
module DistributedTransaction
extends Integers, FiniteSets

The set of all keys

constants KEY

The sets of optimistic clients and pessimistic clients.

constants OPTIMISTIC CLIENT , PESSIMISTIC CLIENT
CLIENT

∆
= PESSIMISTIC CLIENT ∪OPTIMISTIC CLIENT

Functions that maps a client to keys it wants to read, write.

representing the involved keys of each client.

constants CLIENT READ KEY , CLIENT WRITE KEY
CLIENT KEY

∆
= [c ∈ CLIENT 7→ CLIENT READ KEY [c] ∪ CLIENT WRITE KEY [c]]

assume ∀ c ∈ CLIENT : CLIENT KEY [c] ⊆ KEY

CLIENT PRIMARY is the primary key of each client.

constants CLIENT PRIMARY
assume ∀ c ∈ CLIENT : CLIENT PRIMARY [c] ∈ CLIENT KEY [c]

Timestamp of transactions.

Ts
∆
= Nat \ {0}

NoneTs
∆
= 0

The algorithm is easier to understand in terms of the set of msgs of

all messages that have ever been sent. A more accurate model would use

one or more variables to represent the messages actually in transit,

and it would include actions representing message loss and duplication

as well as message receipt.

In the current spec, there is no need to model message loss because we

are mainly concerned with the algorithm’s safety property. The safety

part of the spec says only what messages may be received and does not

assert that any message actually is received. Thus, there is no

difference between a lost message and one that is never received.

variables req msgs
variables resp msgs

key data[k] is the set of multi-version data of the key. Since we

don’t care about the concrete value of data, a start ts is sufficient

to represent one data version.

variables key data
key lock [k] is the set of lock (zero or one element). A lock is of a

record of [ts: start ts, primary: key, type: lock type]. If primary

equals to k , it is a primary lock, otherwise secondary lock. lock type

is one of {“prewrite optimistic”, “prewrite pessimistic”, “lock key”}.
lock key denotes the pessimistic lock performed by ServerLockKey

1

action, the prewrite pessimistic denotes percolator optimistic lock

who is transformed from a lock key lock by action

ServerPrewritePessimistic, and prewrite optimistic denotes the

classic optimistic lock.

In TiKV , key lock has an additional for update ts field and the

LockType is of four variants:

{“PUT”, “DELETE”, “LOCK ”, “PESSIMISTIC ”}.

In the spec, we abstract them by:

(1) LockType ∈ {“PUT”, “DELETE”, “LOCK ”} ∧ for update ts = 0 ≡
type = “prewrite optimistic”

(2) LockType ∈ {“PUT”, “DELETE”} ∧ for update ts > 0 ≡
type = “prewrite pessimistic”

(3) LockType = “PESSIMISTIC” ≡ type = “lock key”

There’s an min commit ts field to indicate the minimum commit time

It’s used in non-blocked reading.

TODO : upd min commit ts comment.

variables key lock
key write[k] is a sequence of commit or rollback record of the key.

It’s a record of [ts, start ts, type, [protected]]. type can be either

“write” or “rollback”. ts represents the commit ts of “write” record.

Otherwise, ts equals to start ts on “rollback” record. “rollback”

record has an additional protected field. protected signifies the

rollback record would not be collapsed.

variables key write

client state[c] indicates the current transaction stage of client c.

variables client state
client ts[c] is a record of [start ts, commit ts, for update ts, min commit ts].

Fields are all initialized to NoneTs.

variables client ts
client key[c] is a record of [locking: {key}, prewriting: {key}].
Hereby, “locking” denotes the keys whose pessimistic locks

haven’t been acquired, “prewriting” denotes the keys that are pending

for prewrite.

variables client key

next ts is a globally monotonically increasing integer, representing

the virtual clock of transactions. In practice, the variable is

maintained by PD , the time oracle of a cluster.

variables next ts

msg vars
∆
= 〈req msgs, resp msgs〉

client vars
∆
= 〈client state, client ts, client key〉

2

key vars
∆
= 〈key data, key lock , key write〉

vars
∆
= 〈msg vars, client vars, key vars, next ts〉

SendReqs(msgs)
∆
= req msgs ′ = req msgs ∪msgs

SendResp(msg)
∆
= resp msgs ′ = resp msgs ∪ {msg}

Type Definitions

ReqMessages
∆
=

[start ts : Ts, primary : KEY , type : {“lock key”}, key : KEY ,
for update ts : Ts]

∪ [start ts : Ts, primary : KEY , type : {“get”}, key : KEY]
∪ [start ts : Ts, primary : KEY , type : {“prewrite optimistic”}, key : KEY]
∪ [start ts : Ts, primary : KEY , type : {“prewrite pessimistic”}, key : KEY]
∪ [start ts : Ts, primary : KEY , type : {“commit”}, commit ts : Ts]
∪ [start ts : Ts, primary : KEY , type : {“resolve rollbacked”}]
∪ [start ts : Ts, primary : KEY , type : {“resolve committed”}, commit ts : Ts]

In TiKV , there’s an extra flag rollback if not exist in the check txn status request .

Because the client prewrites the primary key and secondary key in parallel , it s possible

that the primary key lock is missing and also no commit or rollback record for the transaction

is found in the write CF , while there is a lock on the secondary key (so other transaction

is blocked, therefore this check txn status is sent). And there are two possible cases:

1. The prewrite request for the primary key has not reached yet.

2. The client is crashed after sending the prewrite request for the secondary key.

In order to address the first case, the client sending check txn status should not rollback

the primary key until the TTL on the secondary key is expired , and thus, rollback if not exist

should be set to false before the TTL expires(and set true afterward).

In TLA + spec, the TTL is considered constantly expired when the action is taken, so the

rollback if not exist is assumed true, thus no need to carry it in the message.

∪ [start ts : Ts, caller start ts : Ts, primary : KEY , type : {“check txn status”},
resolving pessimistic lock : boolean]

RespMessages
∆
=

[start ts : Ts, type : {“prewrited”}, key : KEY]
∪ [start ts : Ts, type : {“get resp”}, key : KEY , value : Ts, met optimistic lock : boolean]

Conceptually, acquire a pessimistic lock of a key is equivalent to reading its value,

and putting the value in the response can reduce communication.Also, as mentioned

above, we don ′t care about the actual value here, so a timestamp can be used

instead of the value.

∪ [start ts : Ts, type : {“locked key”}, key : KEY , value ts : Ts]

3

∪ [start ts : Ts, type : {“lock failed”}, key : KEY , latest commit ts : Ts,
lock ts : Ts, lock type : {“no lock”, “lock key”, “prewrite pessimistic”, “prewrite optimistic”}]

∪ [start ts : Ts, type : {“committed”,
“commit aborted”,
“prewrite aborted”,
“lock key aborted”}]

∪ [start ts : Ts, type : {“check txn status resp”},
action : {“rollbacked”,

“pessimistic rollbacked”,
“committed”,
“min commit ts pushed”,
“lock not exist do nothing”}]

TypeOK
∆
= ∧ req msgs ∈ subset ReqMessages
∧ resp msgs ∈ subset RespMessages
∧ key data ∈ [KEY → subset Ts]
∧ key lock ∈ [KEY → subset [ts : Ts,

primary : KEY ,
As defined above, Ts

∆
= Nat \ 0, here we use 0

to indicates that there s no min commit ts limit.

min commit ts : Ts ∪ {NoneTs},
type : {“prewrite optimistic”,

“prewrite pessimistic”,
“lock key”}]]

At most one lock in key lock [k]

∧ ∀ k ∈ KEY : Cardinality(key lock [k]) ≤ 1
∧ key write ∈ [KEY → subset (

[ts : Ts, start ts : Ts, type : {“write”}]
∪ [ts : Ts, start ts : Ts, type : {“rollback”}, protected : boolean])]

The reading phase only apply for optimistic transactions

∧ client state ∈ [CLIENT → {“init”, “locking”, “reading”, “prewriting”, “committing”}]
∧ client ts ∈ [CLIENT → [start ts : Ts ∪ {NoneTs},

commit ts : Ts ∪ {NoneTs},
for update ts : Ts ∪ {NoneTs},
min commit ts : Ts ∪ {NoneTs}]]

∧ client key ∈ [CLIENT → [locking : subset KEY , prewriting : subset KEY]]
∧ ∀ c ∈ CLIENT : client key [c].locking ∩ client key [c].prewriting = {}
∧ next ts ∈ Ts

Client Actions

ClientReadKey(c)
∆
=

∧ client state[c] = “init”
∧ c ∈ OPTIMISTIC CLIENT
∧ client state ′ = [client state except ! [c] = “reading”]

4

∧ client ts ′ = [client ts except ! [c].start ts = next ts]
∧ next ts ′ = next ts + 1
∧ SendReqs({[type 7→ “get”,

start ts 7→ client ts ′[c].start ts,
primary 7→ CLIENT PRIMARY [c],
key 7→ k] : k ∈ CLIENT READ KEY [c]})

∧ unchanged 〈resp msgs, client key , key vars〉

ClientLockKey(c)
∆
=

∧ client state[c] = “reading”
∧ client state ′ = [client state except ! [c] = “locking”]
∧ client ts ′ = [client ts except ! [c].start ts = next ts, ! [c].for update ts = next ts]
∧ next ts ′ = next ts + 1
Assume we need to acquire pessimistic locks for all keys

∧ client key ′ = [client key except ! [c].locking = CLIENT KEY [c]]
∧ SendReqs({[type 7→ “lock key”,

start ts 7→ client ts ′[c].start ts,
primary 7→ CLIENT PRIMARY [c],
key 7→ k ,
for update ts 7→ client ts ′[c].for update ts] : k ∈ CLIENT KEY [c]})

∧ unchanged 〈resp msgs, key vars〉

ClientLockedKey(c)
∆
=

∧ client state[c] = “locking”
∧ ∃ resp ∈ resp msgs :
∧ resp.type = “locked key”
∧ resp.start ts = client ts[c].start ts
∧ resp.key ∈ client key [c].locking
∧ client key ′ = [client key except ! [c].locking = @ \ {resp.key}]
∧ unchanged 〈msg vars, key vars, client ts, client state, next ts〉

ClientRetryLockKey(c)
∆
=

∧ client state[c] = “locking”
∧ ∃ resp ∈ resp msgs :
∧ resp.type = “lock failed”
∧ resp.start ts = client ts[c].start ts
∧ resp.latest commit ts > client ts[c].for update ts
∧ client ts ′ = [client ts except ! [c].for update ts = resp.latest commit ts]
∧ if resp.lock type = “lock key” ∧ ¬resp.lock ts = client ts[c].start ts

then
∧ SendReqs({[type 7→ “check txn status”,

start ts 7→ client ts[c].start ts,
caller start ts 7→ next ts,
primary 7→ CLIENT PRIMARY [c],
resoving pessimistic lock 7→ true]})

∧ next ts ′ = next ts + 1

5

∧ unchanged 〈resp msgs, key vars, client state, client key〉
else if ¬resp.lock type = “no lock”
then
∧ SendReqs({[type 7→ “check txn status”,

start ts 7→ client ts[c].start ts,
caller start ts 7→ next ts,
primary 7→ CLIENT PRIMARY [c],
resoving pessimistic lock 7→ false]})

∧ next ts ′ = next ts + 1
∧ unchanged 〈resp msgs, key vars, client state, client key〉

else
∧ unchanged 〈resp msgs, key vars, client state, client key , next ts〉

∧ SendReqs({[type 7→ “lock key”,
start ts 7→ client ts ′[c].start ts,
primary 7→ CLIENT PRIMARY [c],
key 7→ resp.key ,
for update ts 7→ client ts ′[c].for update ts]})

ClientPrewritePessimistic(c)
∆
=

∧ client state[c] = “locking”
∧ client key [c].locking = {}
∧ client state ′ = [client state except ! [c] = “prewriting”]
∧ client key ′ = [client key except ! [c].prewriting = CLIENT KEY [c]]
∧ SendReqs({[type 7→ “prewrite pessimistic”,

start ts 7→ client ts[c].start ts,
primary 7→ CLIENT PRIMARY [c],
key 7→ k] : k ∈ CLIENT KEY [c]})

∧ unchanged 〈resp msgs, key vars, client ts, next ts〉

Add a function like ClientRetryReadKey(?)

ClientCheckTxnStatus(c)
∆
=

∧ client state[c] = “reading”
∧ ∃ resp ∈ resp msgs :
∧ resp.type = “get resp”
∧ resp.met optimistic lock = true
∧ SendReqs({[type 7→ “check txn status”,

start ts 7→ client ts[c].start ts,
caller start ts 7→ next ts,
primary 7→ CLIENT PRIMARY [c],
resovling pessimistic lock 7→ false]})

∧ unchanged 〈resp msgs, client vars, key vars〉

ClientPrewriteOptimistic(c)
∆
=

∧ client state[c] = “reading”
∧ client state ′ = [client state except ! [c] = “prewriting”]
∧ client key ′ = [client key except ! [c].prewriting = CLIENT KEY [c]]

6

∧ SendReqs({[type 7→ “prewrite optimistic”,
start ts 7→ client ts[c].start ts,
primary 7→ CLIENT PRIMARY [c],
key 7→ k] : k ∈ CLIENT KEY [c]})

∧ unchanged 〈resp msgs, client ts, key vars, next ts〉

ClientPrewrited(c)
∆
=

∧ client state[c] = “prewriting”
∧ client key [c].locking = {}
∧ ∃ resp ∈ resp msgs :
∧ resp.type = “prewrited”
∧ resp.start ts = client ts[c].start ts
∧ resp.key ∈ client key [c].prewriting
∧ client key ′ = [client key except ! [c].prewriting = @ \ {resp.key}]
∧ unchanged 〈msg vars, key vars, client ts, client state, next ts〉

ClientCommit(c)
∆
=

∧ client state[c] = “prewriting”
∧ client key [c].prewriting = {}
∧ client state ′ = [client state except ! [c] = “committing”]
∧ client ts ′ = [client ts except ! [c].commit ts = next ts]
∧ next ts ′ = next ts + 1
∧ SendReqs({[type 7→ “commit”,

start ts 7→ client ts ′[c].start ts,
primary 7→ CLIENT PRIMARY [c],
commit ts 7→ client ts ′[c].commit ts]})

∧ unchanged 〈resp msgs, key vars, client key〉

Server Actions

Write the write column and unlock the lock iff the lock exists.

unlock key(k)
∆
=

∧ key lock ′ = [key lock except ! [k] = {}]

commit(pk , start ts, commit ts)
∆
=

∃ l ∈ key lock [pk] :
∧ l .ts = start ts
∧ unlock key(pk)
∧ key write ′ = [key write except ! [pk] = @ ∪ {[ts 7→ commit ts,

type 7→ “write”,
start ts 7→ start ts]}]

Rollback the transaction that starts at start ts on key k .

rollback(k , start ts)
∆
=

let
Rollback record on the primary key of a pessimistic transaction

7

needs to be protected from being collapsed .If we can t decide

whether it suffices that because the lock is missing or mismatched,

it should also be protected.

protected
∆
= ∨ ∃ l ∈ key lock [k] :

∧ l .ts = start ts
∧ l .primary = k
∧ l .type ∈ {“lock key”, “prewrite pessimistic”}

∨ ∃ l ∈ key lock [k] : l .ts 6= start ts
∨ key lock [k] = {}

in
If a lock exists and has the same ts, unlock it.

∧ if ∃ l ∈ key lock [k] : l .ts = start ts
then unlock key(k)
else unchanged key lock

∧ key data ′ = [key data except ! [k] = @ \ {start ts}]
∧ if

∧ ¬∃w ∈ key write[k] : w .ts = start ts
then

key write ′ = [key write except
! [k] =

collapse rollback

(@ \ {w ∈ @ : w .type = “rollback” ∧ ¬w .protected ∧ w .ts < start ts})
write rollback record

∪ {[ts 7→ start ts,
start ts 7→ start ts,
type 7→ “rollback”,
protected 7→ protected]}]

else
unchanged 〈key write〉

ServerLockKey
∆
=

∃ req ∈ req msgs :
∧ req .type = “lock key”
∧ let

k
∆
= req .key

start ts
∆
= req .start ts

in
Pessimistic lock is allowed only if no stale lock exists. If

there is one, wait until ServerCleanupStaleLock to clean it up.

∧ key lock [k] = {}
∧ let

latest write
∆
= {w ∈ key write[k] : ∀w2 ∈ key write[k] : w .ts ≥ w2.ts}

all commits
∆
= {w ∈ key write[k] : w .type = “write”}

latest commit
∆
= {w ∈ all commits : ∀w2 ∈ all commits : w .ts ≥ w2.ts}

8

in
if ∃w ∈ key write[k] : w .start ts = start ts ∧ w .type = “rollback”
then

If corresponding rollback record is found, which

indicates that the transcation is rollbacked , abort the

transaction.

∧ SendResp([start ts 7→ start ts, type 7→ “lock key aborted”])
∧ unchanged 〈req msgs, client vars, key vars, next ts〉

else
Acquire pessimistic lock only if for update ts of req

is greater or equal to the latest “write” record.

Because if the latest record is “write”, it means that

a new version is committed after for update ts, which

violates Read Committed guarantee.

∨ ∧ ¬∃w ∈ latest commit : w .ts > req .for update ts
∧ key lock ′ = [key lock except ! [k] = {[ts 7→ start ts,

primary 7→ req .primary ,
min commit ts 7→ NoneTs,
type 7→ “lock key”]}]

∧ SendResp([start ts 7→ start ts, type 7→ “locked key”, key 7→ k])
∧ unchanged 〈req msgs, client vars, key data, key write, next ts〉

Otherwise, reject the request and let client to retry

with new for update ts.

∨ ∃w ∈ latest commit :
∧ w .ts > req .for update ts
∧ SendResp([start ts 7→ start ts,

type 7→ “lock failed”,
key 7→ k ,
latest commit ts 7→ w .ts])

∧ unchanged 〈req msgs, client vars, key vars, next ts〉

ServerReadKey
∆
=

∃ req ∈ req msgs :
∧ req .type = “get”
∧ let

k
∆
= req .key

start ts
∆
= req .start ts

in
∧ if ¬∃ l ∈ key lock : l .type = “prewrite optimistic”

then
∧ SendResp([start ts 7→ start ts, type 7→ “get resp”, key 7→ k , value 7→ Ts, met optimistic lock 7→ false]) TS here is not defined now . . .

∧ unchanged 〈req msgs, client vars, key vars〉
else
∧ SendResp([start ts 7→ start ts, type 7→ “get resp”, key 7→ k , value 7→ NoneTs, met optimistic lock 7→ true])
∧ unchanged 〈req msgs, client vars, key vars〉

9

ServerPrewritePessimistic
∆
=

∃ req ∈ req msgs :
∧ req .type = “prewrite pessimistic”
∧ let

k
∆
= req .key

start ts
∆
= req .start ts

in
Pessimistic prewrite is allowed if pressimistic lock is

acquired, or, there’s no lock, and no write record whose

commit ts ≥ start ts otherwise abort the transaction.

∧ if ∃ l ∈ key lock [k] : l .ts = start ts
∨ ¬∃w ∈ key write[k] : w .ts ≥ start ts

then
∧ key lock ′ = [key lock except ! [k] = {[ts 7→ start ts,

primary 7→ req .primary ,
type 7→ “prewrite pessimistic”]}]

∧ key data ′ = [key data except ! [k] = @ ∪ {start ts}]
∧ SendResp([start ts 7→ start ts, type 7→ “prewrited”, key 7→ k])
∧ unchanged 〈req msgs, client vars, key write, next ts〉

else
∧ SendResp([start ts 7→ start ts, type 7→ “prewrite aborted”])
∧ unchanged 〈req msgs, client vars, key vars, next ts〉

ServerPrewriteOptimistic
∆
=

∃ req ∈ req msgs :
∧ req .type = “prewrite optimistic”
∧ let

k
∆
= req .key

start ts
∆
= req .start ts

in
∧ if ∃w ∈ key write[k] : w .ts ≥ start ts

then
∧ SendResp([start ts 7→ start ts, type 7→ “prewrite aborted”])
∧ unchanged 〈req msgs, client vars, key vars, next ts〉

else
Optimistic prewrite is allowed only if no stale lock exists. If

there is one, wait until ServerCleanupStaleLock to clean it up.

∧ ∨ key lock [k] = {}
∨ ∃ l ∈ key lock [k] : l .ts = start ts

∧ key lock ′ = [key lock except ! [k] = {[ts 7→ start ts,
primary 7→ req .primary ,
min commit ts 7→ NoneTs,
type 7→ “prewrite optimistic”]}]

∧ key data ′ = [key data except ! [k] = @ ∪ {start ts}]
∧ SendResp([start ts 7→ start ts, type 7→ “prewrited”, key 7→ k])

10

∧ unchanged 〈req msgs, client vars, key write, next ts〉

ServerCommit
∆
=

∃ req ∈ req msgs :
∧ req .type = “commit”
∧ let

pk
∆
= req .primary

start ts
∆
= req .start ts

in
if ∃w ∈ key write[pk] : w .start ts = start ts ∧ w .type = “write”
then

Key has already been committed. Do nothing.

∧ SendResp([start ts 7→ start ts, type 7→ “committed”])
∧ unchanged 〈req msgs, client vars, key vars, next ts〉

else
if ∃ l ∈ key lock [pk] : l .ts = start ts
then

Commit the key only if the prewrite lock exists.

∧ commit(pk , start ts, req .commit ts)
∧ SendResp([start ts 7→ start ts, type 7→ “committed”])
∧ unchanged 〈req msgs, client vars, key data, next ts〉

else
Otherwise, abort the transaction.

∧ SendResp([start ts 7→ start ts, type 7→ “commit aborted”])
∧ unchanged 〈req msgs, client vars, key vars, next ts〉

In the spec, the primary key with a lock may clean up itself

spontaneously. There is no need to model a client to request clean up

because there is no difference between a optimistic client trying to

read a key that has lock timeouted and the key trying to unlock itself.

ServerCleanupStaleLock
∆
=

∃ k ∈ KEY :
∃ l ∈ key lock [k] :
∧ SendReqs({[type 7→ “check txn status”,

start ts 7→ l .ts,
caller start ts 7→ next ts,
primary 7→ l .primary ,
resolving pessimistic lock 7→ l .type = “lock key”]})

∧ next ts ′ = next ts + 1
∧ unchanged 〈resp msgs, client vars, key vars〉

Clean up the stale transaction by checking the status of the primary key.

In practice, the transaction will be rolled back if TTL on the lock is expired. But

because it is hard to model the TTL in TLA+ spec, the TTL is considered constantly

expired when the action is taken.

11

Moreover, TiKV will send a response for TxnStatus to the client , and then depending

on the TxnStatus, the client will send resolve rollback or resolve commit to the

secondary keys to clean up stale locks.In the TLA + spec, the response to check txn status

is omitted and TiKV will directly send resolve rollback or resolve commit message to

secondary keys, because the action of client sending resolve message by proxying the

TxnStatus from TiKV does not change the state of the client , therefore is equal to directly

sending resolve message by TiKV

ServerCheckTxnStatus
∆
=

∃ req ∈ req msgs :
∧ req .type = “check txn status”
∧ let

pk
∆
= req .primary

start ts
∆
= req .start ts

committed
∆
= {w ∈ key write[pk] : w .start ts = start ts ∧ w .type = “write”}

caller start ts
∆
= req .caller start ts

in
if ∃ lock ∈ key lock [pk] : lock .ts = start ts

Found the matching lock .

then
∨
if

Pessimistic lock will be unlocked directly without rollback record .

∃ lock ∈ key lock [pk] :
∧ lock .ts = start ts
∧ lock .type = “lock key”
∧ req .resolving pessimistic lock = true

then
∧ unlock key(pk)
∧ SendResp({[type 7→ “check txn status resp”,

start ts 7→ start ts,
action 7→ “pessimistic rollback”]})

∧ unchanged 〈msg vars, key data, key write, client vars, next ts〉
else
∧ rollback(pk , start ts)
∧ SendReqs({[type 7→ “resolve rollbacked”,

start ts 7→ start ts,
primary 7→ pk]})

∧ SendResp([type 7→ “check txn status resp”,
start ts 7→ start ts,
action 7→ “rollbacked”])

∧ unchanged 〈client vars, next ts〉
∨

Push min commit ts

∃ lock ∈ key lock [pk] :

12

∧ key lock ′ = [key lock except ! [pk] = {[ts 7→ lock .ts,
type 7→ lock .type,
primary 7→ lock .primary ,
min commit ts 7→ caller start ts]}]

∧ SendResp([type 7→ “check txn status resp”,
start ts 7→ start ts,
action 7→ “min commit ts pushed”])

∧ unchanged 〈req msgs, key data, key write, client vars, next ts〉
Lock not found or start ts on the lock mismatches.

else
if committed 6= {} then
∧ SendReqs({[type 7→ “resolve committed”,

start ts 7→ start ts,
primary 7→ pk ,
commit ts 7→ w .ts] : w ∈ committed})

∧ SendResp([type 7→ “check txn status resp”,
start ts 7→ start ts,
action 7→ “committed”])

∧ unchanged 〈client vars, key vars, next ts〉
else if req .resolving pessimistic lock = true then
∧ SendResp({[type 7→ “check txn status resp”,

start ts 7→ start ts,
action 7→ “lock not exist do nothing”]})

∧ unchanged 〈req msgs, client vars, key vars, next ts〉
else
∧ rollback(pk , start ts)
∧ SendReqs({[type 7→ “resolve rollbacked”,

start ts 7→ start ts,
primary 7→ pk]})

∧ SendResp([type 7→ “check txn status resp”,
start ts 7→ start ts,
action 7→ “rollbacked”])

∧ unchanged 〈client vars, next ts〉

ServerResolveCommitted
∆
=

∃ req ∈ req msgs :
∧ req .type = “resolve committed”
∧ let

start ts
∆
= req .start ts

in
∃ k ∈ KEY :
∃ l ∈ key lock [k] :
∧ l .primary = req .primary
∧ l .ts = start ts
∧ commit(k , start ts, req .commit ts)

13

∧ unchanged 〈msg vars, client vars, key data, next ts〉

ServerResolveRollbacked
∆
=

∃ req ∈ req msgs :
∧ req .type = “resolve rollbacked”
∧ let

start ts
∆
= req .start ts

in
∃ k ∈ KEY :
∃ l ∈ key lock [k] :
∧ l .primary = req .primary
∧ l .ts = start ts
∧ rollback(k , start ts)
∧ unchanged 〈msg vars, client vars, next ts〉

Specification

Init
∆
=

∧ next ts = 1
∧ req msgs = {}
∧ resp msgs = {}
∧ client state = [c ∈ CLIENT 7→ “init”]
∧ client key = [c ∈ CLIENT 7→ [locking 7→ {}, prewriting 7→ {}]]
∧ client ts = [c ∈ CLIENT 7→ [start ts 7→ NoneTs,

commit ts 7→ NoneTs,
for update ts 7→ NoneTs,
min commit ts 7→ NoneTs]]

∧ key lock = [k ∈ KEY 7→ {}]
∧ key data = [k ∈ KEY 7→ {}]
∧ key write = [k ∈ KEY 7→ {}]

Next
∆
=

∨ ∃ c ∈ OPTIMISTIC CLIENT :
∨ ClientReadKey(c)
∨ ClientCheckTxnStatus(c)
∨ ClientPrewriteOptimistic(c)
∨ ClientPrewrited(c)
∨ ClientCommit(c)

∨ ∃ c ∈ PESSIMISTIC CLIENT :
∨ ClientReadKey(c)
∨ ClientCheckTxnStatus(c)
∨ ClientLockKey(c)
∨ ClientLockedKey(c)
∨ ClientRetryLockKey(c)
∨ ClientPrewritePessimistic(c)
∨ ClientPrewrited(c)

14

∨ ClientCommit(c)
∨ ServerLockKey
∨ ServerPrewritePessimistic
∨ ServerPrewriteOptimistic
∨ ServerCommit
∨ ServerCleanupStaleLock
∨ ServerCheckTxnStatus
∨ ServerResolveCommitted
∨ ServerResolveRollbacked

Spec
∆
= Init ∧2[Next]vars

Consistency Invariants

Check whether there is a “write” record in key write[k]corresponding

to start ts.

keyCommitted(k , start ts)
∆
=

∃w ∈ key write[k] :
∧ w .start ts = start ts
∧ w .type = “write”

A transaction can t be both committed and aborted.

UniqueCommitOrAbort
∆
=

∀ resp, resp2 ∈ resp msgs :
(resp.type = “committed”) ∧ (resp2.type = “commit aborted”)⇒
resp.start ts 6= resp2.start ts

If a transaction is committed, the primary key must be committed and

the secondary keys of the same transaction must be either committed

or locked.

CommitConsistency
∆
=

∀ resp ∈ resp msgs :
(resp.type = “committed”)⇒
∃ c ∈ CLIENT :
∧ client ts[c].start ts = resp.start ts
Primary key must be committed

∧ keyCommitted(CLIENT PRIMARY [c], resp.start ts)
Secondary key must be either committed or locked by the

start ts of the transaction.

∧ ∀ k ∈ CLIENT KEY [c] :
(¬∃ l ∈ key lock [k] : l .ts = resp.start ts) =
keyCommitted(k , resp.start ts)

If a transaction is aborted, all key of that transaction must be not

committed.

AbortConsistency
∆
=

15

∀ resp ∈ resp msgs :
(resp.type = “commit aborted”)⇒
∀ c ∈ CLIENT :
(client ts[c].start ts = resp.start ts)⇒
¬keyCommitted(CLIENT PRIMARY [c], resp.start ts)

For each write, the commit ts should be strictly greater than the

start ts and have data written into key data[k]. For each rollback,

the commit ts should equals to the start ts.

WriteConsistency
∆
=

∀ k ∈ KEY :
∀w ∈ key write[k] :
∨ ∧ w .type = “write”
∧ w .ts > w .start ts
∧ w .start ts ∈ key data[k]

∨ ∧ w .type = “rollback”
∧ w .ts = w .start ts

When the lock exists, there can’t be a corresponding commit record,

vice versa.

UniqueLockOrWrite
∆
=

∀ k ∈ KEY :
∀ l ∈ key lock [k] :
∀w ∈ key write[k] :
w .start ts 6= l .ts

For each key, ecah record in write column should have a unique start ts.

UniqueWrite
∆
=

∀ k ∈ KEY :
∀w , w2 ∈ key write[k] :
(w .start ts = w2.start ts)⇒ (w = w2)

Snapshot Isolation

Asserts that next ts is monotonically increasing.

NextTsMonotonicity
∆
= 2[next ts ′ ≥ next ts]vars

Asserts that no msg would be deleted once sent.

MsgMonotonicity
∆
=

∧2[∀ req ∈ req msgs : req ∈ req msgs ′]vars
∧2[∀ resp ∈ resp msgs : resp ∈ resp msgs ′]vars

Asserts that all messages sent should have ts less than next ts.

MsgTsConsistency
∆
=

∧ ∀ req ∈ req msgs :
∧ req .start ts ≤ next ts
∧ req .type ∈ {“commit”, “resolve committed”} ⇒

16

req .commit ts ≤ next ts
∧ ∀ resp ∈ resp msgs : resp.start ts ≤ next ts

ReadSnapshotIsolation
∆
=

∧ ∀ resp ∈ resp msgs :
∧ resp.type = “get resp”
∧ let

start ts
∆
= resp.start ts

key
∆
= resp.key

As mentioned before, the value is just a timestamp

value
∆
= resp.value

met optimistic lock
∆
= resp.met optimistic lock

in
∧ ∃ c ∈ CLIENT :
∧ client ts[c].start ts = start ts
∧ let

commit ts
∆
= client ts[c].commit ts

in
if commit ts ∈ Ts then
∧ ¬∃w ∈ key write[key] :
start ts ≤ w .ts ∧ w .ts ≤ commit ts

else
∧ true

SnapshotIsolation is implied from the following assumptions (but is not

necessary) because SnapshotIsolation means that:

(1) Once a transaction is committed, all keys of the transaction should

be always readable or have a lock on secondary keys(eventually readable).

proof by CommitConsistency, MsgMonotonicity

(2) For a given transaction, all transaction that commits after that

transaction should have greater commit ts than the next ts at the

time that the given transaction commits, so as to be able to

distinguish the transactions that have committed before and after

from all transactions that preserved by (1).

proof by NextTsConsistency, MsgTsConsistency

(3) All aborted transactions would be always not readable.

proof by AbortConsistency, MsgMonotonicity

TODO : Explain the ReadSnapshotIsolation

SnapshotIsolation
∆
= ∧ CommitConsistency
∧AbortConsistency
∧NextTsMonotonicity
∧MsgMonotonicity
∧MsgTsConsistency
∧ ReadSnapshotIsolation

17

theorem Safety
∆
=

Spec ⇒ 2(∧ TypeOK
∧UniqueCommitOrAbort
∧ CommitConsistency
∧AbortConsistency
∧WriteConsistency
∧UniqueLockOrWrite
∧UniqueWrite
∧ SnapshotIsolation)

18

