remove TLAPS proof (#12)

This commit is contained in:
foreverbell 2018-03-26 15:58:00 +08:00 committed by Ian
parent 7d1ad5bf38
commit fd7dfc7710

View File

@ -1,6 +1,6 @@
------------------------------- MODULE Percolator ------------------------------
EXTENDS Integers, FiniteSets, Sequences, TLAPS, TLC
EXTENDS Integers, FiniteSets, Sequences, TLC
\* The set of transaction keys.
CONSTANTS KEY
@ -227,14 +227,14 @@ Get(c) ==
Prewrite(c) ==
/\ client_state[c] = "prewriting"
/\ IF client_key[c].pending = {}
THEN \* all keys have been pre-written
/\ next_ts' = next_ts + 1
/\ client_state' = [client_state EXCEPT ![c] = "committing"]
/\ client_ts' = [client_ts EXCEPT ![c].commit_ts = next_ts']
/\ UNCHANGED <<key_vars, client_key>>
ELSE
/\ lock(c)
/\ UNCHANGED <<next_ts>>
THEN \* all keys have been pre-written
/\ next_ts' = next_ts + 1
/\ client_state' = [client_state EXCEPT ![c] = "committing"]
/\ client_ts' = [client_ts EXCEPT ![c].commit_ts = next_ts']
/\ UNCHANGED <<key_vars, client_key>>
ELSE
/\ lock(c)
/\ UNCHANGED <<next_ts>>
\* If we commit the primary key successfully, we can think the transaction is
\* committed.
@ -392,149 +392,10 @@ SnapshotIsolation ==
key_si[k] = TRUE
--------------------------------------------------------------------------------
\* Used for symmetry reduction with TLC.
\* Used for symmetry reduction in TLC.
Symmetry == Permutations(CLIENT)
--------------------------------------------------------------------------------
\* TLAPS proof for proving Spec keeps type invariant.
LEMMA InitStateSatisfiesTypeInvariant ==
Init => TypeInvariant
PROOF
<1> USE DEF Init, TypeInvariant
<1> USE DEF NextTsTypeInv, ClientStateTypeInv, ClientTsTypeInv, ClientKeyTypeInv,
KeyDataTypeInv, KeyLockTypeInv, KeyWriteTypeInv,
KeyLastReadTsTypeInv, KeySiTypeInv
<1> QED BY SMT, KeyNotEmpty
LEMMA findWriteWithStartTSTypeInv ==
ASSUME key_write \in [KEY -> Seq([start_ts: Nat, commit_ts: Nat])],
NEW k \in KEY,
NEW ts \in Nat
PROVE findWriteWithStartTS(k, ts) \in SUBSET [start_ts : Nat, commit_ts : Nat]
PROOF
<1> DEFINE ws == key_write[k]
<1> DEFINE Type == [start_ts : Nat, commit_ts : Nat]
<1>a ws = key_write[k] OBVIOUS
<1>b Type = [start_ts : Nat, commit_ts : Nat] OBVIOUS
<1>c ws \in Seq(Type) BY DEF KeyWriteTypeInv
<1> HIDE DEF ws, Type
<1>d SUFFICES ASSUME NEW w \in DOMAIN ws
PROVE ws[w] \in Type
BY DEF findWriteWithStartTS, ws, Type
<1> QED BY Z3, <1>c
LEMMA NextKeepsTypeInvariant ==
TypeInvariant /\ Next => TypeInvariant'
PROOF
<1> SUFFICES ASSUME TypeInvariant, Next PROVE TypeInvariant' OBVIOUS
<1> USE DEF TypeInvariant
<1> USE DEF client_vars, key_vars
<1> PICK c \in CLIENT : ClientOp(c) BY DEF Next
<1>a CASE Start(c)
<2> USE DEF Start
<2> USE DEF NextTsTypeInv, ClientStateTypeInv, ClientTsTypeInv, ClientKeyTypeInv,
KeyDataTypeInv, KeyLockTypeInv, KeyWriteTypeInv,
KeyLastReadTsTypeInv, KeySiTypeInv
<2> QED BY <1>a
<1>b CASE Get(c)
<2> USE DEF Get, cleanup, readKey
<2>a NextTsTypeInv'
BY <1>b DEF NextTsTypeInv
<2>b ClientStateTypeInv'
BY <1>b DEF ClientStateTypeInv
<2>c ClientTsTypeInv'
BY <1>b DEF ClientTsTypeInv
<2>d ClientKeyTypeInv'
BY <1>b DEF ClientKeyTypeInv
<2>e KeyDataTypeInv'
BY <1>b DEF KeyDataTypeInv, cleanupStaleLock
<2>f KeyLockTypeInv'
BY <1>b DEF KeyLockTypeInv, cleanupStaleLock
<2>g KeyWriteTypeInv'
<3>a ASSUME NEW k1 \in KEY,
NEW ts1 \in Nat,
cleanupStaleLock(k1, ts1)
PROVE KeyWriteTypeInv'
BY <3>a, findWriteWithStartTSTypeInv
DEF ClientTsTypeInv, ClientKeyTypeInv, KeyWriteTypeInv,
KeyLockTypeInv, KeyDataTypeInv, cleanupStaleLock
<3> QED BY <1>b, <3>a DEF KeyWriteTypeInv, ClientKeyTypeInv, ClientTsTypeInv
<2>h KeyLastReadTsTypeInv'
<3>a ASSUME readKey(c)
PROVE KeyLastReadTsTypeInv'
BY <3>a DEF KeyLastReadTsTypeInv, ClientKeyTypeInv, ClientTsTypeInv
<3> QED BY <1>b, <3>a DEF KeyLastReadTsTypeInv, cleanupStaleLock
<2>i KeySiTypeInv'
BY <1>b DEF KeySiTypeInv, cleanupStaleLock, checkSnapshotIsolation
<2> QED BY <2>a, <2>b, <2>c, <2>d, <2>e, <2>f, <2>g, <2>h, <2>i
<1>c CASE Prewrite(c)
<2> USE DEF Prewrite, lock, lockKey
<2>a NextTsTypeInv'
<3>a \/ next_ts' = next_ts + 1
\/ UNCHANGED <<next_ts>>
BY <1>c DEF NextTsTypeInv
<3> QED BY <3>a DEF NextTsTypeInv
<2>b ClientStateTypeInv'
BY <1>c DEF ClientStateTypeInv
<2>c ClientTsTypeInv'
BY <1>c, <2>a DEF ClientTsTypeInv, NextTsTypeInv
<2>d ClientKeyTypeInv'
<3>a CASE client_key[c].pending = {}
BY <1>c, <3>a DEF ClientKeyTypeInv
<3>b CASE client_key[c].pending # {}
<4>a \E k \in KEY :
client_key' = [client_key EXCEPT ![c].pending = @ \ {k}]
BY <1>c, <3>b DEF ClientKeyTypeInv
<4>b PICK k \in KEY : client_key' = [client_key EXCEPT ![c].pending = @ \ {k}]
BY <4>a
<4> QED BY <4>b DEF ClientKeyTypeInv
<3> QED BY <3>a, <3>b
<2>e KeyDataTypeInv'
<3>a CASE client_key[c].pending = {}
BY <1>c, <3>a DEF KeyDataTypeInv
<3>b CASE client_key[c].pending # {}
<4>a \E k \in KEY : \E ts \in Nat :
key_data' = [key_data EXCEPT ![k] = @ \cup {ts}]
BY <1>c, <3>b DEF KeyDataTypeInv, ClientKeyTypeInv, ClientTsTypeInv
<4> QED BY <4>a DEF KeyDataTypeInv
<3> QED BY <3>a, <3>b
<2>f KeyLockTypeInv'
<3>a CASE client_key[c].pending = {}
BY <1>c, <3>a DEF KeyLockTypeInv
<3>b CASE client_key[c].pending # {}
<4>a \E k \in KEY : \E l \in [ts : Nat, primary : KEY] :
key_lock' = [key_lock EXCEPT ![k] = @ \cup {l}]
BY <1>c, <3>b DEF KeyLockTypeInv, ClientKeyTypeInv, ClientTsTypeInv
<4> QED BY <4>a DEF KeyLockTypeInv
<3> QED BY <3>a, <3>b
<2>g KeyWriteTypeInv'
BY <1>c DEF KeyWriteTypeInv
<2>h KeyLastReadTsTypeInv'
BY <1>c DEF KeyLastReadTsTypeInv
<2>i KeySiTypeInv'
BY <1>c DEF KeySiTypeInv
<2> QED BY <2>a, <2>b, <2>c, <2>d, <2>e, <2>f, <2>g, <2>h, <2>i
<1>d CASE Commit(c)
<2> USE DEF Commit, commitPrimary, lock, lockKey, checkSnapshotIsolation
<2> USE DEF NextTsTypeInv, ClientStateTypeInv, ClientTsTypeInv, ClientKeyTypeInv,
KeyDataTypeInv, KeyLockTypeInv, KeyWriteTypeInv,
KeyLastReadTsTypeInv, KeySiTypeInv
<2> QED BY <1>d
<1>e CASE Abort(c)
<2> USE DEF Abort
<2> USE DEF NextTsTypeInv, ClientStateTypeInv, ClientTsTypeInv, ClientKeyTypeInv,
KeyDataTypeInv, KeyLockTypeInv, KeyWriteTypeInv,
KeyLastReadTsTypeInv, KeySiTypeInv
<2> QED BY <1>e
<1> QED BY <1>a, <1>b, <1>c, <1>d, <1>e DEF ClientOp
THEOREM TypeSafety ==
PercolatorSpec => []TypeInvariant
PROOF
<1> SUFFICES ASSUME Init /\ [][Next]_vars PROVE []TypeInvariant
BY DEF PercolatorSpec
<1> QED BY InitStateSatisfiesTypeInvariant, NextKeepsTypeInvariant, PTL
THEOREM Safety ==
PercolatorSpec => [](/\ TypeInvariant
/\ WriteConsistency
@ -543,4 +404,4 @@ THEOREM Safety ==
/\ AbortedConsistency
/\ SnapshotIsolation)
================================================================================
================================================================================