read_file_free to
|
||
release the memory.
|
||
|
||
Depending on the operating system and the type of file that is
|
||
being read, read_file() either mmap's the file into memory, or
|
||
reads the file into the core using read().
|
||
|
||
If file is named "-", fileno(stdin) is used for reading instead.
|
||
If you want to read from a real file named "-", use "./-" instead. */
|
||
|
||
struct file_memory *
|
||
read_file (const char *file)
|
||
{
|
||
int fd;
|
||
struct file_memory *fm;
|
||
long size;
|
||
bool inhibit_close = false;
|
||
|
||
/* Some magic in the finest tradition of Perl and its kin: if FILE
|
||
is "-", just use stdin. */
|
||
if (HYPHENP (file))
|
||
{
|
||
fd = fileno (stdin);
|
||
inhibit_close = true;
|
||
/* Note that we don't inhibit mmap() in this case. If stdin is
|
||
redirected from a regular file, mmap() will still work. */
|
||
}
|
||
else
|
||
fd = open (file, O_RDONLY);
|
||
if (fd < 0)
|
||
return NULL;
|
||
fm = xnew (struct file_memory);
|
||
|
||
#ifdef HAVE_MMAP
|
||
{
|
||
struct_fstat buf;
|
||
if (fstat (fd, &buf) < 0)
|
||
goto mmap_lose;
|
||
fm->length = buf.st_size;
|
||
/* NOTE: As far as I know, the callers of this function never
|
||
modify the file text. Relying on this would enable us to
|
||
specify PROT_READ and MAP_SHARED for a marginal gain in
|
||
efficiency, but at some cost to generality. */
|
||
fm->content = mmap (NULL, fm->length, PROT_READ | PROT_WRITE,
|
||
MAP_PRIVATE, fd, 0);
|
||
if (fm->content == (char *)MAP_FAILED)
|
||
goto mmap_lose;
|
||
if (!inhibit_close)
|
||
close (fd);
|
||
|
||
fm->mmap_p = 1;
|
||
return fm;
|
||
}
|
||
|
||
mmap_lose:
|
||
/* The most common reason why mmap() fails is that FD does not point
|
||
to a plain file. However, it's also possible that mmap() doesn't
|
||
work for a particular type of file. Therefore, whenever mmap()
|
||
fails, we just fall back to the regular method. */
|
||
#endif /* HAVE_MMAP */
|
||
|
||
fm->length = 0;
|
||
size = 512; /* number of bytes fm->contents can
|
||
hold at any given time. */
|
||
fm->content = xmalloc (size);
|
||
while (1)
|
||
{
|
||
wgint nread;
|
||
if (fm->length > size / 2)
|
||
{
|
||
/* #### I'm not sure whether the whole exponential-growth
|
||
thing makes sense with kernel read. On Linux at least,
|
||
read() refuses to read more than 4K from a file at a
|
||
single chunk anyway. But other Unixes might optimize it
|
||
better, and it doesn't *hurt* anything, so I'm leaving
|
||
it. */
|
||
|
||
/* Normally, we grow SIZE exponentially to make the number
|
||
of calls to read() and realloc() logarithmic in relation
|
||
to file size. However, read() can read an amount of data
|
||
smaller than requested, and it would be unreasonable to
|
||
double SIZE every time *something* was read. Therefore,
|
||
we double SIZE only when the length exceeds half of the
|
||
entire allocated size. */
|
||
size <<= 1;
|
||
fm->content = xrealloc (fm->content, size);
|
||
}
|
||
nread = read (fd, fm->content + fm->length, size - fm->length);
|
||
if (nread > 0)
|
||
/* Successful read. */
|
||
fm->length += nread;
|
||
else if (nread < 0)
|
||
/* Error. */
|
||
goto lose;
|
||
else
|
||
/* EOF */
|
||
break;
|
||
}
|
||
if (!inhibit_close)
|
||
close (fd);
|
||
if (size > fm->length && fm->length != 0)
|
||
/* Due to exponential growth of fm->content, the allocated region
|
||
might be much larger than what is actually needed. */
|
||
fm->content = xrealloc (fm->content, fm->length);
|
||
fm->mmap_p = 0;
|
||
return fm;
|
||
|
||
lose:
|
||
if (!inhibit_close)
|
||
close (fd);
|
||
xfree (fm->content);
|
||
xfree (fm);
|
||
return NULL;
|
||
}
|
||
|
||
/* Release the resources held by FM. Specifically, this calls
|
||
munmap() or xfree() on fm->content, depending whether mmap or
|
||
malloc/read were used to read in the file. It also frees the
|
||
memory needed to hold the FM structure itself. */
|
||
|
||
void
|
||
read_file_free (struct file_memory *fm)
|
||
{
|
||
#ifdef HAVE_MMAP
|
||
if (fm->mmap_p)
|
||
{
|
||
munmap (fm->content, fm->length);
|
||
}
|
||
else
|
||
#endif
|
||
{
|
||
xfree (fm->content);
|
||
}
|
||
xfree (fm);
|
||
}
|
||
|
||
/* Free the pointers in a NULL-terminated vector of pointers, then
|
||
free the pointer itself. */
|
||
void
|
||
free_vec (char **vec)
|
||
{
|
||
if (vec)
|
||
{
|
||
char **p = vec;
|
||
while (*p)
|
||
xfree (*p++);
|
||
xfree (vec);
|
||
}
|
||
}
|
||
|
||
/* Append vector V2 to vector V1. The function frees V2 and
|
||
reallocates V1 (thus you may not use the contents of neither
|
||
pointer after the call). If V1 is NULL, V2 is returned. */
|
||
char **
|
||
merge_vecs (char **v1, char **v2)
|
||
{
|
||
int i, j;
|
||
|
||
if (!v1)
|
||
return v2;
|
||
if (!v2)
|
||
return v1;
|
||
if (!*v2)
|
||
{
|
||
/* To avoid j == 0 */
|
||
xfree (v2);
|
||
return v1;
|
||
}
|
||
/* Count v1. */
|
||
for (i = 0; v1[i]; i++);
|
||
/* Count v2. */
|
||
for (j = 0; v2[j]; j++);
|
||
/* Reallocate v1. */
|
||
v1 = xrealloc (v1, (i + j + 1) * sizeof (char **));
|
||
memcpy (v1 + i, v2, (j + 1) * sizeof (char *));
|
||
xfree (v2);
|
||
return v1;
|
||
}
|
||
|
||
/* Append a freshly allocated copy of STR to VEC. If VEC is NULL, it
|
||
is allocated as needed. Return the new value of the vector. */
|
||
|
||
char **
|
||
vec_append (char **vec, const char *str)
|
||
{
|
||
int cnt; /* count of vector elements, including
|
||
the one we're about to append */
|
||
if (vec != NULL)
|
||
{
|
||
for (cnt = 0; vec[cnt]; cnt++)
|
||
;
|
||
++cnt;
|
||
}
|
||
else
|
||
cnt = 1;
|
||
/* Reallocate the array to fit the new element and the NULL. */
|
||
vec = xrealloc (vec, (cnt + 1) * sizeof (char *));
|
||
/* Append a copy of STR to the vector. */
|
||
vec[cnt - 1] = xstrdup (str);
|
||
vec[cnt] = NULL;
|
||
return vec;
|
||
}
|
||
|
||
/* Sometimes it's useful to create "sets" of strings, i.e. special
|
||
hash tables where you want to store strings as keys and merely
|
||
query for their existence. Here is a set of utility routines that
|
||
makes that transparent. */
|
||
|
||
void
|
||
string_set_add (struct hash_table *ht, const char *s)
|
||
{
|
||
/* First check whether the set element already exists. If it does,
|
||
do nothing so that we don't have to free() the old element and
|
||
then strdup() a new one. */
|
||
if (hash_table_contains (ht, s))
|
||
return;
|
||
|
||
/* We use "1" as value. It provides us a useful and clear arbitrary
|
||
value, and it consumes no memory -- the pointers to the same
|
||
string "1" will be shared by all the key-value pairs in all `set'
|
||
hash tables. */
|
||
hash_table_put (ht, xstrdup (s), "1");
|
||
}
|
||
|
||
/* Synonym for hash_table_contains... */
|
||
|
||
int
|
||
string_set_contains (struct hash_table *ht, const char *s)
|
||
{
|
||
return hash_table_contains (ht, s);
|
||
}
|
||
|
||
static int
|
||
string_set_to_array_mapper (void *key, void *value_ignored, void *arg)
|
||
{
|
||
char ***arrayptr = (char ***) arg;
|
||
*(*arrayptr)++ = (char *) key;
|
||
return 0;
|
||
}
|
||
|
||
/* Convert the specified string set to array. ARRAY should be large
|
||
enough to hold hash_table_count(ht) char pointers. */
|
||
|
||
void string_set_to_array (struct hash_table *ht, char **array)
|
||
{
|
||
hash_table_map (ht, string_set_to_array_mapper, &array);
|
||
}
|
||
|
||
static int
|
||
string_set_free_mapper (void *key, void *value_ignored, void *arg_ignored)
|
||
{
|
||
xfree (key);
|
||
return 0;
|
||
}
|
||
|
||
void
|
||
string_set_free (struct hash_table *ht)
|
||
{
|
||
hash_table_map (ht, string_set_free_mapper, NULL);
|
||
hash_table_destroy (ht);
|
||
}
|
||
|
||
static int
|
||
free_keys_and_values_mapper (void *key, void *value, void *arg_ignored)
|
||
{
|
||
xfree (key);
|
||
xfree (value);
|
||
return 0;
|
||
}
|
||
|
||
/* Another utility function: call free() on all keys and values of HT. */
|
||
|
||
void
|
||
free_keys_and_values (struct hash_table *ht)
|
||
{
|
||
hash_table_map (ht, free_keys_and_values_mapper, NULL);
|
||
}
|
||
|
||
|
||
/* Get grouping data, the separator and grouping info, by calling
|
||
localeconv(). The information is cached after the first call to
|
||
the function.
|
||
|
||
In locales that don't set a thousand separator (such as the "C"
|
||
locale), this forces it to be ",". We are now only showing
|
||
thousand separators in one place, so this shouldn't be a problem in
|
||
practice. */
|
||
|
||
static void
|
||
get_grouping_data (const char **sep, const char **grouping)
|
||
{
|
||
static const char *cached_sep;
|
||
static const char *cached_grouping;
|
||
static bool initialized;
|
||
if (!initialized)
|
||
{
|
||
/* Get the grouping info from the locale. */
|
||
struct lconv *lconv = localeconv ();
|
||
cached_sep = lconv->thousands_sep;
|
||
cached_grouping = lconv->grouping;
|
||
if (!*cached_sep)
|
||
{
|
||
/* Many locales (such as "C" or "hr_HR") don't specify
|
||
grouping, which we still want to use it for legibility.
|
||
In those locales set the sep char to ',', unless that
|
||
character is used for decimal point, in which case set it
|
||
to ".". */
|
||
if (*lconv->decimal_point != ',')
|
||
cached_sep = ",";
|
||
else
|
||
cached_sep = ".";
|
||
cached_grouping = "\x03";
|
||
}
|
||
initialized = true;
|
||
}
|
||
*sep = cached_sep;
|
||
*grouping = cached_grouping;
|
||
}
|
||
|
||
/* Return a printed representation of N with thousand separators.
|
||
This should respect locale settings, with the exception of the "C"
|
||
locale which mandates no separator, but we use one anyway.
|
||
|
||
Unfortunately, we cannot use %'d (in fact it would be %'j) to get
|
||
the separators because it's too non-portable, and it's hard to test
|
||
for this feature at configure time. Besides, it wouldn't work in
|
||
the "C" locale, which many Unix users still work in. */
|
||
|
||
const char *
|
||
with_thousand_seps (wgint n)
|
||
{
|
||
static char outbuf[48];
|
||
char *p = outbuf + sizeof outbuf;
|
||
|
||
/* Info received from locale */
|
||
const char *grouping, *sep;
|
||
int seplen;
|
||
|
||
/* State information */
|
||
int i = 0, groupsize;
|
||
const char *atgroup;
|
||
|
||
bool negative = n < 0;
|
||
|
||
/* Initialize grouping data. */
|
||
get_grouping_data (&sep, &grouping);
|
||
seplen = strlen (sep);
|
||
atgroup = grouping;
|
||
groupsize = *atgroup++;
|
||
|
||
/* This will overflow on WGINT_MIN, but we're not using this to
|
||
print negative numbers anyway. */
|
||
if (negative)
|
||
n = -n;
|
||
|
||
/* Write the number into the buffer, backwards, inserting the
|
||
separators as necessary. */
|
||
*--p = '\0';
|
||
while (1)
|
||
{
|
||
*--p = n % 10 + '0';
|
||
n /= 10;
|
||
if (n == 0)
|
||
break;
|
||
/* Prepend SEP to every groupsize'd digit and get new groupsize. */
|
||
if (++i == groupsize)
|
||
{
|
||
if (seplen == 1)
|
||
*--p = *sep;
|
||
else
|
||
memcpy (p -= seplen, sep, seplen);
|
||
i = 0;
|
||
if (*atgroup)
|
||
groupsize = *atgroup++;
|
||
}
|
||
}
|
||
if (negative)
|
||
*--p = '-';
|
||
|
||
return p;
|
||
}
|
||
|
||
/* N, a byte quantity, is converted to a human-readable abberviated
|
||
form a la sizes printed by `ls -lh'. The result is written to a
|
||
static buffer, a pointer to which is returned.
|
||
|
||
Unlike `with_thousand_seps', this approximates to the nearest unit.
|
||
Quoting GNU libit: "Most people visually process strings of 3-4
|
||
digits effectively, but longer strings of digits are more prone to
|
||
misinterpretation. Hence, converting to an abbreviated form
|
||
usually improves readability."
|
||
|
||
This intentionally uses kilobyte (KB), megabyte (MB), etc. in their
|
||
original computer-related meaning of "powers of 1024". Powers of
|
||
1000 would be useless since Wget already displays sizes with
|
||
thousand separators. We don't use the "*bibyte" names invented in
|
||
1998, and seldom used in practice. Wikipedia's entry on kilobyte
|
||
discusses this in some detail. */
|
||
|
||
char *
|
||
human_readable (HR_NUMTYPE n)
|
||
{
|
||
/* These suffixes are compatible with those of GNU `ls -lh'. */
|
||
static char powers[] =
|
||
{
|
||
'K', /* kilobyte, 2^10 bytes */
|
||
'M', /* megabyte, 2^20 bytes */
|
||
'G', /* gigabyte, 2^30 bytes */
|
||
'T', /* terabyte, 2^40 bytes */
|
||
'P', /* petabyte, 2^50 bytes */
|
||
'E', /* exabyte, 2^60 bytes */
|
||
};
|
||
static char buf[8];
|
||
int i;
|
||
|
||
/* If the quantity is smaller than 1K, just print it. */
|
||
if (n < 1024)
|
||
{
|
||
snprintf (buf, sizeof (buf), "%d", (int) n);
|
||
return buf;
|
||
}
|
||
|
||
/* Loop over powers, dividing N with 1024 in each iteration. This
|
||
works unchanged for all sizes of wgint, while still avoiding
|
||
non-portable `long double' arithmetic. */
|
||
for (i = 0; i < countof (powers); i++)
|
||
{
|
||
/* At each iteration N is greater than the *subsequent* power.
|
||
That way N/1024.0 produces a decimal number in the units of
|
||
*this* power. */
|
||
if ((n / 1024) < 1024 || i == countof (powers) - 1)
|
||
{
|
||
double val = n / 1024.0;
|
||
/* Print values smaller than 10 with one decimal digits, and
|
||
others without any decimals. */
|
||
snprintf (buf, sizeof (buf), "%.*f%c",
|
||
val < 10 ? 1 : 0, val, powers[i]);
|
||
return buf;
|
||
}
|
||
n /= 1024;
|
||
}
|
||
return NULL; /* unreached */
|
||
}
|
||
|
||
/* Count the digits in the provided number. Used to allocate space
|
||
when printing numbers. */
|
||
|
||
int
|
||
numdigit (wgint number)
|
||
{
|
||
int cnt = 1;
|
||
if (number < 0)
|
||
++cnt; /* accomodate '-' */
|
||
while ((number /= 10) != 0)
|
||
++cnt;
|
||
return cnt;
|
||
}
|
||
|
||
#define PR(mask) *p++ = n / (mask) + '0'
|
||
|
||
/* DIGITS_<D> is used to print a D-digit number and should be called
|
||
with mask==10^(D-1). It prints n/mask (the first digit), reducing
|
||
n to n%mask (the remaining digits), and calling DIGITS_<D-1>.
|
||
Recursively this continues until DIGITS_1 is invoked. */
|
||
|
||
#define DIGITS_1(mask) PR (mask)
|
||
#define DIGITS_2(mask) PR (mask), n %= (mask), DIGITS_1 ((mask) / 10)
|
||
#define DIGITS_3(mask) PR (mask), n %= (mask), DIGITS_2 ((mask) / 10)
|
||
#define DIGITS_4(mask) PR (mask), n %= (mask), DIGITS_3 ((mask) / 10)
|
||
#define DIGITS_5(mask) PR (mask), n %= (mask), DIGITS_4 ((mask) / 10)
|
||
#define DIGITS_6(mask) PR (mask), n %= (mask), DIGITS_5 ((mask) / 10)
|
||
#define DIGITS_7(mask) PR (mask), n %= (mask), DIGITS_6 ((mask) / 10)
|
||
#define DIGITS_8(mask) PR (mask), n %= (mask), DIGITS_7 ((mask) / 10)
|
||
#define DIGITS_9(mask) PR (mask), n %= (mask), DIGITS_8 ((mask) / 10)
|
||
#define DIGITS_10(mask) PR (mask), n %= (mask), DIGITS_9 ((mask) / 10)
|
||
|
||
/* DIGITS_<11-20> are only used on machines with 64-bit wgints. */
|
||
|
||
#define DIGITS_11(mask) PR (mask), n %= (mask), DIGITS_10 ((mask) / 10)
|
||
#define DIGITS_12(mask) PR (mask), n %= (mask), DIGITS_11 ((mask) / 10)
|
||
#define DIGITS_13(mask) PR (mask), n %= (mask), DIGITS_12 ((mask) / 10)
|
||
#define DIGITS_14(mask) PR (mask), n %= (mask), DIGITS_13 ((mask) / 10)
|
||
#define DIGITS_15(mask) PR (mask), n %= (mask), DIGITS_14 ((mask) / 10)
|
||
#define DIGITS_16(mask) PR (mask), n %= (mask), DIGITS_15 ((mask) / 10)
|
||
#define DIGITS_17(mask) PR (mask), n %= (mask), DIGITS_16 ((mask) / 10)
|
||
#define DIGITS_18(mask) PR (mask), n %= (mask), DIGITS_17 ((mask) / 10)
|
||
#define DIGITS_19(mask) PR (mask), n %= (mask), DIGITS_18 ((mask) / 10)
|
||
|
||
/* SPRINTF_WGINT is used by number_to_string to handle pathological
|
||
cases and to portably support strange sizes of wgint. Ideally this
|
||
would just use "%j" and intmax_t, but many systems don't support
|
||
it, so it's used only if nothing else works. */
|
||
#if SIZEOF_LONG >= SIZEOF_WGINT
|
||
# define SPRINTF_WGINT(buf, n) sprintf (buf, "%ld", (long) (n))
|
||
#elif SIZEOF_LONG_LONG >= SIZEOF_WGINT
|
||
# define SPRINTF_WGINT(buf, n) sprintf (buf, "%lld", (long long) (n))
|
||
#elif defined(WINDOWS)
|
||
# define SPRINTF_WGINT(buf, n) sprintf (buf, "%I64d", (__int64) (n))
|
||
#else
|
||
# define SPRINTF_WGINT(buf, n) sprintf (buf, "%j", (intmax_t) (n))
|
||
#endif
|
||
|
||
/* Shorthand for casting to wgint. */
|
||
#define W wgint
|
||
|
||
/* Print NUMBER to BUFFER in base 10. This is equivalent to
|
||
`sprintf(buffer, "%lld", (long long) number)', only typically much
|
||
faster and portable to machines without long long.
|
||
|
||
The speedup may make a difference in programs that frequently
|
||
convert numbers to strings. Some implementations of sprintf,
|
||
particularly the one in GNU libc, have been known to be extremely
|
||
slow when converting integers to strings.
|
||
|
||
Return the pointer to the location where the terminating zero was
|
||
printed. (Equivalent to calling buffer+strlen(buffer) after the
|
||
function is done.)
|
||
|
||
BUFFER should be big enough to accept as many bytes as you expect
|
||
the number to take up. On machines with 64-bit longs the maximum
|
||
needed size is 24 bytes. That includes the digits needed for the
|
||
largest 64-bit number, the `-' sign in case it's negative, and the
|
||
terminating '\0'. */
|
||
|
||
char *
|
||
number_to_string (char *buffer, wgint number)
|
||
{
|
||
char *p = buffer;
|
||
wgint n = number;
|
||
|
||
#if (SIZEOF_WGINT != 4) && (SIZEOF_WGINT != 8)
|
||
/* We are running in a strange or misconfigured environment. Let
|
||
sprintf cope with it. */
|
||
SPRINTF_WGINT (buffer, n);
|
||
p += strlen (buffer);
|
||
#else /* (SIZEOF_WGINT == 4) || (SIZEOF_WGINT == 8) */
|
||
|
||
if (n < 0)
|
||
{
|
||
if (n < -WGINT_MAX)
|
||
{
|
||
/* -n would overflow. Have sprintf deal with this. */
|
||
SPRINTF_WGINT (buffer, n);
|
||
p += strlen (buffer);
|
||
return p;
|
||
}
|
||
|
||
*p++ = '-';
|
||
n = -n;
|
||
}
|
||
|
||
/* Use the DIGITS_ macro appropriate for N's number of digits. That
|
||
way printing any N is fully open-coded without a loop or jump.
|
||
(Also see description of DIGITS_*.) */
|
||
|
||
if (n < 10) DIGITS_1 (1);
|
||
else if (n < 100) DIGITS_2 (10);
|
||
else if (n < 1000) DIGITS_3 (100);
|
||
else if (n < 10000) DIGITS_4 (1000);
|
||
else if (n < 100000) DIGITS_5 (10000);
|
||
else if (n < 1000000) DIGITS_6 (100000);
|
||
else if (n < 10000000) DIGITS_7 (1000000);
|
||
else if (n < 100000000) DIGITS_8 (10000000);
|
||
else if (n < 1000000000) DIGITS_9 (100000000);
|
||
#if SIZEOF_WGINT == 4
|
||
/* wgint is 32 bits wide: no number has more than 10 digits. */
|
||
else DIGITS_10 (1000000000);
|
||
#else
|
||
/* wgint is 64 bits wide: handle numbers with 9-19 decimal digits.
|
||
Constants are constructed by compile-time multiplication to avoid
|
||
dealing with different notations for 64-bit constants
|
||
(nL/nLL/nI64, depending on the compiler and architecture). */
|
||
else if (n < 10*(W)1000000000) DIGITS_10 (1000000000);
|
||
else if (n < 100*(W)1000000000) DIGITS_11 (10*(W)1000000000);
|
||
else if (n < 1000*(W)1000000000) DIGITS_12 (100*(W)1000000000);
|
||
else if (n < 10000*(W)1000000000) DIGITS_13 (1000*(W)1000000000);
|
||
else if (n < 100000*(W)1000000000) DIGITS_14 (10000*(W)1000000000);
|
||
else if (n < 1000000*(W)1000000000) DIGITS_15 (100000*(W)1000000000);
|
||
else if (n < 10000000*(W)1000000000) DIGITS_16 (1000000*(W)1000000000);
|
||
else if (n < 100000000*(W)1000000000) DIGITS_17 (10000000*(W)1000000000);
|
||
else if (n < 1000000000*(W)1000000000) DIGITS_18 (100000000*(W)1000000000);
|
||
else DIGITS_19 (1000000000*(W)1000000000);
|
||
#endif
|
||
|
||
*p = '\0';
|
||
#endif /* (SIZEOF_WGINT == 4) || (SIZEOF_WGINT == 8) */
|
||
|
||
return p;
|
||
}
|
||
|
||
#undef PR
|
||
#undef W
|
||
#undef SPRINTF_WGINT
|
||
#undef DIGITS_1
|
||
#undef DIGITS_2
|
||
#undef DIGITS_3
|
||
#undef DIGITS_4
|
||
#undef DIGITS_5
|
||
#undef DIGITS_6
|
||
#undef DIGITS_7
|
||
#undef DIGITS_8
|
||
#undef DIGITS_9
|
||
#undef DIGITS_10
|
||
#undef DIGITS_11
|
||
#undef DIGITS_12
|
||
#undef DIGITS_13
|
||
#undef DIGITS_14
|
||
#undef DIGITS_15
|
||
#undef DIGITS_16
|
||
#undef DIGITS_17
|
||
#undef DIGITS_18
|
||
#undef DIGITS_19
|
||
|
||
#define RING_SIZE 3
|
||
|
||
/* Print NUMBER to a statically allocated string and return a pointer
|
||
to the printed representation.
|
||
|
||
This function is intended to be used in conjunction with printf.
|
||
It is hard to portably print wgint values:
|
||
a) you cannot use printf("%ld", number) because wgint can be long
|
||
long on 32-bit machines with LFS.
|
||
b) you cannot use printf("%lld", number) because NUMBER could be
|
||
long on 32-bit machines without LFS, or on 64-bit machines,
|
||
which do not require LFS. Also, Windows doesn't support %lld.
|
||
c) you cannot use printf("%j", (int_max_t) number) because not all
|
||
versions of printf support "%j", the most notable being the one
|
||
on Windows.
|
||
d) you cannot #define WGINT_FMT to the appropriate format and use
|
||
printf(WGINT_FMT, number) because that would break translations
|
||
for user-visible messages, such as printf("Downloaded: %d
|
||
bytes\n", number).
|
||
|
||
What you should use instead is printf("%s", number_to_static_string
|
||
(number)).
|
||
|
||
CAVEAT: since the function returns pointers to static data, you
|
||
must be careful to copy its result before calling it again.
|
||
However, to make it more useful with printf, the function maintains
|
||
an internal ring of static buffers to return. That way things like
|
||
printf("%s %s", number_to_static_string (num1),
|
||
number_to_static_string (num2)) work as expected. Three buffers
|
||
are currently used, which means that "%s %s %s" will work, but "%s
|
||
%s %s %s" won't. If you need to print more than three wgints,
|
||
bump the RING_SIZE (or rethink your message.) */
|
||
|
||
char *
|
||
number_to_static_string (wgint number)
|
||
{
|
||
static char ring[RING_SIZE][24];
|
||
static int ringpos;
|
||
char *buf = ring[ringpos];
|
||
number_to_string (buf, number);
|
||
ringpos = (ringpos + 1) % RING_SIZE;
|
||
return buf;
|
||
}
|
||
|
||
/* Determine the width of the terminal we're running on. If that's
|
||
not possible, return 0. */
|
||
|
||
int
|
||
determine_screen_width (void)
|
||
{
|
||
/* If there's a way to get the terminal size using POSIX
|
||
tcgetattr(), somebody please tell me. */
|
||
#ifdef TIOCGWINSZ
|
||
int fd;
|
||
struct winsize wsz;
|
||
|
||
if (opt.lfilename != NULL)
|
||
return 0;
|
||
|
||
fd = fileno (stderr);
|
||
if (ioctl (fd, TIOCGWINSZ, &wsz) < 0)
|
||
return 0; /* most likely ENOTTY */
|
||
|
||
return wsz.ws_col;
|
||
#elif defined(WINDOWS)
|
||
CONSOLE_SCREEN_BUFFER_INFO csbi;
|
||
if (!GetConsoleScreenBufferInfo (GetStdHandle (STD_ERROR_HANDLE), &csbi))
|
||
return 0;
|
||
return csbi.dwSize.X;
|
||
#else /* neither TIOCGWINSZ nor WINDOWS */
|
||
return 0;
|
||
#endif /* neither TIOCGWINSZ nor WINDOWS */
|
||
}
|
||
|
||
/* Return a random number between 0 and MAX-1, inclusive.
|
||
|
||
If MAX is greater than the value of RAND_MAX+1 on the system, the
|
||
returned value will be in the range [0, RAND_MAX]. This may be
|
||
fixed in a future release.
|
||
|
||
The random number generator is seeded automatically the first time
|
||
it is called.
|
||
|
||
This uses rand() for portability. It has been suggested that
|
||
random() offers better randomness, but this is not required for
|
||
Wget, so I chose to go for simplicity and use rand
|
||
unconditionally.
|
||
|
||
DO NOT use this for cryptographic purposes. It is only meant to be
|
||
used in situations where quality of the random numbers returned
|
||
doesn't really matter. */
|
||
|
||
int
|
||
random_number (int max)
|
||
{
|
||
static int seeded;
|
||
double bounded;
|
||
int rnd;
|
||
|
||
if (!seeded)
|
||
{
|
||
srand (time (NULL));
|
||
seeded = 1;
|
||
}
|
||
rnd = rand ();
|
||
|
||
/* On systems that don't define RAND_MAX, assume it to be 2**15 - 1,
|
||
and enforce that assumption by masking other bits. */
|
||
#ifndef RAND_MAX
|
||
# define RAND_MAX 32767
|
||
rnd &= RAND_MAX;
|
||
#endif
|
||
|
||
/* This is equivalent to rand() % max, but uses the high-order bits
|
||
for better randomness on architecture where rand() is implemented
|
||
using a simple congruential generator. */
|
||
|
||
bounded = (double)max * rnd / (RAND_MAX + 1.0);
|
||
return (int)bounded;
|
||
}
|
||
|
||
/* Return a random uniformly distributed floating point number in the
|
||
[0, 1) range. The precision of returned numbers is 9 digits.
|
||
|
||
Modify this to use drand48() where available! */
|
||
|
||
double
|
||
random_float (void)
|
||
{
|
||
/* We can't rely on any specific value of RAND_MAX, but it must
|
||
always be greater than 1000. */
|
||
int rnd1 = random_number (1000);
|
||
int rnd2 = random_number (1000);
|
||
int rnd3 = random_number (1000);
|
||
return rnd1 / 1000.0 + rnd2 / 1000000.0 + rnd3 / 1000000000.0;
|
||
}
|
||
|
||
/* Implementation of run_with_timeout, a generic timeout-forcing
|
||
routine for systems with Unix-like signal handling. */
|
||
|
||
#ifdef USE_SIGNAL_TIMEOUT
|
||
# ifdef HAVE_SIGSETJMP
|
||
# define SETJMP(env) sigsetjmp (env, 1)
|
||
|
||
static sigjmp_buf run_with_timeout_env;
|
||
|
||
static void
|
||
abort_run_with_timeout (int sig)
|
||
{
|
||
assert (sig == SIGALRM);
|
||
siglongjmp (run_with_timeout_env, -1);
|
||
}
|
||
# else /* not HAVE_SIGSETJMP */
|
||
# define SETJMP(env) setjmp (env)
|
||
|
||
static jmp_buf run_with_timeout_env;
|
||
|
||
static void
|
||
abort_run_with_timeout (int sig)
|
||
{
|
||
assert (sig == SIGALRM);
|
||
/* We don't have siglongjmp to preserve the set of blocked signals;
|
||
if we longjumped out of the handler at this point, SIGALRM would
|
||
remain blocked. We must unblock it manually. */
|
||
int mask = siggetmask ();
|
||
mask &= ~sigmask (SIGALRM);
|
||
sigsetmask (mask);
|
||
|
||
/* Now it's safe to longjump. */
|
||
longjmp (run_with_timeout_env, -1);
|
||
}
|
||
# endif /* not HAVE_SIGSETJMP */
|
||
|
||
/* Arrange for SIGALRM to be delivered in TIMEOUT seconds. This uses
|
||
setitimer where available, alarm otherwise.
|
||
|
||
TIMEOUT should be non-zero. If the timeout value is so small that
|
||
it would be rounded to zero, it is rounded to the least legal value
|
||
instead (1us for setitimer, 1s for alarm). That ensures that
|
||
SIGALRM will be delivered in all cases. */
|
||
|
||
static void
|
||
alarm_set (double timeout)
|
||
{
|
||
#ifdef ITIMER_REAL
|
||
/* Use the modern itimer interface. */
|
||
struct itimerval itv;
|
||
xzero (itv);
|
||
itv.it_value.tv_sec = (long) timeout;
|
||
itv.it_value.tv_usec = 1000000 * (timeout - (long)timeout);
|
||
if (itv.it_value.tv_sec == 0 && itv.it_value.tv_usec == 0)
|
||
/* Ensure that we wait for at least the minimum interval.
|
||
Specifying zero would mean "wait forever". */
|
||
itv.it_value.tv_usec = 1;
|
||
setitimer (ITIMER_REAL, &itv, NULL);
|
||
#else /* not ITIMER_REAL */
|
||
/* Use the old alarm() interface. */
|
||
int secs = (int) timeout;
|
||
if (secs == 0)
|
||
/* Round TIMEOUTs smaller than 1 to 1, not to zero. This is
|
||
because alarm(0) means "never deliver the alarm", i.e. "wait
|
||
forever", which is not what someone who specifies a 0.5s
|
||
timeout would expect. */
|
||
secs = 1;
|
||
alarm (secs);
|
||
#endif /* not ITIMER_REAL */
|
||
}
|
||
|
||
/* Cancel the alarm set with alarm_set. */
|
||
|
||
static void
|
||
alarm_cancel (void)
|
||
{
|
||
#ifdef ITIMER_REAL
|
||
struct itimerval disable;
|
||
xzero (disable);
|
||
setitimer (ITIMER_REAL, &disable, NULL);
|
||
#else /* not ITIMER_REAL */
|
||
alarm (0);
|
||
#endif /* not ITIMER_REAL */
|
||
}
|
||
|
||
/* Call FUN(ARG), but don't allow it to run for more than TIMEOUT
|
||
seconds. Returns true if the function was interrupted with a
|
||
timeout, false otherwise.
|
||
|
||
This works by setting up SIGALRM to be delivered in TIMEOUT seconds
|
||
using setitimer() or alarm(). The timeout is enforced by
|
||
longjumping out of the SIGALRM handler. This has several
|
||
advantages compared to the traditional approach of relying on
|
||
signals causing system calls to exit with EINTR:
|
||
|
||
* The callback function is *forcibly* interrupted after the
|
||
timeout expires, (almost) regardless of what it was doing and
|
||
whether it was in a syscall. For example, a calculation that
|
||
takes a long time is interrupted as reliably as an IO
|
||
operation.
|
||
|
||
* It works with both SYSV and BSD signals because it doesn't
|
||
depend on the default setting of SA_RESTART.
|
||
|
||
* It doesn't require special handler setup beyond a simple call
|
||
to signal(). (It does use sigsetjmp/siglongjmp, but they're
|
||
optional.)
|
||
|
||
The only downside is that, if FUN allocates internal resources that
|
||
are normally freed prior to exit from the functions, they will be
|
||
lost in case of timeout. */
|
||
|
||
bool
|
||
run_with_timeout (double timeout, void (*fun) (void *), void *arg)
|
||
{
|
||
int saved_errno;
|
||
|
||
if (timeout == 0)
|
||
{
|
||
fun (arg);
|
||
return false;
|
||
}
|
||
|
||
signal (SIGALRM, abort_run_with_timeout);
|
||
if (SETJMP (run_with_timeout_env) != 0)
|
||
{
|
||
/* Longjumped out of FUN with a timeout. */
|
||
signal (SIGALRM, SIG_DFL);
|
||
return true;
|
||
}
|
||
alarm_set (timeout);
|
||
fun (arg);
|
||
|
||
/* Preserve errno in case alarm() or signal() modifies it. */
|
||
saved_errno = errno;
|
||
alarm_cancel ();
|
||
signal (SIGALRM, SIG_DFL);
|
||
errno = saved_errno;
|
||
|
||
return false;
|
||
}
|
||
|
||
#else /* not USE_SIGNAL_TIMEOUT */
|
||
|
||
#ifndef WINDOWS
|
||
/* A stub version of run_with_timeout that just calls FUN(ARG). Don't
|
||
define it under Windows, because Windows has its own version of
|
||
run_with_timeout that uses threads. */
|
||
|
||
int
|
||
run_with_timeout (double timeout, void (*fun) (void *), void *arg)
|
||
{
|
||
fun (arg);
|
||
return false;
|
||
}
|
||
#endif /* not WINDOWS */
|
||
#endif /* not USE_SIGNAL_TIMEOUT */
|
||
|
||
#ifndef WINDOWS
|
||
|
||
/* Sleep the specified amount of seconds. On machines without
|
||
nanosleep(), this may sleep shorter if interrupted by signals. */
|
||
|
||
void
|
||
xsleep (double seconds)
|
||
{
|
||
#ifdef HAVE_NANOSLEEP
|
||
/* nanosleep is the preferred interface because it offers high
|
||
accuracy and, more importantly, because it allows us to reliably
|
||
restart receiving a signal such as SIGWINCH. (There was an
|
||
actual Debian bug report about --limit-rate malfunctioning while
|
||
the terminal was being resized.) */
|
||
struct timespec sleep, remaining;
|
||
sleep.tv_sec = (long) seconds;
|
||
sleep.tv_nsec = 1000000000 * (seconds - (long) seconds);
|
||
while (nanosleep (&sleep, &remaining) < 0 && errno == EINTR)
|
||
/* If nanosleep has been interrupted by a signal, adjust the
|
||
sleeping period and return to sleep. */
|
||
sleep = remaining;
|
||
#elif defined(HAVE_USLEEP)
|
||
/* If usleep is available, use it in preference to select. */
|
||
if (seconds >= 1)
|
||
{
|
||
/* On some systems, usleep cannot handle values larger than
|
||
1,000,000. If the period is larger than that, use sleep
|
||
first, then add usleep for subsecond accuracy. */
|
||
sleep (seconds);
|
||
seconds -= (long) seconds;
|
||
}
|
||
usleep (seconds * 1000000);
|
||
#else /* fall back select */
|
||
/* Note that, although Windows supports select, it can't be used to
|
||
implement sleeping because Winsock's select doesn't implement
|
||
timeout when it is passed NULL pointers for all fd sets. (But it
|
||
does under Cygwin, which implements Unix-compatible select.) */
|
||
struct timeval sleep;
|
||
sleep.tv_sec = (long) seconds;
|
||
sleep.tv_usec = 1000000 * (seconds - (long) seconds);
|
||
select (0, NULL, NULL, NULL, &sleep);
|
||
/* If select returns -1 and errno is EINTR, it means we were
|
||
interrupted by a signal. But without knowing how long we've
|
||
actually slept, we can't return to sleep. Using gettimeofday to
|
||
track sleeps is slow and unreliable due to clock skew. */
|
||
#endif
|
||
}
|
||
|
||
#endif /* not WINDOWS */
|
||
|
||
/* Encode the string STR of length LENGTH to base64 format and place it
|
||
to B64STORE. The output will be \0-terminated, and must point to a
|
||
writable buffer of at least 1+BASE64_LENGTH(length) bytes. It
|
||
returns the length of the resulting base64 data, not counting the
|
||
terminating zero.
|
||
|
||
This implementation will not emit newlines after 76 characters of
|
||
base64 data. */
|
||
|
||
int
|
||
base64_encode (const char *str, int length, char *b64store)
|
||
{
|
||
/* Conversion table. */
|
||
static char tbl[64] = {
|
||
'A','B','C','D','E','F','G','H',
|
||
'I','J','K','L','M','N','O','P',
|
||
'Q','R','S','T','U','V','W','X',
|
||
'Y','Z','a','b','c','d','e','f',
|
||
'g','h','i','j','k','l','m','n',
|
||
'o','p','q','r','s','t','u','v',
|
||
'w','x','y','z','0','1','2','3',
|
||
'4','5','6','7','8','9','+','/'
|
||
};
|
||
int i;
|
||
const unsigned char *s = (const unsigned char *) str;
|
||
char *p = b64store;
|
||
|
||
/* Transform the 3x8 bits to 4x6 bits, as required by base64. */
|
||
for (i = 0; i < length; i += 3)
|
||
{
|
||
*p++ = tbl[s[0] >> 2];
|
||
*p++ = tbl[((s[0] & 3) << 4) + (s[1] >> 4)];
|
||
*p++ = tbl[((s[1] & 0xf) << 2) + (s[2] >> 6)];
|
||
*p++ = tbl[s[2] & 0x3f];
|
||
s += 3;
|
||
}
|
||
|
||
/* Pad the result if necessary... */
|
||
if (i == length + 1)
|
||
*(p - 1) = '=';
|
||
else if (i == length + 2)
|
||
*(p - 1) = *(p - 2) = '=';
|
||
|
||
/* ...and zero-terminate it. */
|
||
*p = '\0';
|
||
|
||
return p - b64store;
|
||
}
|
||
|
||
#define IS_ASCII(c) (((c) & 0x80) == 0)
|
||
#define IS_BASE64(c) ((IS_ASCII (c) && base64_char_to_value[c] >= 0) || c == '=')
|
||
|
||
/* Get next character from the string, except that non-base64
|
||
characters are ignored, as mandated by rfc2045. */
|
||
#define NEXT_BASE64_CHAR(c, p) do { \
|
||
c = *p++; \
|
||
} while (c != '\0' && !IS_BASE64 (c))
|
||
|
||
/* Decode data from BASE64 (assumed to be encoded as base64) into
|
||
memory pointed to by TO. TO should be large enough to accomodate
|
||
the decoded data, which is guaranteed to be less than
|
||
strlen(base64).
|
||
|
||
Since TO is assumed to contain binary data, it is not
|
||
NUL-terminated. The function returns the length of the data
|
||
written to TO. -1 is returned in case of error caused by malformed
|
||
base64 input. */
|
||
|
||
int
|
||
base64_decode (const char *base64, char *to)
|
||
{
|
||
/* Table of base64 values for first 128 characters. Note that this
|
||
assumes ASCII (but so does Wget in other places). */
|
||
static short base64_char_to_value[128] =
|
||
{
|
||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
|
||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
|
||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
|
||
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
|
||
-1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
|
||
54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
|
||
-1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
|
||
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
|
||
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
|
||
25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
|
||
29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
|
||
39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
|
||
49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
|
||
};
|
||
|
||
const char *p = base64;
|
||
char *q = to;
|
||
|
||
while (1)
|
||
{
|
||
unsigned char c;
|
||
unsigned long value;
|
||
|
||
/* Process first byte of a quadruplet. */
|
||
NEXT_BASE64_CHAR (c, p);
|
||
if (!c)
|
||
break;
|
||
if (c == '=')
|
||
return -1; /* illegal '=' while decoding base64 */
|
||
value = base64_char_to_value[c] << 18;
|
||
|
||
/* Process scond byte of a quadruplet. */
|
||
NEXT_BASE64_CHAR (c, p);
|
||
if (!c)
|
||
return -1; /* premature EOF while decoding base64 */
|
||
if (c == '=')
|
||
return -1; /* illegal `=' while decoding base64 */
|
||
value |= base64_char_to_value[c] << 12;
|
||
*q++ = value >> 16;
|
||
|
||
/* Process third byte of a quadruplet. */
|
||
NEXT_BASE64_CHAR (c, p);
|
||
if (!c)
|
||
return -1; /* premature EOF while decoding base64 */
|
||
|
||
if (c == '=')
|
||
{
|
||
NEXT_BASE64_CHAR (c, p);
|
||
if (!c)
|
||
return -1; /* premature EOF while decoding base64 */
|
||
if (c != '=')
|
||
return -1; /* padding `=' expected but not found */
|
||
continue;
|
||
}
|
||
|
||
value |= base64_char_to_value[c] << 6;
|
||
*q++ = 0xff & value >> 8;
|
||
|
||
/* Process fourth byte of a quadruplet. */
|
||
NEXT_BASE64_CHAR (c, p);
|
||
if (!c)
|
||
return -1; /* premature EOF while decoding base64 */
|
||
if (c == '=')
|
||
continue;
|
||
|
||
value |= base64_char_to_value[c];
|
||
*q++ = 0xff & value;
|
||
}
|
||
|
||
return q - to;
|
||
}
|
||
|
||
#undef IS_ASCII
|
||
#undef IS_BASE64
|
||
#undef NEXT_BASE64_CHAR
|
||
|
||
/* Simple merge sort for use by stable_sort. Implementation courtesy
|
||
Zeljko Vrba with additional debugging by Nenad Barbutov. */
|
||
|
||
static void
|
||
mergesort_internal (void *base, void *temp, size_t size, size_t from, size_t to,
|
||
int (*cmpfun) (const void *, const void *))
|
||
{
|
||
#define ELT(array, pos) ((char *)(array) + (pos) * size)
|
||
if (from < to)
|
||
{
|
||
size_t i, j, k;
|
||
size_t mid = (to + from) / 2;
|
||
mergesort_internal (base, temp, size, from, mid, cmpfun);
|
||
mergesort_internal (base, temp, size, mid + 1, to, cmpfun);
|
||
i = from;
|
||
j = mid + 1;
|
||
for (k = from; (i <= mid) && (j <= to); k++)
|
||
if (cmpfun (ELT (base, i), ELT (base, j)) <= 0)
|
||
memcpy (ELT (temp, k), ELT (base, i++), size);
|
||
else
|
||
memcpy (ELT (temp, k), ELT (base, j++), size);
|
||
while (i <= mid)
|
||
memcpy (ELT (temp, k++), ELT (base, i++), size);
|
||
while (j <= to)
|
||
memcpy (ELT (temp, k++), ELT (base, j++), size);
|
||
for (k = from; k <= to; k++)
|
||
memcpy (ELT (base, k), ELT (temp, k), size);
|
||
}
|
||
#undef ELT
|
||
}
|
||
|
||
/* Stable sort with interface exactly like standard library's qsort.
|
||
Uses mergesort internally, allocating temporary storage with
|
||
alloca. */
|
||
|
||
void
|
||
stable_sort (void *base, size_t nmemb, size_t size,
|
||
int (*cmpfun) (const void *, const void *))
|
||
{
|
||
if (size > 1)
|
||
{
|
||
void *temp = alloca (nmemb * size * sizeof (void *));
|
||
mergesort_internal (base, temp, size, 0, nmemb - 1, cmpfun);
|
||
}
|
||
}
|