mirror of
https://github.com/mirror/tinycc.git
synced 2025-01-15 05:20:06 +08:00
56481d554f
/* Use "-g" as alias for "-g1". Use "-g0" to disable debug */ So not using -g is now the alias for -g0 ?!? This reverts commit8759b2581d
. This reverts commit3ce7bc6efc
. This reverts commit5fb582ab7f
. This reverts commitaea68dbb40
. This reverts commitfa9c31c3db
. This reverts commitb3bebdb20a
. This reverts commitecf8e5a00e
. This reverts commitfe6b5c08dc
. This reverts commite2e5377e7b
. This reverts commit1cd7998905
.
3236 lines
101 KiB
C
3236 lines
101 KiB
C
/*
|
|
* ARM specific functions for TCC assembler
|
|
*
|
|
* Copyright (c) 2001, 2002 Fabrice Bellard
|
|
* Copyright (c) 2020 Danny Milosavljevic
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
#ifdef TARGET_DEFS_ONLY
|
|
|
|
#define CONFIG_TCC_ASM
|
|
#define NB_ASM_REGS 16
|
|
|
|
ST_FUNC void g(int c);
|
|
ST_FUNC void gen_le16(int c);
|
|
ST_FUNC void gen_le32(int c);
|
|
|
|
/*************************************************************/
|
|
#else
|
|
/*************************************************************/
|
|
|
|
#define USING_GLOBALS
|
|
#include "tcc.h"
|
|
|
|
enum {
|
|
OPT_REG32,
|
|
OPT_REGSET32,
|
|
OPT_IM8,
|
|
OPT_IM8N,
|
|
OPT_IM32,
|
|
OPT_VREG32,
|
|
OPT_VREG64,
|
|
};
|
|
#define OP_REG32 (1 << OPT_REG32)
|
|
#define OP_VREG32 (1 << OPT_VREG32)
|
|
#define OP_VREG64 (1 << OPT_VREG64)
|
|
#define OP_REG (OP_REG32 | OP_VREG32 | OP_VREG64)
|
|
#define OP_IM32 (1 << OPT_IM32)
|
|
#define OP_IM8 (1 << OPT_IM8)
|
|
#define OP_IM8N (1 << OPT_IM8N)
|
|
#define OP_REGSET32 (1 << OPT_REGSET32)
|
|
|
|
typedef struct Operand {
|
|
uint32_t type;
|
|
union {
|
|
uint8_t reg;
|
|
uint16_t regset;
|
|
ExprValue e;
|
|
};
|
|
} Operand;
|
|
|
|
/* Read the VFP register referred to by token T.
|
|
If OK, returns its number.
|
|
If not OK, returns -1. */
|
|
static int asm_parse_vfp_regvar(int t, int double_precision)
|
|
{
|
|
if (double_precision) {
|
|
if (t >= TOK_ASM_d0 && t <= TOK_ASM_d15)
|
|
return t - TOK_ASM_d0;
|
|
} else {
|
|
if (t >= TOK_ASM_s0 && t <= TOK_ASM_s31)
|
|
return t - TOK_ASM_s0;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/* Parse a text containing operand and store the result in OP */
|
|
static void parse_operand(TCCState *s1, Operand *op)
|
|
{
|
|
ExprValue e;
|
|
int8_t reg;
|
|
uint16_t regset = 0;
|
|
|
|
op->type = 0;
|
|
|
|
if (tok == '{') { // regset literal
|
|
next(); // skip '{'
|
|
while (tok != '}' && tok != TOK_EOF) {
|
|
reg = asm_parse_regvar(tok);
|
|
if (reg == -1) {
|
|
expect("register");
|
|
return;
|
|
} else
|
|
next(); // skip register name
|
|
|
|
if ((1 << reg) < regset)
|
|
tcc_warning("registers will be processed in ascending order by hardware--but are not specified in ascending order here");
|
|
regset |= 1 << reg;
|
|
if (tok != ',')
|
|
break;
|
|
next(); // skip ','
|
|
}
|
|
if (tok != '}')
|
|
expect("'}'");
|
|
next(); // skip '}'
|
|
if (regset == 0) {
|
|
// ARM instructions don't support empty regset.
|
|
tcc_error("empty register list is not supported");
|
|
} else {
|
|
op->type = OP_REGSET32;
|
|
op->regset = regset;
|
|
}
|
|
return;
|
|
} else if ((reg = asm_parse_regvar(tok)) != -1) {
|
|
next(); // skip register name
|
|
op->type = OP_REG32;
|
|
op->reg = (uint8_t) reg;
|
|
return;
|
|
} else if ((reg = asm_parse_vfp_regvar(tok, 0)) != -1) {
|
|
next(); // skip register name
|
|
op->type = OP_VREG32;
|
|
op->reg = (uint8_t) reg;
|
|
return;
|
|
} else if ((reg = asm_parse_vfp_regvar(tok, 1)) != -1) {
|
|
next(); // skip register name
|
|
op->type = OP_VREG64;
|
|
op->reg = (uint8_t) reg;
|
|
return;
|
|
} else if (tok == '#' || tok == '$') {
|
|
/* constant value */
|
|
next(); // skip '#' or '$'
|
|
}
|
|
asm_expr(s1, &e);
|
|
op->type = OP_IM32;
|
|
op->e = e;
|
|
if (!op->e.sym) {
|
|
if ((int) op->e.v < 0 && (int) op->e.v >= -255)
|
|
op->type = OP_IM8N;
|
|
else if (op->e.v == (uint8_t)op->e.v)
|
|
op->type = OP_IM8;
|
|
} else
|
|
expect("operand");
|
|
}
|
|
|
|
/* XXX: make it faster ? */
|
|
ST_FUNC void g(int c)
|
|
{
|
|
int ind1;
|
|
if (nocode_wanted)
|
|
return;
|
|
ind1 = ind + 1;
|
|
if (ind1 > cur_text_section->data_allocated)
|
|
section_realloc(cur_text_section, ind1);
|
|
cur_text_section->data[ind] = c;
|
|
ind = ind1;
|
|
}
|
|
|
|
ST_FUNC void gen_le16 (int i)
|
|
{
|
|
g(i);
|
|
g(i>>8);
|
|
}
|
|
|
|
ST_FUNC void gen_le32 (int i)
|
|
{
|
|
int ind1;
|
|
if (nocode_wanted)
|
|
return;
|
|
ind1 = ind + 4;
|
|
if (ind1 > cur_text_section->data_allocated)
|
|
section_realloc(cur_text_section, ind1);
|
|
cur_text_section->data[ind++] = i & 0xFF;
|
|
cur_text_section->data[ind++] = (i >> 8) & 0xFF;
|
|
cur_text_section->data[ind++] = (i >> 16) & 0xFF;
|
|
cur_text_section->data[ind++] = (i >> 24) & 0xFF;
|
|
}
|
|
|
|
ST_FUNC void gen_expr32(ExprValue *pe)
|
|
{
|
|
gen_le32(pe->v);
|
|
}
|
|
|
|
static uint32_t condition_code_of_token(int token) {
|
|
if (token < TOK_ASM_nopeq) {
|
|
expect("condition-enabled instruction");
|
|
return 0;
|
|
} else
|
|
return (token - TOK_ASM_nopeq) & 15;
|
|
}
|
|
|
|
static void asm_emit_opcode(int token, uint32_t opcode) {
|
|
gen_le32((condition_code_of_token(token) << 28) | opcode);
|
|
}
|
|
|
|
static void asm_emit_unconditional_opcode(uint32_t opcode) {
|
|
gen_le32(opcode);
|
|
}
|
|
|
|
static void asm_emit_coprocessor_opcode(uint32_t high_nibble, uint8_t cp_number, uint8_t cp_opcode, uint8_t cp_destination_register, uint8_t cp_n_operand_register, uint8_t cp_m_operand_register, uint8_t cp_opcode2, int inter_processor_transfer)
|
|
{
|
|
uint32_t opcode = 0xe000000;
|
|
if (inter_processor_transfer)
|
|
opcode |= 1 << 4;
|
|
//assert(cp_opcode < 16);
|
|
opcode |= cp_opcode << 20;
|
|
//assert(cp_n_operand_register < 16);
|
|
opcode |= cp_n_operand_register << 16;
|
|
//assert(cp_destination_register < 16);
|
|
opcode |= cp_destination_register << 12;
|
|
//assert(cp_number < 16);
|
|
opcode |= cp_number << 8;
|
|
//assert(cp_information < 8);
|
|
opcode |= cp_opcode2 << 5;
|
|
//assert(cp_m_operand_register < 16);
|
|
opcode |= cp_m_operand_register;
|
|
asm_emit_unconditional_opcode((high_nibble << 28) | opcode);
|
|
}
|
|
|
|
static void asm_nullary_opcode(int token)
|
|
{
|
|
switch (ARM_INSTRUCTION_GROUP(token)) {
|
|
case TOK_ASM_nopeq:
|
|
asm_emit_opcode(token, 0xd << 21); // mov r0, r0
|
|
break;
|
|
case TOK_ASM_wfeeq:
|
|
asm_emit_opcode(token, 0x320f002);
|
|
case TOK_ASM_wfieq:
|
|
asm_emit_opcode(token, 0x320f003);
|
|
break;
|
|
default:
|
|
expect("nullary instruction");
|
|
}
|
|
}
|
|
|
|
static void asm_unary_opcode(TCCState *s1, int token)
|
|
{
|
|
Operand op;
|
|
parse_operand(s1, &op);
|
|
|
|
switch (ARM_INSTRUCTION_GROUP(token)) {
|
|
case TOK_ASM_swieq:
|
|
case TOK_ASM_svceq:
|
|
if (op.type != OP_IM8)
|
|
expect("immediate 8-bit unsigned integer");
|
|
else {
|
|
/* Note: Dummy operand (ignored by processor): ARM ref documented 0...255, ARM instruction set documented 24 bit */
|
|
asm_emit_opcode(token, (0xf << 24) | op.e.v);
|
|
}
|
|
break;
|
|
default:
|
|
expect("unary instruction");
|
|
}
|
|
}
|
|
|
|
static void asm_binary_opcode(TCCState *s1, int token)
|
|
{
|
|
Operand ops[2];
|
|
Operand rotation;
|
|
uint32_t encoded_rotation = 0;
|
|
uint64_t amount;
|
|
parse_operand(s1, &ops[0]);
|
|
if (tok == ',')
|
|
next();
|
|
else
|
|
expect("','");
|
|
parse_operand(s1, &ops[1]);
|
|
if (ops[0].type != OP_REG32) {
|
|
expect("(destination operand) register");
|
|
return;
|
|
}
|
|
|
|
if (ops[0].reg == 15) {
|
|
tcc_error("'%s' does not support 'pc' as operand", get_tok_str(token, NULL));
|
|
return;
|
|
}
|
|
|
|
if (ops[0].reg == 13)
|
|
tcc_warning("Using 'sp' as operand with '%s' is deprecated by ARM", get_tok_str(token, NULL));
|
|
|
|
if (ops[1].type != OP_REG32) {
|
|
switch (ARM_INSTRUCTION_GROUP(token)) {
|
|
case TOK_ASM_movteq:
|
|
case TOK_ASM_movweq:
|
|
if (ops[1].type == OP_IM8 || ops[1].type == OP_IM8N || ops[1].type == OP_IM32) {
|
|
if (ops[1].e.v >= 0 && ops[1].e.v <= 0xFFFF) {
|
|
uint16_t immediate_value = ops[1].e.v;
|
|
switch (ARM_INSTRUCTION_GROUP(token)) {
|
|
case TOK_ASM_movteq:
|
|
asm_emit_opcode(token, 0x3400000 | (ops[0].reg << 12) | (immediate_value & 0xF000) << 4 | (immediate_value & 0xFFF));
|
|
break;
|
|
case TOK_ASM_movweq:
|
|
asm_emit_opcode(token, 0x3000000 | (ops[0].reg << 12) | (immediate_value & 0xF000) << 4 | (immediate_value & 0xFFF));
|
|
break;
|
|
}
|
|
} else
|
|
expect("(source operand) immediate 16 bit value");
|
|
} else
|
|
expect("(source operand) immediate");
|
|
break;
|
|
default:
|
|
expect("(source operand) register");
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (ops[1].reg == 15) {
|
|
tcc_error("'%s' does not support 'pc' as operand", get_tok_str(token, NULL));
|
|
return;
|
|
}
|
|
|
|
if (ops[1].reg == 13)
|
|
tcc_warning("Using 'sp' as operand with '%s' is deprecated by ARM", get_tok_str(token, NULL));
|
|
|
|
if (tok == ',') {
|
|
next(); // skip ','
|
|
if (tok == TOK_ASM_ror) {
|
|
next(); // skip 'ror'
|
|
parse_operand(s1, &rotation);
|
|
if (rotation.type != OP_IM8) {
|
|
expect("immediate value for rotation");
|
|
return;
|
|
} else {
|
|
amount = rotation.e.v;
|
|
switch (amount) {
|
|
case 8:
|
|
encoded_rotation = 1 << 10;
|
|
break;
|
|
case 16:
|
|
encoded_rotation = 2 << 10;
|
|
break;
|
|
case 24:
|
|
encoded_rotation = 3 << 10;
|
|
break;
|
|
default:
|
|
expect("'8' or '16' or '24'");
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
switch (ARM_INSTRUCTION_GROUP(token)) {
|
|
case TOK_ASM_clzeq:
|
|
if (encoded_rotation)
|
|
tcc_error("clz does not support rotation");
|
|
asm_emit_opcode(token, 0x16f0f10 | (ops[0].reg << 12) | ops[1].reg);
|
|
break;
|
|
case TOK_ASM_sxtbeq:
|
|
asm_emit_opcode(token, 0x6af0070 | (ops[0].reg << 12) | ops[1].reg | encoded_rotation);
|
|
break;
|
|
case TOK_ASM_sxtheq:
|
|
asm_emit_opcode(token, 0x6bf0070 | (ops[0].reg << 12) | ops[1].reg | encoded_rotation);
|
|
break;
|
|
case TOK_ASM_uxtbeq:
|
|
asm_emit_opcode(token, 0x6ef0070 | (ops[0].reg << 12) | ops[1].reg | encoded_rotation);
|
|
break;
|
|
case TOK_ASM_uxtheq:
|
|
asm_emit_opcode(token, 0x6ff0070 | (ops[0].reg << 12) | ops[1].reg | encoded_rotation);
|
|
break;
|
|
default:
|
|
expect("binary instruction");
|
|
}
|
|
}
|
|
|
|
static void asm_coprocessor_opcode(TCCState *s1, int token) {
|
|
uint8_t coprocessor;
|
|
Operand opcode1;
|
|
Operand opcode2;
|
|
uint8_t registers[3];
|
|
unsigned int i;
|
|
uint8_t high_nibble;
|
|
uint8_t mrc = 0;
|
|
|
|
if (tok >= TOK_ASM_p0 && tok <= TOK_ASM_p15) {
|
|
coprocessor = tok - TOK_ASM_p0;
|
|
next();
|
|
} else {
|
|
expect("'p<number>'");
|
|
return;
|
|
}
|
|
|
|
if (tok == ',')
|
|
next();
|
|
else
|
|
expect("','");
|
|
|
|
parse_operand(s1, &opcode1);
|
|
if (opcode1.type != OP_IM8 || opcode1.e.v > 15) {
|
|
tcc_error("opcode1 of instruction '%s' must be an immediate value between 0 and 15", get_tok_str(token, NULL));
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < 3; ++i) {
|
|
if (tok == ',')
|
|
next();
|
|
else
|
|
expect("','");
|
|
if (i == 0 && token != TOK_ASM_cdp2 && (ARM_INSTRUCTION_GROUP(token) == TOK_ASM_mrceq || ARM_INSTRUCTION_GROUP(token) == TOK_ASM_mcreq)) {
|
|
if (tok >= TOK_ASM_r0 && tok <= TOK_ASM_r15) {
|
|
registers[i] = tok - TOK_ASM_r0;
|
|
next();
|
|
} else {
|
|
expect("'r<number>'");
|
|
return;
|
|
}
|
|
} else {
|
|
if (tok >= TOK_ASM_c0 && tok <= TOK_ASM_c15) {
|
|
registers[i] = tok - TOK_ASM_c0;
|
|
next();
|
|
} else {
|
|
expect("'c<number>'");
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
if (tok == ',') {
|
|
next();
|
|
parse_operand(s1, &opcode2);
|
|
} else {
|
|
opcode2.type = OP_IM8;
|
|
opcode2.e.v = 0;
|
|
}
|
|
if (opcode2.type != OP_IM8 || opcode2.e.v > 15) {
|
|
tcc_error("opcode2 of instruction '%s' must be an immediate value between 0 and 15", get_tok_str(token, NULL));
|
|
return;
|
|
}
|
|
|
|
if (token == TOK_ASM_cdp2) {
|
|
high_nibble = 0xF;
|
|
asm_emit_coprocessor_opcode(high_nibble, coprocessor, opcode1.e.v, registers[0], registers[1], registers[2], opcode2.e.v, 0);
|
|
return;
|
|
} else
|
|
high_nibble = condition_code_of_token(token);
|
|
|
|
switch (ARM_INSTRUCTION_GROUP(token)) {
|
|
case TOK_ASM_cdpeq:
|
|
asm_emit_coprocessor_opcode(high_nibble, coprocessor, opcode1.e.v, registers[0], registers[1], registers[2], opcode2.e.v, 0);
|
|
break;
|
|
case TOK_ASM_mrceq:
|
|
// opcode1 encoding changes! highest and lowest bit gone.
|
|
mrc = 1;
|
|
/* fallthrough */
|
|
case TOK_ASM_mcreq:
|
|
// opcode1 encoding changes! highest and lowest bit gone.
|
|
if (opcode1.e.v > 7) {
|
|
tcc_error("opcode1 of instruction '%s' must be an immediate value between 0 and 7", get_tok_str(token, NULL));
|
|
return;
|
|
}
|
|
asm_emit_coprocessor_opcode(high_nibble, coprocessor, (opcode1.e.v << 1) | mrc, registers[0], registers[1], registers[2], opcode2.e.v, 1);
|
|
break;
|
|
default:
|
|
expect("known instruction");
|
|
}
|
|
}
|
|
|
|
/* data processing and single data transfer instructions only */
|
|
#define ENCODE_RN(register_index) ((register_index) << 16)
|
|
#define ENCODE_RD(register_index) ((register_index) << 12)
|
|
#define ENCODE_SET_CONDITION_CODES (1 << 20)
|
|
|
|
/* Note: For data processing instructions, "1" means immediate.
|
|
Note: For single data transfer instructions, "0" means immediate. */
|
|
#define ENCODE_IMMEDIATE_FLAG (1 << 25)
|
|
|
|
#define ENCODE_BARREL_SHIFTER_SHIFT_BY_REGISTER (1 << 4)
|
|
#define ENCODE_BARREL_SHIFTER_MODE_LSL (0 << 5)
|
|
#define ENCODE_BARREL_SHIFTER_MODE_LSR (1 << 5)
|
|
#define ENCODE_BARREL_SHIFTER_MODE_ASR (2 << 5)
|
|
#define ENCODE_BARREL_SHIFTER_MODE_ROR (3 << 5)
|
|
#define ENCODE_BARREL_SHIFTER_REGISTER(register_index) ((register_index) << 8)
|
|
#define ENCODE_BARREL_SHIFTER_IMMEDIATE(value) ((value) << 7)
|
|
|
|
static void asm_block_data_transfer_opcode(TCCState *s1, int token)
|
|
{
|
|
uint32_t opcode;
|
|
int op0_exclam = 0;
|
|
Operand ops[2];
|
|
int nb_ops = 1;
|
|
parse_operand(s1, &ops[0]);
|
|
if (tok == '!') {
|
|
op0_exclam = 1;
|
|
next(); // skip '!'
|
|
}
|
|
if (tok == ',') {
|
|
next(); // skip comma
|
|
parse_operand(s1, &ops[1]);
|
|
++nb_ops;
|
|
}
|
|
if (nb_ops < 1) {
|
|
expect("at least one operand");
|
|
return;
|
|
} else if (ops[nb_ops - 1].type != OP_REGSET32) {
|
|
expect("(last operand) register list");
|
|
return;
|
|
}
|
|
|
|
// block data transfer: 1 0 0 P U S W L << 20 (general case):
|
|
// operands:
|
|
// Rn: bits 19...16 base register
|
|
// Register List: bits 15...0
|
|
|
|
switch (ARM_INSTRUCTION_GROUP(token)) {
|
|
case TOK_ASM_pusheq: // TODO: Optimize 1-register case to: str ?, [sp, #-4]!
|
|
// Instruction: 1 I=0 P=1 U=0 S=0 W=1 L=0 << 20, op 1101
|
|
// operands:
|
|
// Rn: base register
|
|
// Register List: bits 15...0
|
|
if (nb_ops != 1)
|
|
expect("exactly one operand");
|
|
else
|
|
asm_emit_opcode(token, (0x92d << 16) | ops[0].regset); // TODO: base register ?
|
|
break;
|
|
case TOK_ASM_popeq: // TODO: Optimize 1-register case to: ldr ?, [sp], #4
|
|
// Instruction: 1 I=0 P=0 U=1 S=0 W=0 L=1 << 20, op 1101
|
|
// operands:
|
|
// Rn: base register
|
|
// Register List: bits 15...0
|
|
if (nb_ops != 1)
|
|
expect("exactly one operand");
|
|
else
|
|
asm_emit_opcode(token, (0x8bd << 16) | ops[0].regset); // TODO: base register ?
|
|
break;
|
|
case TOK_ASM_stmdaeq:
|
|
case TOK_ASM_ldmdaeq:
|
|
case TOK_ASM_stmeq:
|
|
case TOK_ASM_ldmeq:
|
|
case TOK_ASM_stmiaeq:
|
|
case TOK_ASM_ldmiaeq:
|
|
case TOK_ASM_stmdbeq:
|
|
case TOK_ASM_ldmdbeq:
|
|
case TOK_ASM_stmibeq:
|
|
case TOK_ASM_ldmibeq:
|
|
switch (ARM_INSTRUCTION_GROUP(token)) {
|
|
case TOK_ASM_stmdaeq: // post-decrement store
|
|
opcode = 0x80 << 20;
|
|
break;
|
|
case TOK_ASM_ldmdaeq: // post-decrement load
|
|
opcode = 0x81 << 20;
|
|
break;
|
|
case TOK_ASM_stmeq: // post-increment store
|
|
case TOK_ASM_stmiaeq: // post-increment store
|
|
opcode = 0x88 << 20;
|
|
break;
|
|
case TOK_ASM_ldmeq: // post-increment load
|
|
case TOK_ASM_ldmiaeq: // post-increment load
|
|
opcode = 0x89 << 20;
|
|
break;
|
|
case TOK_ASM_stmdbeq: // pre-decrement store
|
|
opcode = 0x90 << 20;
|
|
break;
|
|
case TOK_ASM_ldmdbeq: // pre-decrement load
|
|
opcode = 0x91 << 20;
|
|
break;
|
|
case TOK_ASM_stmibeq: // pre-increment store
|
|
opcode = 0x98 << 20;
|
|
break;
|
|
case TOK_ASM_ldmibeq: // pre-increment load
|
|
opcode = 0x99 << 20;
|
|
break;
|
|
default:
|
|
tcc_error("internal error: This place should not be reached (fallback in asm_block_data_transfer_opcode)");
|
|
}
|
|
// operands:
|
|
// Rn: first operand
|
|
// Register List: lower bits
|
|
if (nb_ops != 2)
|
|
expect("exactly two operands");
|
|
else if (ops[0].type != OP_REG32)
|
|
expect("(first operand) register");
|
|
else {
|
|
if (op0_exclam)
|
|
opcode |= 1 << 21; // writeback
|
|
asm_emit_opcode(token, opcode | ENCODE_RN(ops[0].reg) | ops[1].regset);
|
|
}
|
|
break;
|
|
default:
|
|
expect("block data transfer instruction");
|
|
}
|
|
}
|
|
|
|
/* Parses shift directive and returns the parts that would have to be set in the opcode because of it.
|
|
Does not encode the actual shift amount.
|
|
It's not an error if there is no shift directive.
|
|
|
|
NB_SHIFT: will be set to 1 iff SHIFT is filled. Note that for rrx, there's no need to fill SHIFT.
|
|
SHIFT: will be filled in with the shift operand to use, if any. */
|
|
static uint32_t asm_parse_optional_shift(TCCState* s1, int* nb_shift, Operand* shift)
|
|
{
|
|
uint32_t opcode = 0;
|
|
*nb_shift = 0;
|
|
switch (tok) {
|
|
case TOK_ASM_asl:
|
|
case TOK_ASM_lsl:
|
|
case TOK_ASM_asr:
|
|
case TOK_ASM_lsr:
|
|
case TOK_ASM_ror:
|
|
switch (tok) {
|
|
case TOK_ASM_asl:
|
|
/* fallthrough */
|
|
case TOK_ASM_lsl:
|
|
opcode = ENCODE_BARREL_SHIFTER_MODE_LSL;
|
|
break;
|
|
case TOK_ASM_asr:
|
|
opcode = ENCODE_BARREL_SHIFTER_MODE_ASR;
|
|
break;
|
|
case TOK_ASM_lsr:
|
|
opcode = ENCODE_BARREL_SHIFTER_MODE_LSR;
|
|
break;
|
|
case TOK_ASM_ror:
|
|
opcode = ENCODE_BARREL_SHIFTER_MODE_ROR;
|
|
break;
|
|
}
|
|
next();
|
|
parse_operand(s1, shift);
|
|
*nb_shift = 1;
|
|
break;
|
|
case TOK_ASM_rrx:
|
|
next();
|
|
opcode = ENCODE_BARREL_SHIFTER_MODE_ROR;
|
|
break;
|
|
}
|
|
return opcode;
|
|
}
|
|
|
|
static uint32_t asm_encode_shift(Operand* shift)
|
|
{
|
|
uint64_t amount;
|
|
uint32_t operands = 0;
|
|
switch (shift->type) {
|
|
case OP_REG32:
|
|
if (shift->reg == 15)
|
|
tcc_error("r15 cannot be used as a shift count");
|
|
else {
|
|
operands = ENCODE_BARREL_SHIFTER_SHIFT_BY_REGISTER;
|
|
operands |= ENCODE_BARREL_SHIFTER_REGISTER(shift->reg);
|
|
}
|
|
break;
|
|
case OP_IM8:
|
|
amount = shift->e.v;
|
|
if (amount > 0 && amount < 32)
|
|
operands = ENCODE_BARREL_SHIFTER_IMMEDIATE(amount);
|
|
else
|
|
tcc_error("shift count out of range");
|
|
break;
|
|
default:
|
|
tcc_error("unknown shift amount");
|
|
}
|
|
return operands;
|
|
}
|
|
|
|
static void asm_data_processing_opcode(TCCState *s1, int token)
|
|
{
|
|
Operand ops[3];
|
|
int nb_ops;
|
|
Operand shift = {0};
|
|
int nb_shift = 0;
|
|
uint32_t operands = 0;
|
|
|
|
/* modulo 16 entries per instruction for the different condition codes */
|
|
uint32_t opcode_idx = (ARM_INSTRUCTION_GROUP(token) - TOK_ASM_andeq) >> 4;
|
|
uint32_t opcode_nos = opcode_idx >> 1; // without "s"; "OpCode" in ARM docs
|
|
|
|
for (nb_ops = 0; nb_ops < sizeof(ops)/sizeof(ops[0]); ) {
|
|
if (tok == TOK_ASM_asl || tok == TOK_ASM_lsl || tok == TOK_ASM_lsr || tok == TOK_ASM_asr || tok == TOK_ASM_ror || tok == TOK_ASM_rrx)
|
|
break;
|
|
parse_operand(s1, &ops[nb_ops]);
|
|
++nb_ops;
|
|
if (tok != ',')
|
|
break;
|
|
next(); // skip ','
|
|
}
|
|
if (tok == ',')
|
|
next();
|
|
operands |= asm_parse_optional_shift(s1, &nb_shift, &shift);
|
|
if (nb_ops < 2)
|
|
expect("at least two operands");
|
|
else if (nb_ops == 2) {
|
|
memcpy(&ops[2], &ops[1], sizeof(ops[1])); // move ops[2]
|
|
memcpy(&ops[1], &ops[0], sizeof(ops[0])); // ops[1] was implicit
|
|
nb_ops = 3;
|
|
} else if (nb_ops == 3) {
|
|
if (opcode_nos == 0xd || opcode_nos == 0xf || opcode_nos == 0xa || opcode_nos == 0xb || opcode_nos == 0x8 || opcode_nos == 0x9) { // mov, mvn, cmp, cmn, tst, teq
|
|
tcc_error("'%s' cannot be used with three operands", get_tok_str(token, NULL));
|
|
return;
|
|
}
|
|
}
|
|
if (nb_ops != 3) {
|
|
expect("two or three operands");
|
|
return;
|
|
} else {
|
|
uint32_t opcode = 0;
|
|
uint32_t immediate_value;
|
|
uint8_t half_immediate_rotation;
|
|
if (nb_shift && shift.type == OP_REG32) {
|
|
if ((ops[0].type == OP_REG32 && ops[0].reg == 15) ||
|
|
(ops[1].type == OP_REG32 && ops[1].reg == 15)) {
|
|
tcc_error("Using the 'pc' register in data processing instructions that have a register-controlled shift is not implemented by ARM");
|
|
return;
|
|
}
|
|
}
|
|
|
|
// data processing (general case):
|
|
// operands:
|
|
// Rn: bits 19...16 (first operand)
|
|
// Rd: bits 15...12 (destination)
|
|
// Operand2: bits 11...0 (second operand); depending on I that's either a register or an immediate
|
|
// operator:
|
|
// bits 24...21: "OpCode"--see below
|
|
|
|
/* operations in the token list are ordered by opcode */
|
|
opcode = opcode_nos << 21; // drop "s"
|
|
if (ops[0].type != OP_REG32)
|
|
expect("(destination operand) register");
|
|
else if (opcode_nos == 0xa || opcode_nos == 0xb || opcode_nos == 0x8 || opcode_nos == 0x9) // cmp, cmn, tst, teq
|
|
operands |= ENCODE_SET_CONDITION_CODES; // force S set, otherwise it's a completely different instruction.
|
|
else
|
|
operands |= ENCODE_RD(ops[0].reg);
|
|
if (ops[1].type != OP_REG32)
|
|
expect("(first source operand) register");
|
|
else if (!(opcode_nos == 0xd || opcode_nos == 0xf)) // not: mov, mvn (those have only one source operand)
|
|
operands |= ENCODE_RN(ops[1].reg);
|
|
switch (ops[2].type) {
|
|
case OP_REG32:
|
|
operands |= ops[2].reg;
|
|
break;
|
|
case OP_IM8:
|
|
case OP_IM32:
|
|
operands |= ENCODE_IMMEDIATE_FLAG;
|
|
immediate_value = ops[2].e.v;
|
|
for (half_immediate_rotation = 0; half_immediate_rotation < 16; ++half_immediate_rotation) {
|
|
if (immediate_value >= 0x00 && immediate_value < 0x100)
|
|
break;
|
|
// rotate left by two
|
|
immediate_value = ((immediate_value & 0x3FFFFFFF) << 2) | ((immediate_value & 0xC0000000) >> 30);
|
|
}
|
|
if (half_immediate_rotation >= 16) {
|
|
/* fallthrough */
|
|
} else {
|
|
operands |= immediate_value;
|
|
operands |= half_immediate_rotation << 8;
|
|
break;
|
|
}
|
|
case OP_IM8N: // immediate negative value
|
|
operands |= ENCODE_IMMEDIATE_FLAG;
|
|
immediate_value = ops[2].e.v;
|
|
/* Instruction swapping:
|
|
0001 = EOR - Rd:= Op1 EOR Op2 -> difficult
|
|
0011 = RSB - Rd:= Op2 - Op1 -> difficult
|
|
0111 = RSC - Rd:= Op2 - Op1 + C -> difficult
|
|
1000 = TST - CC on: Op1 AND Op2 -> difficult
|
|
1001 = TEQ - CC on: Op1 EOR Op2 -> difficult
|
|
1100 = ORR - Rd:= Op1 OR Op2 -> difficult
|
|
*/
|
|
switch (opcode_nos) {
|
|
case 0x0: // AND - Rd:= Op1 AND Op2
|
|
opcode = 0xe << 21; // BIC
|
|
immediate_value = ~immediate_value;
|
|
break;
|
|
case 0x2: // SUB - Rd:= Op1 - Op2
|
|
opcode = 0x4 << 21; // ADD
|
|
immediate_value = -immediate_value;
|
|
break;
|
|
case 0x4: // ADD - Rd:= Op1 + Op2
|
|
opcode = 0x2 << 21; // SUB
|
|
immediate_value = -immediate_value;
|
|
break;
|
|
case 0x5: // ADC - Rd:= Op1 + Op2 + C
|
|
opcode = 0x6 << 21; // SBC
|
|
immediate_value = ~immediate_value;
|
|
break;
|
|
case 0x6: // SBC - Rd:= Op1 - Op2 + C
|
|
opcode = 0x5 << 21; // ADC
|
|
immediate_value = ~immediate_value;
|
|
break;
|
|
case 0xa: // CMP - CC on: Op1 - Op2
|
|
opcode = 0xb << 21; // CMN
|
|
immediate_value = -immediate_value;
|
|
break;
|
|
case 0xb: // CMN - CC on: Op1 + Op2
|
|
opcode = 0xa << 21; // CMP
|
|
immediate_value = -immediate_value;
|
|
break;
|
|
case 0xd: // MOV - Rd:= Op2
|
|
opcode = 0xf << 21; // MVN
|
|
immediate_value = ~immediate_value;
|
|
break;
|
|
case 0xe: // BIC - Rd:= Op1 AND NOT Op2
|
|
opcode = 0x0 << 21; // AND
|
|
immediate_value = ~immediate_value;
|
|
break;
|
|
case 0xf: // MVN - Rd:= NOT Op2
|
|
opcode = 0xd << 21; // MOV
|
|
immediate_value = ~immediate_value;
|
|
break;
|
|
default:
|
|
tcc_error("cannot use '%s' with a negative immediate value", get_tok_str(token, NULL));
|
|
}
|
|
for (half_immediate_rotation = 0; half_immediate_rotation < 16; ++half_immediate_rotation) {
|
|
if (immediate_value >= 0x00 && immediate_value < 0x100)
|
|
break;
|
|
// rotate left by two
|
|
immediate_value = ((immediate_value & 0x3FFFFFFF) << 2) | ((immediate_value & 0xC0000000) >> 30);
|
|
}
|
|
if (half_immediate_rotation >= 16) {
|
|
immediate_value = ops[2].e.v;
|
|
tcc_error("immediate value 0x%X cannot be encoded into ARM immediate", (unsigned) immediate_value);
|
|
return;
|
|
}
|
|
operands |= immediate_value;
|
|
operands |= half_immediate_rotation << 8;
|
|
break;
|
|
default:
|
|
expect("(second source operand) register or immediate value");
|
|
}
|
|
|
|
if (nb_shift) {
|
|
if (operands & ENCODE_IMMEDIATE_FLAG)
|
|
tcc_error("immediate rotation not implemented");
|
|
else
|
|
operands |= asm_encode_shift(&shift);
|
|
}
|
|
|
|
/* S=0 and S=1 entries alternate one after another, in that order */
|
|
opcode |= (opcode_idx & 1) ? ENCODE_SET_CONDITION_CODES : 0;
|
|
asm_emit_opcode(token, opcode | operands);
|
|
}
|
|
}
|
|
|
|
static void asm_shift_opcode(TCCState *s1, int token)
|
|
{
|
|
Operand ops[3];
|
|
int nb_ops;
|
|
int definitely_neutral = 0;
|
|
uint32_t opcode = 0xd << 21; // MOV
|
|
uint32_t operands = 0;
|
|
|
|
for (nb_ops = 0; nb_ops < sizeof(ops)/sizeof(ops[0]); ++nb_ops) {
|
|
parse_operand(s1, &ops[nb_ops]);
|
|
if (tok != ',') {
|
|
++nb_ops;
|
|
break;
|
|
}
|
|
next(); // skip ','
|
|
}
|
|
if (nb_ops < 2) {
|
|
expect("at least two operands");
|
|
return;
|
|
}
|
|
|
|
if (ops[0].type != OP_REG32) {
|
|
expect("(destination operand) register");
|
|
return;
|
|
} else
|
|
operands |= ENCODE_RD(ops[0].reg);
|
|
|
|
if (nb_ops == 2) {
|
|
switch (ARM_INSTRUCTION_GROUP(token)) {
|
|
case TOK_ASM_rrxseq:
|
|
opcode |= ENCODE_SET_CONDITION_CODES;
|
|
/* fallthrough */
|
|
case TOK_ASM_rrxeq:
|
|
if (ops[1].type == OP_REG32) {
|
|
operands |= ops[1].reg;
|
|
operands |= ENCODE_BARREL_SHIFTER_MODE_ROR;
|
|
asm_emit_opcode(token, opcode | operands);
|
|
} else
|
|
tcc_error("(first source operand) register");
|
|
return;
|
|
default:
|
|
memcpy(&ops[2], &ops[1], sizeof(ops[1])); // move ops[2]
|
|
memcpy(&ops[1], &ops[0], sizeof(ops[0])); // ops[1] was implicit
|
|
nb_ops = 3;
|
|
}
|
|
}
|
|
if (nb_ops != 3) {
|
|
expect("two or three operands");
|
|
return;
|
|
}
|
|
|
|
switch (ARM_INSTRUCTION_GROUP(token)) {
|
|
case TOK_ASM_lslseq:
|
|
case TOK_ASM_lsrseq:
|
|
case TOK_ASM_asrseq:
|
|
case TOK_ASM_rorseq:
|
|
opcode |= ENCODE_SET_CONDITION_CODES;
|
|
break;
|
|
}
|
|
|
|
switch (ops[1].type) {
|
|
case OP_REG32:
|
|
operands |= ops[1].reg;
|
|
break;
|
|
case OP_IM8:
|
|
operands |= ENCODE_IMMEDIATE_FLAG;
|
|
operands |= ops[1].e.v;
|
|
tcc_error("Using an immediate value as the source operand is not possible with '%s' instruction on ARM", get_tok_str(token, NULL));
|
|
return;
|
|
}
|
|
|
|
switch (ops[2].type) {
|
|
case OP_REG32:
|
|
if ((ops[0].type == OP_REG32 && ops[0].reg == 15) ||
|
|
(ops[1].type == OP_REG32 && ops[1].reg == 15)) {
|
|
tcc_error("Using the 'pc' register in data processing instructions that have a register-controlled shift is not implemented by ARM");
|
|
}
|
|
operands |= asm_encode_shift(&ops[2]);
|
|
break;
|
|
case OP_IM8:
|
|
if (ops[2].e.v)
|
|
operands |= asm_encode_shift(&ops[2]);
|
|
else
|
|
definitely_neutral = 1;
|
|
break;
|
|
}
|
|
|
|
if (!definitely_neutral) switch (ARM_INSTRUCTION_GROUP(token)) {
|
|
case TOK_ASM_lslseq:
|
|
case TOK_ASM_lsleq:
|
|
operands |= ENCODE_BARREL_SHIFTER_MODE_LSL;
|
|
break;
|
|
case TOK_ASM_lsrseq:
|
|
case TOK_ASM_lsreq:
|
|
operands |= ENCODE_BARREL_SHIFTER_MODE_LSR;
|
|
break;
|
|
case TOK_ASM_asrseq:
|
|
case TOK_ASM_asreq:
|
|
operands |= ENCODE_BARREL_SHIFTER_MODE_ASR;
|
|
break;
|
|
case TOK_ASM_rorseq:
|
|
case TOK_ASM_roreq:
|
|
operands |= ENCODE_BARREL_SHIFTER_MODE_ROR;
|
|
break;
|
|
default:
|
|
expect("shift instruction");
|
|
return;
|
|
}
|
|
asm_emit_opcode(token, opcode | operands);
|
|
}
|
|
|
|
static void asm_multiplication_opcode(TCCState *s1, int token)
|
|
{
|
|
Operand ops[4];
|
|
int nb_ops = 0;
|
|
uint32_t opcode = 0x90;
|
|
|
|
for (nb_ops = 0; nb_ops < sizeof(ops)/sizeof(ops[0]); ++nb_ops) {
|
|
parse_operand(s1, &ops[nb_ops]);
|
|
if (tok != ',') {
|
|
++nb_ops;
|
|
break;
|
|
}
|
|
next(); // skip ','
|
|
}
|
|
if (nb_ops < 2)
|
|
expect("at least two operands");
|
|
else if (nb_ops == 2) {
|
|
switch (ARM_INSTRUCTION_GROUP(token)) {
|
|
case TOK_ASM_mulseq:
|
|
case TOK_ASM_muleq:
|
|
memcpy(&ops[2], &ops[0], sizeof(ops[1])); // ARM is actually like this!
|
|
break;
|
|
default:
|
|
expect("at least three operands");
|
|
return;
|
|
}
|
|
nb_ops = 3;
|
|
}
|
|
|
|
// multiply (special case):
|
|
// operands:
|
|
// Rd: bits 19...16
|
|
// Rm: bits 3...0
|
|
// Rs: bits 11...8
|
|
// Rn: bits 15...12
|
|
|
|
if (ops[0].type == OP_REG32)
|
|
opcode |= ops[0].reg << 16;
|
|
else
|
|
expect("(destination operand) register");
|
|
if (ops[1].type == OP_REG32)
|
|
opcode |= ops[1].reg;
|
|
else
|
|
expect("(first source operand) register");
|
|
if (ops[2].type == OP_REG32)
|
|
opcode |= ops[2].reg << 8;
|
|
else
|
|
expect("(second source operand) register");
|
|
if (nb_ops > 3) {
|
|
if (ops[3].type == OP_REG32)
|
|
opcode |= ops[3].reg << 12;
|
|
else
|
|
expect("(third source operand) register");
|
|
}
|
|
|
|
switch (ARM_INSTRUCTION_GROUP(token)) {
|
|
case TOK_ASM_mulseq:
|
|
opcode |= 1 << 20; // Status
|
|
/* fallthrough */
|
|
case TOK_ASM_muleq:
|
|
if (nb_ops != 3)
|
|
expect("three operands");
|
|
else {
|
|
asm_emit_opcode(token, opcode);
|
|
}
|
|
break;
|
|
case TOK_ASM_mlaseq:
|
|
opcode |= 1 << 20; // Status
|
|
/* fallthrough */
|
|
case TOK_ASM_mlaeq:
|
|
if (nb_ops != 4)
|
|
expect("four operands");
|
|
else {
|
|
opcode |= 1 << 21; // Accumulate
|
|
asm_emit_opcode(token, opcode);
|
|
}
|
|
break;
|
|
default:
|
|
expect("known multiplication instruction");
|
|
}
|
|
}
|
|
|
|
static void asm_long_multiplication_opcode(TCCState *s1, int token)
|
|
{
|
|
Operand ops[4];
|
|
int nb_ops = 0;
|
|
uint32_t opcode = 0x90 | (1 << 23);
|
|
|
|
for (nb_ops = 0; nb_ops < sizeof(ops)/sizeof(ops[0]); ++nb_ops) {
|
|
parse_operand(s1, &ops[nb_ops]);
|
|
if (tok != ',') {
|
|
++nb_ops;
|
|
break;
|
|
}
|
|
next(); // skip ','
|
|
}
|
|
if (nb_ops != 4) {
|
|
expect("four operands");
|
|
return;
|
|
}
|
|
|
|
// long multiply (special case):
|
|
// operands:
|
|
// RdLo: bits 15...12
|
|
// RdHi: bits 19...16
|
|
// Rs: bits 11...8
|
|
// Rm: bits 3...0
|
|
|
|
if (ops[0].type == OP_REG32)
|
|
opcode |= ops[0].reg << 12;
|
|
else
|
|
expect("(destination lo accumulator) register");
|
|
if (ops[1].type == OP_REG32)
|
|
opcode |= ops[1].reg << 16;
|
|
else
|
|
expect("(destination hi accumulator) register");
|
|
if (ops[2].type == OP_REG32)
|
|
opcode |= ops[2].reg;
|
|
else
|
|
expect("(first source operand) register");
|
|
if (ops[3].type == OP_REG32)
|
|
opcode |= ops[3].reg << 8;
|
|
else
|
|
expect("(second source operand) register");
|
|
|
|
switch (ARM_INSTRUCTION_GROUP(token)) {
|
|
case TOK_ASM_smullseq:
|
|
opcode |= 1 << 20; // Status
|
|
/* fallthrough */
|
|
case TOK_ASM_smulleq:
|
|
opcode |= 1 << 22; // signed
|
|
asm_emit_opcode(token, opcode);
|
|
break;
|
|
case TOK_ASM_umullseq:
|
|
opcode |= 1 << 20; // Status
|
|
/* fallthrough */
|
|
case TOK_ASM_umulleq:
|
|
asm_emit_opcode(token, opcode);
|
|
break;
|
|
case TOK_ASM_smlalseq:
|
|
opcode |= 1 << 20; // Status
|
|
/* fallthrough */
|
|
case TOK_ASM_smlaleq:
|
|
opcode |= 1 << 22; // signed
|
|
opcode |= 1 << 21; // Accumulate
|
|
asm_emit_opcode(token, opcode);
|
|
break;
|
|
case TOK_ASM_umlalseq:
|
|
opcode |= 1 << 20; // Status
|
|
/* fallthrough */
|
|
case TOK_ASM_umlaleq:
|
|
opcode |= 1 << 21; // Accumulate
|
|
asm_emit_opcode(token, opcode);
|
|
break;
|
|
default:
|
|
expect("known long multiplication instruction");
|
|
}
|
|
}
|
|
|
|
static void asm_single_data_transfer_opcode(TCCState *s1, int token)
|
|
{
|
|
Operand ops[3];
|
|
Operand strex_operand;
|
|
Operand shift;
|
|
int nb_shift = 0;
|
|
int exclam = 0;
|
|
int closed_bracket = 0;
|
|
int op2_minus = 0;
|
|
uint32_t opcode = 0;
|
|
// Note: ldr r0, [r4, #4] ; simple offset: r0 = *(int*)(r4+4); r4 unchanged
|
|
// Note: ldr r0, [r4, #4]! ; pre-indexed: r0 = *(int*)(r4+4); r4 = r4+4
|
|
// Note: ldr r0, [r4], #4 ; post-indexed: r0 = *(int*)(r4+0); r4 = r4+4
|
|
|
|
parse_operand(s1, &ops[0]);
|
|
if (ops[0].type == OP_REG32)
|
|
opcode |= ENCODE_RD(ops[0].reg);
|
|
else {
|
|
expect("(destination operand) register");
|
|
return;
|
|
}
|
|
if (tok != ',')
|
|
expect("at least two arguments");
|
|
else
|
|
next(); // skip ','
|
|
|
|
switch (ARM_INSTRUCTION_GROUP(token)) {
|
|
case TOK_ASM_strexbeq:
|
|
case TOK_ASM_strexeq:
|
|
parse_operand(s1, &strex_operand);
|
|
if (strex_operand.type != OP_REG32) {
|
|
expect("register");
|
|
return;
|
|
}
|
|
if (tok != ',')
|
|
expect("at least three arguments");
|
|
else
|
|
next(); // skip ','
|
|
break;
|
|
}
|
|
|
|
if (tok != '[')
|
|
expect("'['");
|
|
else
|
|
next(); // skip '['
|
|
|
|
parse_operand(s1, &ops[1]);
|
|
if (ops[1].type == OP_REG32)
|
|
opcode |= ENCODE_RN(ops[1].reg);
|
|
else {
|
|
expect("(first source operand) register");
|
|
return;
|
|
}
|
|
if (tok == ']') {
|
|
next();
|
|
closed_bracket = 1;
|
|
// exclam = 1; // implicit in hardware; don't do it in software
|
|
}
|
|
if (tok == ',') {
|
|
next(); // skip ','
|
|
if (tok == '-') {
|
|
op2_minus = 1;
|
|
next();
|
|
}
|
|
parse_operand(s1, &ops[2]);
|
|
if (ops[2].type == OP_REG32) {
|
|
if (ops[2].reg == 15) {
|
|
tcc_error("Using 'pc' for register offset in '%s' is not implemented by ARM", get_tok_str(token, NULL));
|
|
return;
|
|
}
|
|
if (tok == ',') {
|
|
next();
|
|
opcode |= asm_parse_optional_shift(s1, &nb_shift, &shift);
|
|
if (opcode == 0)
|
|
expect("shift directive, or no comma");
|
|
}
|
|
}
|
|
} else {
|
|
// end of input expression in brackets--assume 0 offset
|
|
ops[2].type = OP_IM8;
|
|
ops[2].e.v = 0;
|
|
opcode |= 1 << 24; // add offset before transfer
|
|
}
|
|
if (!closed_bracket) {
|
|
if (tok != ']')
|
|
expect("']'");
|
|
else
|
|
next(); // skip ']'
|
|
opcode |= 1 << 24; // add offset before transfer
|
|
if (tok == '!') {
|
|
exclam = 1;
|
|
next(); // skip '!'
|
|
}
|
|
}
|
|
|
|
// single data transfer: 0 1 I P U B W L << 20 (general case):
|
|
// operands:
|
|
// Rd: destination operand [ok]
|
|
// Rn: first source operand [ok]
|
|
// Operand2: bits 11...0 [ok]
|
|
// I: immediate operand? [ok]
|
|
// P: Pre/post indexing is PRE: Add offset before transfer [ok]
|
|
// U: Up/down is up? (*adds* offset to base) [ok]
|
|
// B: Byte/word is byte? [ok]
|
|
// W: Write address back into base? [ok]
|
|
// L: Load/store is load? [ok]
|
|
if (exclam)
|
|
opcode |= 1 << 21; // write offset back into register
|
|
|
|
if (ops[2].type == OP_IM32 || ops[2].type == OP_IM8 || ops[2].type == OP_IM8N) {
|
|
int v = ops[2].e.v;
|
|
if (op2_minus)
|
|
tcc_error("minus before '#' not supported for immediate values");
|
|
if (v >= 0) {
|
|
opcode |= 1 << 23; // up
|
|
if (v >= 0x1000)
|
|
tcc_error("offset out of range for '%s'", get_tok_str(token, NULL));
|
|
else
|
|
opcode |= v;
|
|
} else { // down
|
|
if (v <= -0x1000)
|
|
tcc_error("offset out of range for '%s'", get_tok_str(token, NULL));
|
|
else
|
|
opcode |= -v;
|
|
}
|
|
} else if (ops[2].type == OP_REG32) {
|
|
if (!op2_minus)
|
|
opcode |= 1 << 23; // up
|
|
opcode |= ENCODE_IMMEDIATE_FLAG; /* if set, it means it's NOT immediate */
|
|
opcode |= ops[2].reg;
|
|
} else
|
|
expect("register");
|
|
|
|
switch (ARM_INSTRUCTION_GROUP(token)) {
|
|
case TOK_ASM_strbeq:
|
|
opcode |= 1 << 22; // B
|
|
/* fallthrough */
|
|
case TOK_ASM_streq:
|
|
opcode |= 1 << 26; // Load/Store
|
|
if (nb_shift)
|
|
opcode |= asm_encode_shift(&shift);
|
|
asm_emit_opcode(token, opcode);
|
|
break;
|
|
case TOK_ASM_ldrbeq:
|
|
opcode |= 1 << 22; // B
|
|
/* fallthrough */
|
|
case TOK_ASM_ldreq:
|
|
opcode |= 1 << 20; // L
|
|
opcode |= 1 << 26; // Load/Store
|
|
if (nb_shift)
|
|
opcode |= asm_encode_shift(&shift);
|
|
asm_emit_opcode(token, opcode);
|
|
break;
|
|
case TOK_ASM_strexbeq:
|
|
opcode |= 1 << 22; // B
|
|
/* fallthrough */
|
|
case TOK_ASM_strexeq:
|
|
if ((opcode & 0xFFF) || nb_shift) {
|
|
tcc_error("neither offset nor shift allowed with 'strex'");
|
|
return;
|
|
} else if (opcode & ENCODE_IMMEDIATE_FLAG) { // if set, it means it's NOT immediate
|
|
tcc_error("offset not allowed with 'strex'");
|
|
return;
|
|
}
|
|
if ((opcode & (1 << 24)) == 0) { // add offset after transfer
|
|
tcc_error("adding offset after transfer not allowed with 'strex'");
|
|
return;
|
|
}
|
|
|
|
opcode |= 0xf90; // Used to mean: barrel shifter is enabled, barrel shift register is r15, mode is LSL
|
|
opcode |= strex_operand.reg;
|
|
asm_emit_opcode(token, opcode);
|
|
break;
|
|
case TOK_ASM_ldrexbeq:
|
|
opcode |= 1 << 22; // B
|
|
/* fallthrough */
|
|
case TOK_ASM_ldrexeq:
|
|
if ((opcode & 0xFFF) || nb_shift) {
|
|
tcc_error("neither offset nor shift allowed with 'ldrex'");
|
|
return;
|
|
} else if (opcode & ENCODE_IMMEDIATE_FLAG) { // if set, it means it's NOT immediate
|
|
tcc_error("offset not allowed with 'ldrex'");
|
|
return;
|
|
}
|
|
if ((opcode & (1 << 24)) == 0) { // add offset after transfer
|
|
tcc_error("adding offset after transfer not allowed with 'ldrex'");
|
|
return;
|
|
}
|
|
opcode |= 1 << 20; // L
|
|
opcode |= 0x00f;
|
|
opcode |= 0xf90; // Used to mean: barrel shifter is enabled, barrel shift register is r15, mode is LSL
|
|
asm_emit_opcode(token, opcode);
|
|
break;
|
|
default:
|
|
expect("data transfer instruction");
|
|
}
|
|
}
|
|
|
|
// Note: Only call this using a VFP register if you know exactly what you are doing (i.e. cp_number is 10 or 11 and you are doing a vmov)
|
|
static void asm_emit_coprocessor_data_transfer(uint32_t high_nibble, uint8_t cp_number, uint8_t CRd, const Operand* Rn, const Operand* offset, int offset_minus, int preincrement, int writeback, int long_transfer, int load) {
|
|
uint32_t opcode = 0x0;
|
|
opcode |= 1 << 26; // Load/Store
|
|
opcode |= 1 << 27; // coprocessor
|
|
|
|
if (long_transfer)
|
|
opcode |= 1 << 22; // long transfer
|
|
|
|
if (load)
|
|
opcode |= 1 << 20; // L
|
|
|
|
opcode |= cp_number << 8;
|
|
|
|
//assert(CRd < 16);
|
|
opcode |= ENCODE_RD(CRd);
|
|
|
|
if (Rn->type != OP_REG32) {
|
|
expect("register");
|
|
return;
|
|
}
|
|
//assert(Rn->reg < 16);
|
|
opcode |= ENCODE_RN(Rn->reg);
|
|
if (preincrement)
|
|
opcode |= 1 << 24; // add offset before transfer
|
|
|
|
if (writeback)
|
|
opcode |= 1 << 21; // write offset back into register
|
|
|
|
if (offset->type == OP_IM8 || offset->type == OP_IM8N || offset->type == OP_IM32) {
|
|
int v = offset->e.v;
|
|
if (offset_minus)
|
|
tcc_error("minus before '#' not supported for immediate values");
|
|
if (offset->type == OP_IM8N || v < 0)
|
|
v = -v;
|
|
else
|
|
opcode |= 1 << 23; // up
|
|
if (v & 3) {
|
|
tcc_error("immediate offset must be a multiple of 4");
|
|
return;
|
|
}
|
|
v >>= 2;
|
|
if (v > 255) {
|
|
tcc_error("immediate offset must be between -1020 and 1020");
|
|
return;
|
|
}
|
|
opcode |= v;
|
|
} else if (offset->type == OP_REG32) {
|
|
if (!offset_minus)
|
|
opcode |= 1 << 23; // up
|
|
opcode |= ENCODE_IMMEDIATE_FLAG; /* if set, it means it's NOT immediate */
|
|
opcode |= offset->reg;
|
|
tcc_error("Using register offset to register address is not possible here");
|
|
return;
|
|
} else if (offset->type == OP_VREG64) {
|
|
opcode |= 16;
|
|
opcode |= offset->reg;
|
|
} else
|
|
expect("immediate or register");
|
|
|
|
asm_emit_unconditional_opcode((high_nibble << 28) | opcode);
|
|
}
|
|
|
|
// Almost exactly the same as asm_single_data_transfer_opcode.
|
|
// Difference: Offsets are smaller and multiples of 4; no shifts, no STREX, ENCODE_IMMEDIATE_FLAG is inverted again.
|
|
static void asm_coprocessor_data_transfer_opcode(TCCState *s1, int token)
|
|
{
|
|
Operand ops[3];
|
|
uint8_t coprocessor;
|
|
uint8_t coprocessor_destination_register;
|
|
int preincrement = 0;
|
|
int exclam = 0;
|
|
int closed_bracket = 0;
|
|
int op2_minus = 0;
|
|
int long_transfer = 0;
|
|
// Note: ldc p1, c0, [r4, #4] ; simple offset: r0 = *(int*)(r4+4); r4 unchanged
|
|
// Note: ldc p2, c0, [r4, #4]! ; pre-indexed: r0 = *(int*)(r4+4); r4 = r4+4
|
|
// Note: ldc p3, c0, [r4], #4 ; post-indexed: r0 = *(int*)(r4+0); r4 = r4+4
|
|
|
|
if (tok >= TOK_ASM_p0 && tok <= TOK_ASM_p15) {
|
|
coprocessor = tok - TOK_ASM_p0;
|
|
next();
|
|
} else {
|
|
expect("'c<number>'");
|
|
return;
|
|
}
|
|
|
|
if (tok == ',')
|
|
next();
|
|
else
|
|
expect("','");
|
|
|
|
if (tok >= TOK_ASM_c0 && tok <= TOK_ASM_c15) {
|
|
coprocessor_destination_register = tok - TOK_ASM_c0;
|
|
next();
|
|
} else {
|
|
expect("'c<number>'");
|
|
return;
|
|
}
|
|
|
|
if (tok == ',')
|
|
next();
|
|
else
|
|
expect("','");
|
|
|
|
if (tok != '[')
|
|
expect("'['");
|
|
else
|
|
next(); // skip '['
|
|
|
|
parse_operand(s1, &ops[1]);
|
|
if (ops[1].type != OP_REG32) {
|
|
expect("(first source operand) register");
|
|
return;
|
|
}
|
|
if (tok == ']') {
|
|
next();
|
|
closed_bracket = 1;
|
|
// exclam = 1; // implicit in hardware; don't do it in software
|
|
}
|
|
if (tok == ',') {
|
|
next(); // skip ','
|
|
if (tok == '-') {
|
|
op2_minus = 1;
|
|
next();
|
|
}
|
|
parse_operand(s1, &ops[2]);
|
|
if (ops[2].type == OP_REG32) {
|
|
if (ops[2].reg == 15) {
|
|
tcc_error("Using 'pc' for register offset in '%s' is not implemented by ARM", get_tok_str(token, NULL));
|
|
return;
|
|
}
|
|
} else if (ops[2].type == OP_VREG64) {
|
|
tcc_error("'%s' does not support VFP register operand", get_tok_str(token, NULL));
|
|
return;
|
|
}
|
|
} else {
|
|
// end of input expression in brackets--assume 0 offset
|
|
ops[2].type = OP_IM8;
|
|
ops[2].e.v = 0;
|
|
preincrement = 1; // add offset before transfer
|
|
}
|
|
if (!closed_bracket) {
|
|
if (tok != ']')
|
|
expect("']'");
|
|
else
|
|
next(); // skip ']'
|
|
preincrement = 1; // add offset before transfer
|
|
if (tok == '!') {
|
|
exclam = 1;
|
|
next(); // skip '!'
|
|
}
|
|
}
|
|
|
|
// TODO: Support options.
|
|
|
|
if (token == TOK_ASM_ldc2 || token == TOK_ASM_stc2 || token == TOK_ASM_ldc2l || token == TOK_ASM_stc2l) {
|
|
switch (token) {
|
|
case TOK_ASM_ldc2l:
|
|
long_transfer = 1; // long transfer
|
|
/* fallthrough */
|
|
case TOK_ASM_ldc2:
|
|
asm_emit_coprocessor_data_transfer(0xF, coprocessor, coprocessor_destination_register, &ops[1], &ops[2], op2_minus, preincrement, exclam, long_transfer, 1);
|
|
break;
|
|
case TOK_ASM_stc2l:
|
|
long_transfer = 1; // long transfer
|
|
/* fallthrough */
|
|
case TOK_ASM_stc2:
|
|
asm_emit_coprocessor_data_transfer(0xF, coprocessor, coprocessor_destination_register, &ops[1], &ops[2], op2_minus, preincrement, exclam, long_transfer, 0);
|
|
break;
|
|
}
|
|
} else switch (ARM_INSTRUCTION_GROUP(token)) {
|
|
case TOK_ASM_stcleq:
|
|
long_transfer = 1;
|
|
/* fallthrough */
|
|
case TOK_ASM_stceq:
|
|
asm_emit_coprocessor_data_transfer(condition_code_of_token(token), coprocessor, coprocessor_destination_register, &ops[1], &ops[2], op2_minus, preincrement, exclam, long_transfer, 0);
|
|
break;
|
|
case TOK_ASM_ldcleq:
|
|
long_transfer = 1;
|
|
/* fallthrough */
|
|
case TOK_ASM_ldceq:
|
|
asm_emit_coprocessor_data_transfer(condition_code_of_token(token), coprocessor, coprocessor_destination_register, &ops[1], &ops[2], op2_minus, preincrement, exclam, long_transfer, 1);
|
|
break;
|
|
default:
|
|
expect("coprocessor data transfer instruction");
|
|
}
|
|
}
|
|
|
|
#if defined(TCC_ARM_VFP)
|
|
#define CP_SINGLE_PRECISION_FLOAT 10
|
|
#define CP_DOUBLE_PRECISION_FLOAT 11
|
|
|
|
static void asm_floating_point_single_data_transfer_opcode(TCCState *s1, int token)
|
|
{
|
|
Operand ops[3];
|
|
uint8_t coprocessor = 0;
|
|
uint8_t coprocessor_destination_register = 0;
|
|
int long_transfer = 0;
|
|
// Note: vldr p1, c0, [r4, #4] ; simple offset: r0 = *(int*)(r4+4); r4 unchanged
|
|
// Note: Not allowed: vldr p2, c0, [r4, #4]! ; pre-indexed: r0 = *(int*)(r4+4); r4 = r4+4
|
|
// Note: Not allowed: vldr p3, c0, [r4], #4 ; post-indexed: r0 = *(int*)(r4+0); r4 = r4+4
|
|
|
|
parse_operand(s1, &ops[0]);
|
|
if (ops[0].type == OP_VREG32) {
|
|
coprocessor = CP_SINGLE_PRECISION_FLOAT;
|
|
coprocessor_destination_register = ops[0].reg;
|
|
long_transfer = coprocessor_destination_register & 1;
|
|
coprocessor_destination_register >>= 1;
|
|
} else if (ops[0].type == OP_VREG64) {
|
|
coprocessor = CP_DOUBLE_PRECISION_FLOAT;
|
|
coprocessor_destination_register = ops[0].reg;
|
|
next();
|
|
} else {
|
|
expect("floating point register");
|
|
return;
|
|
}
|
|
|
|
if (tok == ',')
|
|
next();
|
|
else
|
|
expect("','");
|
|
|
|
if (tok != '[')
|
|
expect("'['");
|
|
else
|
|
next(); // skip '['
|
|
|
|
parse_operand(s1, &ops[1]);
|
|
if (ops[1].type != OP_REG32) {
|
|
expect("(first source operand) register");
|
|
return;
|
|
}
|
|
if (tok == ',') {
|
|
next(); // skip ','
|
|
parse_operand(s1, &ops[2]);
|
|
if (ops[2].type != OP_IM8 && ops[2].type != OP_IM8N) {
|
|
expect("immediate offset");
|
|
return;
|
|
}
|
|
} else {
|
|
// end of input expression in brackets--assume 0 offset
|
|
ops[2].type = OP_IM8;
|
|
ops[2].e.v = 0;
|
|
}
|
|
if (tok != ']')
|
|
expect("']'");
|
|
else
|
|
next(); // skip ']'
|
|
|
|
switch (ARM_INSTRUCTION_GROUP(token)) {
|
|
case TOK_ASM_vldreq:
|
|
asm_emit_coprocessor_data_transfer(condition_code_of_token(token), coprocessor, coprocessor_destination_register, &ops[1], &ops[2], 0, 1, 0, long_transfer, 1);
|
|
break;
|
|
case TOK_ASM_vstreq:
|
|
asm_emit_coprocessor_data_transfer(condition_code_of_token(token), coprocessor, coprocessor_destination_register, &ops[1], &ops[2], 0, 1, 0, long_transfer, 0);
|
|
break;
|
|
default:
|
|
expect("floating point data transfer instruction");
|
|
}
|
|
}
|
|
|
|
static void asm_floating_point_block_data_transfer_opcode(TCCState *s1, int token)
|
|
{
|
|
uint8_t coprocessor = 0;
|
|
int first_regset_register;
|
|
int last_regset_register;
|
|
uint8_t regset_item_count;
|
|
uint8_t extra_register_bit = 0;
|
|
int op0_exclam = 0;
|
|
int load = 0;
|
|
int preincrement = 0;
|
|
Operand ops[1];
|
|
Operand offset;
|
|
switch (ARM_INSTRUCTION_GROUP(token)) {
|
|
case TOK_ASM_vpusheq:
|
|
case TOK_ASM_vpopeq:
|
|
ops[0].type = OP_REG32;
|
|
ops[0].reg = 13; // sp
|
|
op0_exclam = 1;
|
|
break;
|
|
default:
|
|
parse_operand(s1, &ops[0]);
|
|
if (tok == '!') {
|
|
op0_exclam = 1;
|
|
next(); // skip '!'
|
|
}
|
|
if (tok == ',')
|
|
next(); // skip comma
|
|
else {
|
|
expect("','");
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (tok != '{') {
|
|
expect("'{'");
|
|
return;
|
|
}
|
|
next(); // skip '{'
|
|
first_regset_register = asm_parse_vfp_regvar(tok, 1);
|
|
if ((first_regset_register = asm_parse_vfp_regvar(tok, 1)) != -1) {
|
|
coprocessor = CP_DOUBLE_PRECISION_FLOAT;
|
|
next();
|
|
} else if ((first_regset_register = asm_parse_vfp_regvar(tok, 0)) != -1) {
|
|
coprocessor = CP_SINGLE_PRECISION_FLOAT;
|
|
next();
|
|
} else {
|
|
expect("floating-point register");
|
|
return;
|
|
}
|
|
|
|
if (tok == '-') {
|
|
next();
|
|
if ((last_regset_register = asm_parse_vfp_regvar(tok, coprocessor == CP_DOUBLE_PRECISION_FLOAT)) != -1)
|
|
next();
|
|
else {
|
|
expect("floating-point register");
|
|
return;
|
|
}
|
|
} else
|
|
last_regset_register = first_regset_register;
|
|
|
|
if (last_regset_register < first_regset_register) {
|
|
tcc_error("registers will be processed in ascending order by hardware--but are not specified in ascending order here");
|
|
return;
|
|
}
|
|
if (tok != '}') {
|
|
expect("'}'");
|
|
return;
|
|
}
|
|
next(); // skip '}'
|
|
|
|
// Note: 0 (one down) is not implemented by us regardless.
|
|
regset_item_count = last_regset_register - first_regset_register + 1;
|
|
if (coprocessor == CP_DOUBLE_PRECISION_FLOAT)
|
|
regset_item_count <<= 1;
|
|
else {
|
|
extra_register_bit = first_regset_register & 1;
|
|
first_regset_register >>= 1;
|
|
}
|
|
offset.type = OP_IM8;
|
|
offset.e.v = regset_item_count << 2;
|
|
switch (ARM_INSTRUCTION_GROUP(token)) {
|
|
case TOK_ASM_vstmeq: // post-increment store
|
|
case TOK_ASM_vstmiaeq: // post-increment store
|
|
break;
|
|
case TOK_ASM_vpopeq:
|
|
case TOK_ASM_vldmeq: // post-increment load
|
|
case TOK_ASM_vldmiaeq: // post-increment load
|
|
load = 1;
|
|
break;
|
|
case TOK_ASM_vldmdbeq: // pre-decrement load
|
|
load = 1;
|
|
/* fallthrough */
|
|
case TOK_ASM_vpusheq:
|
|
case TOK_ASM_vstmdbeq: // pre-decrement store
|
|
offset.type = OP_IM8N;
|
|
offset.e.v = -offset.e.v;
|
|
preincrement = 1;
|
|
break;
|
|
default:
|
|
expect("floating point block data transfer instruction");
|
|
return;
|
|
}
|
|
if (ops[0].type != OP_REG32)
|
|
expect("(first operand) register");
|
|
else if (ops[0].reg == 15)
|
|
tcc_error("'%s' does not support 'pc' as operand", get_tok_str(token, NULL));
|
|
else if (!op0_exclam && ARM_INSTRUCTION_GROUP(token) != TOK_ASM_vldmeq && ARM_INSTRUCTION_GROUP(token) != TOK_ASM_vldmiaeq && ARM_INSTRUCTION_GROUP(token) != TOK_ASM_vstmeq && ARM_INSTRUCTION_GROUP(token) != TOK_ASM_vstmiaeq)
|
|
tcc_error("first operand of '%s' should have an exclamation mark", get_tok_str(token, NULL));
|
|
else
|
|
asm_emit_coprocessor_data_transfer(condition_code_of_token(token), coprocessor, first_regset_register, &ops[0], &offset, 0, preincrement, op0_exclam, extra_register_bit, load);
|
|
}
|
|
|
|
#define VMOV_FRACTIONAL_DIGITS 7
|
|
#define VMOV_ONE 10000000 /* pow(10, VMOV_FRACTIONAL_DIGITS) */
|
|
|
|
static uint32_t vmov_parse_fractional_part(const char* s)
|
|
{
|
|
uint32_t result = 0;
|
|
int i;
|
|
for (i = 0; i < VMOV_FRACTIONAL_DIGITS; ++i) {
|
|
char c = *s;
|
|
result *= 10;
|
|
if (c >= '0' && c <= '9') {
|
|
result += (c - '0');
|
|
++s;
|
|
}
|
|
}
|
|
if (*s)
|
|
expect("decimal numeral");
|
|
return result;
|
|
}
|
|
|
|
static int vmov_linear_approx_index(uint32_t beginning, uint32_t end, uint32_t value)
|
|
{
|
|
int i;
|
|
uint32_t k;
|
|
uint32_t xvalue;
|
|
|
|
k = (end - beginning)/16;
|
|
for (xvalue = beginning, i = 0; i < 16; ++i, xvalue += k) {
|
|
if (value == xvalue)
|
|
return i;
|
|
}
|
|
//assert(0);
|
|
return -1;
|
|
}
|
|
|
|
static uint32_t vmov_parse_immediate_value() {
|
|
uint32_t value;
|
|
unsigned long integral_value;
|
|
const char *p;
|
|
|
|
if (tok != TOK_PPNUM) {
|
|
expect("immediate value");
|
|
return 0;
|
|
}
|
|
p = tokc.str.data;
|
|
errno = 0;
|
|
integral_value = strtoul(p, (char **)&p, 0);
|
|
|
|
if (errno || integral_value >= 32) {
|
|
tcc_error("invalid floating-point immediate value");
|
|
return 0;
|
|
}
|
|
|
|
value = (uint32_t) integral_value * VMOV_ONE;
|
|
if (*p == '.') {
|
|
++p;
|
|
value += vmov_parse_fractional_part(p);
|
|
}
|
|
next();
|
|
return value;
|
|
}
|
|
|
|
static uint8_t vmov_encode_immediate_value(uint32_t value)
|
|
{
|
|
uint32_t limit;
|
|
uint32_t end = 0;
|
|
uint32_t beginning = 0;
|
|
int r = -1;
|
|
int n;
|
|
int i;
|
|
|
|
limit = 32 * VMOV_ONE;
|
|
for (i = 0; i < 8; ++i) {
|
|
if (value < limit) {
|
|
end = limit;
|
|
limit >>= 1;
|
|
beginning = limit;
|
|
r = i;
|
|
} else
|
|
limit >>= 1;
|
|
}
|
|
if (r == -1 || value < beginning || value > end) {
|
|
tcc_error("invalid decimal number for vmov: %d", value);
|
|
return 0;
|
|
}
|
|
n = vmov_linear_approx_index(beginning, end, value);
|
|
return n | (((3 - r) & 0x7) << 4);
|
|
}
|
|
|
|
// Not standalone.
|
|
static void asm_floating_point_immediate_data_processing_opcode_tail(TCCState *s1, int token, uint8_t coprocessor, uint8_t CRd) {
|
|
uint8_t opcode1 = 0;
|
|
uint8_t opcode2 = 0;
|
|
uint8_t operands[3] = {0, 0, 0};
|
|
uint32_t immediate_value = 0;
|
|
int op_minus = 0;
|
|
uint8_t code;
|
|
|
|
operands[0] = CRd;
|
|
|
|
if (tok == '#' || tok == '$') {
|
|
next();
|
|
}
|
|
if (tok == '-') {
|
|
op_minus = 1;
|
|
next();
|
|
}
|
|
immediate_value = vmov_parse_immediate_value();
|
|
|
|
opcode1 = 11; // "Other" instruction
|
|
switch (ARM_INSTRUCTION_GROUP(token)) {
|
|
case TOK_ASM_vcmpeq_f32:
|
|
case TOK_ASM_vcmpeq_f64:
|
|
opcode2 = 2;
|
|
operands[1] = 5;
|
|
if (immediate_value) {
|
|
expect("Immediate value 0");
|
|
return;
|
|
}
|
|
break;
|
|
case TOK_ASM_vcmpeeq_f32:
|
|
case TOK_ASM_vcmpeeq_f64:
|
|
opcode2 = 6;
|
|
operands[1] = 5;
|
|
if (immediate_value) {
|
|
expect("Immediate value 0");
|
|
return;
|
|
}
|
|
break;
|
|
case TOK_ASM_vmoveq_f32:
|
|
case TOK_ASM_vmoveq_f64:
|
|
opcode2 = 0;
|
|
if (op_minus)
|
|
operands[1] = 0x8;
|
|
else
|
|
operands[1] = 0x0;
|
|
code = vmov_encode_immediate_value(immediate_value);
|
|
operands[1] |= code >> 4;
|
|
operands[2] = code & 0xF;
|
|
break;
|
|
default:
|
|
expect("known floating point with immediate instruction");
|
|
return;
|
|
}
|
|
|
|
if (coprocessor == CP_SINGLE_PRECISION_FLOAT) {
|
|
if (operands[0] & 1)
|
|
opcode1 |= 4;
|
|
operands[0] >>= 1;
|
|
}
|
|
|
|
asm_emit_coprocessor_opcode(condition_code_of_token(token), coprocessor, opcode1, operands[0], operands[1], operands[2], opcode2, 0);
|
|
}
|
|
|
|
static void asm_floating_point_reg_arm_reg_transfer_opcode_tail(TCCState *s1, int token, int coprocessor, int nb_arm_regs, int nb_ops, Operand ops[3]) {
|
|
uint8_t opcode1 = 0;
|
|
uint8_t opcode2 = 0;
|
|
switch (coprocessor) {
|
|
case CP_SINGLE_PRECISION_FLOAT:
|
|
// "vmov.f32 r2, s3" or "vmov.f32 s3, r2"
|
|
if (nb_ops != 2 || nb_arm_regs != 1) {
|
|
tcc_error("vmov.f32 only implemented for one VFP register operand and one ARM register operands");
|
|
return;
|
|
}
|
|
if (ops[0].type != OP_REG32) { // determine mode: load or store
|
|
// need to swap operands 0 and 1
|
|
memcpy(&ops[2], &ops[1], sizeof(ops[2]));
|
|
memcpy(&ops[1], &ops[0], sizeof(ops[1]));
|
|
memcpy(&ops[0], &ops[2], sizeof(ops[0]));
|
|
} else
|
|
opcode1 |= 1;
|
|
|
|
if (ops[1].type == OP_VREG32) {
|
|
if (ops[1].reg & 1)
|
|
opcode2 |= 4;
|
|
ops[1].reg >>= 1;
|
|
}
|
|
|
|
if (ops[0].type == OP_VREG32) {
|
|
if (ops[0].reg & 1)
|
|
opcode1 |= 4;
|
|
ops[0].reg >>= 1;
|
|
}
|
|
|
|
asm_emit_coprocessor_opcode(condition_code_of_token(token), coprocessor, opcode1, ops[0].reg, (ops[1].type == OP_IM8) ? ops[1].e.v : ops[1].reg, 0x10, opcode2, 0);
|
|
break;
|
|
case CP_DOUBLE_PRECISION_FLOAT:
|
|
if (nb_ops != 3 || nb_arm_regs != 2) {
|
|
tcc_error("vmov.f32 only implemented for one VFP register operand and two ARM register operands");
|
|
return;
|
|
}
|
|
// Determine whether it's a store into a VFP register (vmov "d1, r2, r3") rather than "vmov r2, r3, d1"
|
|
if (ops[0].type == OP_VREG64) {
|
|
if (ops[2].type == OP_REG32) {
|
|
Operand temp;
|
|
// need to rotate operand list to the left
|
|
memcpy(&temp, &ops[0], sizeof(temp));
|
|
memcpy(&ops[0], &ops[1], sizeof(ops[0]));
|
|
memcpy(&ops[1], &ops[2], sizeof(ops[1]));
|
|
memcpy(&ops[2], &temp, sizeof(ops[2]));
|
|
} else {
|
|
tcc_error("vmov.f64 only implemented for one VFP register operand and two ARM register operands");
|
|
return;
|
|
}
|
|
} else if (ops[0].type != OP_REG32 || ops[1].type != OP_REG32 || ops[2].type != OP_VREG64) {
|
|
tcc_error("vmov.f64 only implemented for one VFP register operand and two ARM register operands");
|
|
return;
|
|
} else {
|
|
opcode1 |= 1;
|
|
}
|
|
asm_emit_coprocessor_data_transfer(condition_code_of_token(token), coprocessor, ops[0].reg, &ops[1], &ops[2], 0, 0, 0, 1, opcode1);
|
|
break;
|
|
default:
|
|
tcc_internal_error("unknown coprocessor");
|
|
}
|
|
}
|
|
|
|
static void asm_floating_point_vcvt_data_processing_opcode(TCCState *s1, int token) {
|
|
uint8_t coprocessor = 0;
|
|
Operand ops[3];
|
|
uint8_t opcode1 = 11;
|
|
uint8_t opcode2 = 2;
|
|
|
|
switch (ARM_INSTRUCTION_GROUP(token)) {
|
|
case TOK_ASM_vcvtreq_s32_f64:
|
|
case TOK_ASM_vcvtreq_u32_f64:
|
|
case TOK_ASM_vcvteq_s32_f64:
|
|
case TOK_ASM_vcvteq_u32_f64:
|
|
case TOK_ASM_vcvteq_f64_s32:
|
|
case TOK_ASM_vcvteq_f64_u32:
|
|
case TOK_ASM_vcvteq_f32_f64:
|
|
coprocessor = CP_DOUBLE_PRECISION_FLOAT;
|
|
break;
|
|
case TOK_ASM_vcvtreq_s32_f32:
|
|
case TOK_ASM_vcvtreq_u32_f32:
|
|
case TOK_ASM_vcvteq_s32_f32:
|
|
case TOK_ASM_vcvteq_u32_f32:
|
|
case TOK_ASM_vcvteq_f32_s32:
|
|
case TOK_ASM_vcvteq_f32_u32:
|
|
case TOK_ASM_vcvteq_f64_f32:
|
|
coprocessor = CP_SINGLE_PRECISION_FLOAT;
|
|
break;
|
|
default:
|
|
tcc_error("Unknown coprocessor for instruction '%s'", get_tok_str(token, NULL));
|
|
return;
|
|
}
|
|
|
|
parse_operand(s1, &ops[0]);
|
|
ops[1].type = OP_IM8;
|
|
ops[1].e.v = 8;
|
|
/* floating-point -> integer */
|
|
switch (ARM_INSTRUCTION_GROUP(token)) {
|
|
case TOK_ASM_vcvtreq_s32_f32:
|
|
case TOK_ASM_vcvtreq_s32_f64:
|
|
case TOK_ASM_vcvteq_s32_f32:
|
|
case TOK_ASM_vcvteq_s32_f64:
|
|
ops[1].e.v |= 1; // signed
|
|
/* fall through */
|
|
case TOK_ASM_vcvteq_u32_f32:
|
|
case TOK_ASM_vcvteq_u32_f64:
|
|
case TOK_ASM_vcvtreq_u32_f32:
|
|
case TOK_ASM_vcvtreq_u32_f64:
|
|
ops[1].e.v |= 4; // to_integer (opc2)
|
|
break;
|
|
/* floating-point size conversion */
|
|
case TOK_ASM_vcvteq_f64_f32:
|
|
case TOK_ASM_vcvteq_f32_f64:
|
|
ops[1].e.v = 7;
|
|
break;
|
|
}
|
|
|
|
if (tok == ',')
|
|
next();
|
|
else
|
|
expect("','");
|
|
parse_operand(s1, &ops[2]);
|
|
|
|
switch (ARM_INSTRUCTION_GROUP(token)) {
|
|
/* floating-point -> integer */
|
|
case TOK_ASM_vcvteq_s32_f32:
|
|
case TOK_ASM_vcvteq_s32_f64:
|
|
case TOK_ASM_vcvteq_u32_f32:
|
|
case TOK_ASM_vcvteq_u32_f64:
|
|
opcode2 |= 4; // round_zero
|
|
break;
|
|
|
|
/* integer -> floating-point */
|
|
case TOK_ASM_vcvteq_f64_s32:
|
|
case TOK_ASM_vcvteq_f32_s32:
|
|
opcode2 |= 4; // signed--special
|
|
break;
|
|
|
|
/* floating-point size conversion */
|
|
case TOK_ASM_vcvteq_f64_f32:
|
|
case TOK_ASM_vcvteq_f32_f64:
|
|
opcode2 |= 4; // always set
|
|
break;
|
|
}
|
|
|
|
switch (ARM_INSTRUCTION_GROUP(token)) {
|
|
case TOK_ASM_vcvteq_f64_u32:
|
|
case TOK_ASM_vcvteq_f64_s32:
|
|
case TOK_ASM_vcvteq_f64_f32:
|
|
if (ops[0].type == OP_VREG64 && ops[2].type == OP_VREG32) {
|
|
} else {
|
|
expect("d<number>, s<number>");
|
|
return;
|
|
}
|
|
break;
|
|
default:
|
|
if (coprocessor == CP_SINGLE_PRECISION_FLOAT) {
|
|
if (ops[0].type == OP_VREG32 && ops[2].type == OP_VREG32) {
|
|
} else {
|
|
expect("s<number>, s<number>");
|
|
return;
|
|
}
|
|
} else if (coprocessor == CP_DOUBLE_PRECISION_FLOAT) {
|
|
if (ops[0].type == OP_VREG32 && ops[2].type == OP_VREG64) {
|
|
} else {
|
|
expect("s<number>, d<number>");
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ops[2].type == OP_VREG32) {
|
|
if (ops[2].reg & 1)
|
|
opcode2 |= 1;
|
|
ops[2].reg >>= 1;
|
|
}
|
|
if (ops[0].type == OP_VREG32) {
|
|
if (ops[0].reg & 1)
|
|
opcode1 |= 4;
|
|
ops[0].reg >>= 1;
|
|
}
|
|
asm_emit_coprocessor_opcode(condition_code_of_token(token), coprocessor, opcode1, ops[0].reg, (ops[1].type == OP_IM8) ? ops[1].e.v : ops[1].reg, (ops[2].type == OP_IM8) ? ops[2].e.v : ops[2].reg, opcode2, 0);
|
|
}
|
|
|
|
static void asm_floating_point_data_processing_opcode(TCCState *s1, int token) {
|
|
uint8_t coprocessor = CP_SINGLE_PRECISION_FLOAT;
|
|
uint8_t opcode1 = 0;
|
|
uint8_t opcode2 = 0; // (0 || 2) | register selection
|
|
Operand ops[3];
|
|
uint8_t nb_ops = 0;
|
|
int vmov = 0;
|
|
int nb_arm_regs = 0;
|
|
|
|
/* TODO:
|
|
Instruction opcode opcode2 Reason
|
|
=============================================================
|
|
- 1?00 ?1? Undefined
|
|
VFNMS 1?01 ?0? Must be unconditional
|
|
VFNMA 1?01 ?1? Must be unconditional
|
|
VFMA 1?10 ?0? Must be unconditional
|
|
VFMS 1?10 ?1? Must be unconditional
|
|
|
|
VMOV Fd, Fm
|
|
VMOV Sn, Sm, Rd, Rn
|
|
VMOV Rd, Rn, Sn, Sm
|
|
VMOV Dn[0], Rd
|
|
VMOV Rd, Dn[0]
|
|
VMOV Dn[1], Rd
|
|
VMOV Rd, Dn[1]
|
|
*/
|
|
|
|
switch (ARM_INSTRUCTION_GROUP(token)) {
|
|
case TOK_ASM_vmlaeq_f64:
|
|
case TOK_ASM_vmlseq_f64:
|
|
case TOK_ASM_vnmlseq_f64:
|
|
case TOK_ASM_vnmlaeq_f64:
|
|
case TOK_ASM_vmuleq_f64:
|
|
case TOK_ASM_vnmuleq_f64:
|
|
case TOK_ASM_vaddeq_f64:
|
|
case TOK_ASM_vsubeq_f64:
|
|
case TOK_ASM_vdiveq_f64:
|
|
case TOK_ASM_vnegeq_f64:
|
|
case TOK_ASM_vabseq_f64:
|
|
case TOK_ASM_vsqrteq_f64:
|
|
case TOK_ASM_vcmpeq_f64:
|
|
case TOK_ASM_vcmpeeq_f64:
|
|
case TOK_ASM_vmoveq_f64:
|
|
coprocessor = CP_DOUBLE_PRECISION_FLOAT;
|
|
}
|
|
|
|
switch (ARM_INSTRUCTION_GROUP(token)) {
|
|
case TOK_ASM_vmoveq_f32:
|
|
case TOK_ASM_vmoveq_f64:
|
|
vmov = 1;
|
|
break;
|
|
}
|
|
|
|
for (nb_ops = 0; nb_ops < 3; ) {
|
|
// Note: Necessary because parse_operand can't parse decimal numerals.
|
|
if (nb_ops == 1 && (tok == '#' || tok == '$' || tok == TOK_PPNUM || tok == '-')) {
|
|
asm_floating_point_immediate_data_processing_opcode_tail(s1, token, coprocessor, ops[0].reg);
|
|
return;
|
|
}
|
|
parse_operand(s1, &ops[nb_ops]);
|
|
if (vmov && ops[nb_ops].type == OP_REG32) {
|
|
++nb_arm_regs;
|
|
} else if (ops[nb_ops].type == OP_VREG32) {
|
|
if (coprocessor != CP_SINGLE_PRECISION_FLOAT) {
|
|
expect("'s<number>'");
|
|
return;
|
|
}
|
|
} else if (ops[nb_ops].type == OP_VREG64) {
|
|
if (coprocessor != CP_DOUBLE_PRECISION_FLOAT) {
|
|
expect("'d<number>'");
|
|
return;
|
|
}
|
|
} else {
|
|
expect("floating point register");
|
|
return;
|
|
}
|
|
++nb_ops;
|
|
if (tok == ',')
|
|
next();
|
|
else
|
|
break;
|
|
}
|
|
|
|
if (nb_arm_regs == 0) {
|
|
if (nb_ops == 2) { // implicit
|
|
memcpy(&ops[2], &ops[1], sizeof(ops[1])); // move ops[2]
|
|
memcpy(&ops[1], &ops[0], sizeof(ops[0])); // ops[1] was implicit
|
|
nb_ops = 3;
|
|
}
|
|
if (nb_ops < 3) {
|
|
tcc_error("Not enough operands for '%s' (%u)", get_tok_str(token, NULL), nb_ops);
|
|
return;
|
|
}
|
|
}
|
|
|
|
switch (ARM_INSTRUCTION_GROUP(token)) {
|
|
case TOK_ASM_vmlaeq_f32:
|
|
case TOK_ASM_vmlaeq_f64:
|
|
opcode1 = 0;
|
|
opcode2 = 0;
|
|
break;
|
|
case TOK_ASM_vmlseq_f32:
|
|
case TOK_ASM_vmlseq_f64:
|
|
opcode1 = 0;
|
|
opcode2 = 2;
|
|
break;
|
|
case TOK_ASM_vnmlseq_f32:
|
|
case TOK_ASM_vnmlseq_f64:
|
|
opcode1 = 1;
|
|
opcode2 = 0;
|
|
break;
|
|
case TOK_ASM_vnmlaeq_f32:
|
|
case TOK_ASM_vnmlaeq_f64:
|
|
opcode1 = 1;
|
|
opcode2 = 2;
|
|
break;
|
|
case TOK_ASM_vmuleq_f32:
|
|
case TOK_ASM_vmuleq_f64:
|
|
opcode1 = 2;
|
|
opcode2 = 0;
|
|
break;
|
|
case TOK_ASM_vnmuleq_f32:
|
|
case TOK_ASM_vnmuleq_f64:
|
|
opcode1 = 2;
|
|
opcode2 = 2;
|
|
break;
|
|
case TOK_ASM_vaddeq_f32:
|
|
case TOK_ASM_vaddeq_f64:
|
|
opcode1 = 3;
|
|
opcode2 = 0;
|
|
break;
|
|
case TOK_ASM_vsubeq_f32:
|
|
case TOK_ASM_vsubeq_f64:
|
|
opcode1 = 3;
|
|
opcode2 = 2;
|
|
break;
|
|
case TOK_ASM_vdiveq_f32:
|
|
case TOK_ASM_vdiveq_f64:
|
|
opcode1 = 8;
|
|
opcode2 = 0;
|
|
break;
|
|
case TOK_ASM_vnegeq_f32:
|
|
case TOK_ASM_vnegeq_f64:
|
|
opcode1 = 11; // Other" instruction
|
|
opcode2 = 2;
|
|
ops[1].type = OP_IM8;
|
|
ops[1].e.v = 1;
|
|
break;
|
|
case TOK_ASM_vabseq_f32:
|
|
case TOK_ASM_vabseq_f64:
|
|
opcode1 = 11; // "Other" instruction
|
|
opcode2 = 6;
|
|
ops[1].type = OP_IM8;
|
|
ops[1].e.v = 0;
|
|
break;
|
|
case TOK_ASM_vsqrteq_f32:
|
|
case TOK_ASM_vsqrteq_f64:
|
|
opcode1 = 11; // "Other" instruction
|
|
opcode2 = 6;
|
|
ops[1].type = OP_IM8;
|
|
ops[1].e.v = 1;
|
|
break;
|
|
case TOK_ASM_vcmpeq_f32:
|
|
case TOK_ASM_vcmpeq_f64:
|
|
opcode1 = 11; // "Other" instruction
|
|
opcode2 = 2;
|
|
ops[1].type = OP_IM8;
|
|
ops[1].e.v = 4;
|
|
break;
|
|
case TOK_ASM_vcmpeeq_f32:
|
|
case TOK_ASM_vcmpeeq_f64:
|
|
opcode1 = 11; // "Other" instruction
|
|
opcode2 = 6;
|
|
ops[1].type = OP_IM8;
|
|
ops[1].e.v = 4;
|
|
break;
|
|
case TOK_ASM_vmoveq_f32:
|
|
case TOK_ASM_vmoveq_f64:
|
|
if (nb_arm_regs > 0) { // vmov.f32 r2, s3 or similar
|
|
asm_floating_point_reg_arm_reg_transfer_opcode_tail(s1, token, coprocessor, nb_arm_regs, nb_ops, ops);
|
|
return;
|
|
} else {
|
|
opcode1 = 11; // "Other" instruction
|
|
opcode2 = 2;
|
|
ops[1].type = OP_IM8;
|
|
ops[1].e.v = 0;
|
|
}
|
|
break;
|
|
default:
|
|
expect("known floating point instruction");
|
|
return;
|
|
}
|
|
|
|
if (coprocessor == CP_SINGLE_PRECISION_FLOAT) {
|
|
if (ops[2].type == OP_VREG32) {
|
|
if (ops[2].reg & 1)
|
|
opcode2 |= 1;
|
|
ops[2].reg >>= 1;
|
|
}
|
|
|
|
if (ops[1].type == OP_VREG32) {
|
|
if (ops[1].reg & 1)
|
|
opcode2 |= 4;
|
|
ops[1].reg >>= 1;
|
|
}
|
|
|
|
if (ops[0].type == OP_VREG32) {
|
|
if (ops[0].reg & 1)
|
|
opcode1 |= 4;
|
|
ops[0].reg >>= 1;
|
|
}
|
|
}
|
|
|
|
asm_emit_coprocessor_opcode(condition_code_of_token(token), coprocessor, opcode1, ops[0].reg, (ops[1].type == OP_IM8) ? ops[1].e.v : ops[1].reg, (ops[2].type == OP_IM8) ? ops[2].e.v : ops[2].reg, opcode2, 0);
|
|
}
|
|
|
|
static int asm_parse_vfp_status_regvar(int t)
|
|
{
|
|
switch (t) {
|
|
case TOK_ASM_fpsid:
|
|
return 0;
|
|
case TOK_ASM_fpscr:
|
|
return 1;
|
|
case TOK_ASM_fpexc:
|
|
return 8;
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
static void asm_floating_point_status_register_opcode(TCCState* s1, int token)
|
|
{
|
|
uint8_t coprocessor = CP_SINGLE_PRECISION_FLOAT;
|
|
uint8_t opcode;
|
|
int vfp_sys_reg = -1;
|
|
Operand arm_operand;
|
|
switch (ARM_INSTRUCTION_GROUP(token)) {
|
|
case TOK_ASM_vmrseq:
|
|
opcode = 0xf;
|
|
if (tok == TOK_ASM_apsr_nzcv) {
|
|
arm_operand.type = OP_REG32;
|
|
arm_operand.reg = 15; // not PC
|
|
next(); // skip apsr_nzcv
|
|
} else {
|
|
parse_operand(s1, &arm_operand);
|
|
if (arm_operand.type == OP_REG32 && arm_operand.reg == 15) {
|
|
tcc_error("'%s' does not support 'pc' as operand", get_tok_str(token, NULL));
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (tok != ',')
|
|
expect("','");
|
|
else
|
|
next(); // skip ','
|
|
vfp_sys_reg = asm_parse_vfp_status_regvar(tok);
|
|
next(); // skip vfp sys reg
|
|
if (arm_operand.type == OP_REG32 && arm_operand.reg == 15 && vfp_sys_reg != 1) {
|
|
tcc_error("'%s' only supports the variant 'vmrs apsr_nzcv, fpscr' here", get_tok_str(token, NULL));
|
|
return;
|
|
}
|
|
break;
|
|
case TOK_ASM_vmsreq:
|
|
opcode = 0xe;
|
|
vfp_sys_reg = asm_parse_vfp_status_regvar(tok);
|
|
next(); // skip vfp sys reg
|
|
if (tok != ',')
|
|
expect("','");
|
|
else
|
|
next(); // skip ','
|
|
parse_operand(s1, &arm_operand);
|
|
if (arm_operand.type == OP_REG32 && arm_operand.reg == 15) {
|
|
tcc_error("'%s' does not support 'pc' as operand", get_tok_str(token, NULL));
|
|
return;
|
|
}
|
|
break;
|
|
default:
|
|
expect("floating point status register instruction");
|
|
return;
|
|
}
|
|
if (vfp_sys_reg == -1) {
|
|
expect("VFP system register");
|
|
return;
|
|
}
|
|
if (arm_operand.type != OP_REG32) {
|
|
expect("ARM register");
|
|
return;
|
|
}
|
|
asm_emit_coprocessor_opcode(condition_code_of_token(token), coprocessor, opcode, arm_operand.reg, vfp_sys_reg, 0x10, 0, 0);
|
|
}
|
|
|
|
#endif
|
|
|
|
static void asm_misc_single_data_transfer_opcode(TCCState *s1, int token)
|
|
{
|
|
Operand ops[3];
|
|
int exclam = 0;
|
|
int closed_bracket = 0;
|
|
int op2_minus = 0;
|
|
uint32_t opcode = (1 << 7) | (1 << 4);
|
|
|
|
/* Note:
|
|
The argument syntax is exactly the same as in arm_single_data_transfer_opcode, except that there's no STREX argument form.
|
|
The main difference between this function and asm_misc_single_data_transfer_opcode is that the immediate values here must be smaller.
|
|
Also, the combination (P=0, W=1) is unpredictable here.
|
|
The immediate flag has moved to bit index 22--and its meaning has flipped.
|
|
The immediate value itself has been split into two parts: one at bits 11...8, one at bits 3...0
|
|
bit 26 (Load/Store instruction) is unset here.
|
|
bits 7 and 4 are set here. */
|
|
|
|
// Here: 0 0 0 P U I W L << 20
|
|
// [compare single data transfer: 0 1 I P U B W L << 20]
|
|
|
|
parse_operand(s1, &ops[0]);
|
|
if (ops[0].type == OP_REG32)
|
|
opcode |= ENCODE_RD(ops[0].reg);
|
|
else {
|
|
expect("(destination operand) register");
|
|
return;
|
|
}
|
|
if (tok != ',')
|
|
expect("at least two arguments");
|
|
else
|
|
next(); // skip ','
|
|
|
|
if (tok != '[')
|
|
expect("'['");
|
|
else
|
|
next(); // skip '['
|
|
|
|
parse_operand(s1, &ops[1]);
|
|
if (ops[1].type == OP_REG32)
|
|
opcode |= ENCODE_RN(ops[1].reg);
|
|
else {
|
|
expect("(first source operand) register");
|
|
return;
|
|
}
|
|
if (tok == ']') {
|
|
next();
|
|
closed_bracket = 1;
|
|
// exclam = 1; // implicit in hardware; don't do it in software
|
|
}
|
|
if (tok == ',') {
|
|
next(); // skip ','
|
|
if (tok == '-') {
|
|
op2_minus = 1;
|
|
next();
|
|
}
|
|
parse_operand(s1, &ops[2]);
|
|
} else {
|
|
// end of input expression in brackets--assume 0 offset
|
|
ops[2].type = OP_IM8;
|
|
ops[2].e.v = 0;
|
|
opcode |= 1 << 24; // add offset before transfer
|
|
}
|
|
if (!closed_bracket) {
|
|
if (tok != ']')
|
|
expect("']'");
|
|
else
|
|
next(); // skip ']'
|
|
opcode |= 1 << 24; // add offset before transfer
|
|
if (tok == '!') {
|
|
exclam = 1;
|
|
next(); // skip '!'
|
|
}
|
|
}
|
|
|
|
if (exclam) {
|
|
if ((opcode & (1 << 24)) == 0) {
|
|
tcc_error("result of '%s' would be unpredictable here", get_tok_str(token, NULL));
|
|
return;
|
|
}
|
|
opcode |= 1 << 21; // write offset back into register
|
|
}
|
|
|
|
if (ops[2].type == OP_IM32 || ops[2].type == OP_IM8 || ops[2].type == OP_IM8N) {
|
|
int v = ops[2].e.v;
|
|
if (op2_minus)
|
|
tcc_error("minus before '#' not supported for immediate values");
|
|
if (v >= 0) {
|
|
opcode |= 1 << 23; // up
|
|
if (v >= 0x100)
|
|
tcc_error("offset out of range for '%s'", get_tok_str(token, NULL));
|
|
else {
|
|
// bits 11...8: immediate hi nibble
|
|
// bits 3...0: immediate lo nibble
|
|
opcode |= (v & 0xF0) << 4;
|
|
opcode |= v & 0xF;
|
|
}
|
|
} else { // down
|
|
if (v <= -0x100)
|
|
tcc_error("offset out of range for '%s'", get_tok_str(token, NULL));
|
|
else {
|
|
v = -v;
|
|
// bits 11...8: immediate hi nibble
|
|
// bits 3...0: immediate lo nibble
|
|
opcode |= (v & 0xF0) << 4;
|
|
opcode |= v & 0xF;
|
|
}
|
|
}
|
|
opcode |= 1 << 22; // not ENCODE_IMMEDIATE_FLAG;
|
|
} else if (ops[2].type == OP_REG32) {
|
|
if (!op2_minus)
|
|
opcode |= 1 << 23; // up
|
|
opcode |= ops[2].reg;
|
|
} else
|
|
expect("register");
|
|
|
|
switch (ARM_INSTRUCTION_GROUP(token)) {
|
|
case TOK_ASM_ldrsheq:
|
|
opcode |= 1 << 5; // halfword, not byte
|
|
/* fallthrough */
|
|
case TOK_ASM_ldrsbeq:
|
|
opcode |= 1 << 6; // sign extend
|
|
opcode |= 1 << 20; // L
|
|
asm_emit_opcode(token, opcode);
|
|
break;
|
|
case TOK_ASM_ldrheq:
|
|
opcode |= 1 << 5; // halfword, not byte
|
|
opcode |= 1 << 20; // L
|
|
asm_emit_opcode(token, opcode);
|
|
break;
|
|
case TOK_ASM_strheq:
|
|
opcode |= 1 << 5; // halfword, not byte
|
|
asm_emit_opcode(token, opcode);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Note: almost dupe of encbranch in arm-gen.c */
|
|
static uint32_t encbranchoffset(int pos, int addr, int fail)
|
|
{
|
|
addr-=pos+8;
|
|
addr/=4;
|
|
if(addr>=0x7fffff || addr<-0x800000) {
|
|
if(fail)
|
|
tcc_error("branch offset is too far");
|
|
return 0;
|
|
}
|
|
return /*not 0x0A000000|*/(addr&0xffffff);
|
|
}
|
|
|
|
static void asm_branch_opcode(TCCState *s1, int token)
|
|
{
|
|
int jmp_disp = 0;
|
|
Operand op;
|
|
ExprValue e;
|
|
ElfSym *esym;
|
|
|
|
switch (ARM_INSTRUCTION_GROUP(token)) {
|
|
case TOK_ASM_beq:
|
|
case TOK_ASM_bleq:
|
|
asm_expr(s1, &e);
|
|
esym = elfsym(e.sym);
|
|
if (!esym || esym->st_shndx != cur_text_section->sh_num) {
|
|
tcc_error("invalid branch target");
|
|
return;
|
|
}
|
|
jmp_disp = encbranchoffset(ind, e.v + esym->st_value, 1);
|
|
break;
|
|
default:
|
|
parse_operand(s1, &op);
|
|
break;
|
|
}
|
|
switch (ARM_INSTRUCTION_GROUP(token)) {
|
|
case TOK_ASM_beq:
|
|
asm_emit_opcode(token, (0xa << 24) | (jmp_disp & 0xffffff));
|
|
break;
|
|
case TOK_ASM_bleq:
|
|
asm_emit_opcode(token, (0xb << 24) | (jmp_disp & 0xffffff));
|
|
break;
|
|
case TOK_ASM_bxeq:
|
|
if (op.type != OP_REG32)
|
|
expect("register");
|
|
else
|
|
asm_emit_opcode(token, (0x12fff1 << 4) | op.reg);
|
|
break;
|
|
case TOK_ASM_blxeq:
|
|
if (op.type != OP_REG32)
|
|
expect("register");
|
|
else
|
|
asm_emit_opcode(token, (0x12fff3 << 4) | op.reg);
|
|
break;
|
|
default:
|
|
expect("branch instruction");
|
|
}
|
|
}
|
|
|
|
ST_FUNC void asm_opcode(TCCState *s1, int token)
|
|
{
|
|
while (token == TOK_LINEFEED) {
|
|
next();
|
|
token = tok;
|
|
}
|
|
if (token == TOK_EOF)
|
|
return;
|
|
if (token < TOK_ASM_nopeq) { // no condition code
|
|
switch (token) {
|
|
case TOK_ASM_cdp2:
|
|
asm_coprocessor_opcode(s1, token);
|
|
return;
|
|
case TOK_ASM_ldc2:
|
|
case TOK_ASM_ldc2l:
|
|
case TOK_ASM_stc2:
|
|
case TOK_ASM_stc2l:
|
|
asm_coprocessor_data_transfer_opcode(s1, token);
|
|
return;
|
|
default:
|
|
expect("instruction");
|
|
return;
|
|
}
|
|
}
|
|
|
|
switch (ARM_INSTRUCTION_GROUP(token)) {
|
|
case TOK_ASM_pusheq:
|
|
case TOK_ASM_popeq:
|
|
case TOK_ASM_stmdaeq:
|
|
case TOK_ASM_ldmdaeq:
|
|
case TOK_ASM_stmeq:
|
|
case TOK_ASM_ldmeq:
|
|
case TOK_ASM_stmiaeq:
|
|
case TOK_ASM_ldmiaeq:
|
|
case TOK_ASM_stmdbeq:
|
|
case TOK_ASM_ldmdbeq:
|
|
case TOK_ASM_stmibeq:
|
|
case TOK_ASM_ldmibeq:
|
|
asm_block_data_transfer_opcode(s1, token);
|
|
return;
|
|
case TOK_ASM_nopeq:
|
|
case TOK_ASM_wfeeq:
|
|
case TOK_ASM_wfieq:
|
|
asm_nullary_opcode(token);
|
|
return;
|
|
case TOK_ASM_swieq:
|
|
case TOK_ASM_svceq:
|
|
asm_unary_opcode(s1, token);
|
|
return;
|
|
case TOK_ASM_beq:
|
|
case TOK_ASM_bleq:
|
|
case TOK_ASM_bxeq:
|
|
case TOK_ASM_blxeq:
|
|
asm_branch_opcode(s1, token);
|
|
return;
|
|
case TOK_ASM_clzeq:
|
|
case TOK_ASM_sxtbeq:
|
|
case TOK_ASM_sxtheq:
|
|
case TOK_ASM_uxtbeq:
|
|
case TOK_ASM_uxtheq:
|
|
case TOK_ASM_movteq:
|
|
case TOK_ASM_movweq:
|
|
asm_binary_opcode(s1, token);
|
|
return;
|
|
|
|
case TOK_ASM_ldreq:
|
|
case TOK_ASM_ldrbeq:
|
|
case TOK_ASM_streq:
|
|
case TOK_ASM_strbeq:
|
|
case TOK_ASM_ldrexeq:
|
|
case TOK_ASM_ldrexbeq:
|
|
case TOK_ASM_strexeq:
|
|
case TOK_ASM_strexbeq:
|
|
asm_single_data_transfer_opcode(s1, token);
|
|
return;
|
|
|
|
case TOK_ASM_ldrheq:
|
|
case TOK_ASM_ldrsheq:
|
|
case TOK_ASM_ldrsbeq:
|
|
case TOK_ASM_strheq:
|
|
asm_misc_single_data_transfer_opcode(s1, token);
|
|
return;
|
|
|
|
case TOK_ASM_andeq:
|
|
case TOK_ASM_eoreq:
|
|
case TOK_ASM_subeq:
|
|
case TOK_ASM_rsbeq:
|
|
case TOK_ASM_addeq:
|
|
case TOK_ASM_adceq:
|
|
case TOK_ASM_sbceq:
|
|
case TOK_ASM_rsceq:
|
|
case TOK_ASM_tsteq:
|
|
case TOK_ASM_teqeq:
|
|
case TOK_ASM_cmpeq:
|
|
case TOK_ASM_cmneq:
|
|
case TOK_ASM_orreq:
|
|
case TOK_ASM_moveq:
|
|
case TOK_ASM_biceq:
|
|
case TOK_ASM_mvneq:
|
|
case TOK_ASM_andseq:
|
|
case TOK_ASM_eorseq:
|
|
case TOK_ASM_subseq:
|
|
case TOK_ASM_rsbseq:
|
|
case TOK_ASM_addseq:
|
|
case TOK_ASM_adcseq:
|
|
case TOK_ASM_sbcseq:
|
|
case TOK_ASM_rscseq:
|
|
// case TOK_ASM_tstseq:
|
|
// case TOK_ASM_teqseq:
|
|
// case TOK_ASM_cmpseq:
|
|
// case TOK_ASM_cmnseq:
|
|
case TOK_ASM_orrseq:
|
|
case TOK_ASM_movseq:
|
|
case TOK_ASM_bicseq:
|
|
case TOK_ASM_mvnseq:
|
|
asm_data_processing_opcode(s1, token);
|
|
return;
|
|
|
|
case TOK_ASM_lsleq:
|
|
case TOK_ASM_lslseq:
|
|
case TOK_ASM_lsreq:
|
|
case TOK_ASM_lsrseq:
|
|
case TOK_ASM_asreq:
|
|
case TOK_ASM_asrseq:
|
|
case TOK_ASM_roreq:
|
|
case TOK_ASM_rorseq:
|
|
case TOK_ASM_rrxseq:
|
|
case TOK_ASM_rrxeq:
|
|
asm_shift_opcode(s1, token);
|
|
return;
|
|
|
|
case TOK_ASM_muleq:
|
|
case TOK_ASM_mulseq:
|
|
case TOK_ASM_mlaeq:
|
|
case TOK_ASM_mlaseq:
|
|
asm_multiplication_opcode(s1, token);
|
|
return;
|
|
|
|
case TOK_ASM_smulleq:
|
|
case TOK_ASM_smullseq:
|
|
case TOK_ASM_umulleq:
|
|
case TOK_ASM_umullseq:
|
|
case TOK_ASM_smlaleq:
|
|
case TOK_ASM_smlalseq:
|
|
case TOK_ASM_umlaleq:
|
|
case TOK_ASM_umlalseq:
|
|
asm_long_multiplication_opcode(s1, token);
|
|
return;
|
|
|
|
case TOK_ASM_cdpeq:
|
|
case TOK_ASM_mcreq:
|
|
case TOK_ASM_mrceq:
|
|
asm_coprocessor_opcode(s1, token);
|
|
return;
|
|
|
|
case TOK_ASM_ldceq:
|
|
case TOK_ASM_ldcleq:
|
|
case TOK_ASM_stceq:
|
|
case TOK_ASM_stcleq:
|
|
asm_coprocessor_data_transfer_opcode(s1, token);
|
|
return;
|
|
|
|
#if defined(TCC_ARM_VFP)
|
|
case TOK_ASM_vldreq:
|
|
case TOK_ASM_vstreq:
|
|
asm_floating_point_single_data_transfer_opcode(s1, token);
|
|
return;
|
|
|
|
case TOK_ASM_vmlaeq_f32:
|
|
case TOK_ASM_vmlseq_f32:
|
|
case TOK_ASM_vnmlseq_f32:
|
|
case TOK_ASM_vnmlaeq_f32:
|
|
case TOK_ASM_vmuleq_f32:
|
|
case TOK_ASM_vnmuleq_f32:
|
|
case TOK_ASM_vaddeq_f32:
|
|
case TOK_ASM_vsubeq_f32:
|
|
case TOK_ASM_vdiveq_f32:
|
|
case TOK_ASM_vnegeq_f32:
|
|
case TOK_ASM_vabseq_f32:
|
|
case TOK_ASM_vsqrteq_f32:
|
|
case TOK_ASM_vcmpeq_f32:
|
|
case TOK_ASM_vcmpeeq_f32:
|
|
case TOK_ASM_vmoveq_f32:
|
|
case TOK_ASM_vmlaeq_f64:
|
|
case TOK_ASM_vmlseq_f64:
|
|
case TOK_ASM_vnmlseq_f64:
|
|
case TOK_ASM_vnmlaeq_f64:
|
|
case TOK_ASM_vmuleq_f64:
|
|
case TOK_ASM_vnmuleq_f64:
|
|
case TOK_ASM_vaddeq_f64:
|
|
case TOK_ASM_vsubeq_f64:
|
|
case TOK_ASM_vdiveq_f64:
|
|
case TOK_ASM_vnegeq_f64:
|
|
case TOK_ASM_vabseq_f64:
|
|
case TOK_ASM_vsqrteq_f64:
|
|
case TOK_ASM_vcmpeq_f64:
|
|
case TOK_ASM_vcmpeeq_f64:
|
|
case TOK_ASM_vmoveq_f64:
|
|
asm_floating_point_data_processing_opcode(s1, token);
|
|
return;
|
|
|
|
case TOK_ASM_vcvtreq_s32_f32:
|
|
case TOK_ASM_vcvtreq_s32_f64:
|
|
case TOK_ASM_vcvteq_s32_f32:
|
|
case TOK_ASM_vcvteq_s32_f64:
|
|
case TOK_ASM_vcvtreq_u32_f32:
|
|
case TOK_ASM_vcvtreq_u32_f64:
|
|
case TOK_ASM_vcvteq_u32_f32:
|
|
case TOK_ASM_vcvteq_u32_f64:
|
|
case TOK_ASM_vcvteq_f64_s32:
|
|
case TOK_ASM_vcvteq_f32_s32:
|
|
case TOK_ASM_vcvteq_f64_u32:
|
|
case TOK_ASM_vcvteq_f32_u32:
|
|
case TOK_ASM_vcvteq_f64_f32:
|
|
case TOK_ASM_vcvteq_f32_f64:
|
|
asm_floating_point_vcvt_data_processing_opcode(s1, token);
|
|
return;
|
|
|
|
case TOK_ASM_vpusheq:
|
|
case TOK_ASM_vpopeq:
|
|
case TOK_ASM_vldmeq:
|
|
case TOK_ASM_vldmiaeq:
|
|
case TOK_ASM_vldmdbeq:
|
|
case TOK_ASM_vstmeq:
|
|
case TOK_ASM_vstmiaeq:
|
|
case TOK_ASM_vstmdbeq:
|
|
asm_floating_point_block_data_transfer_opcode(s1, token);
|
|
return;
|
|
|
|
case TOK_ASM_vmsreq:
|
|
case TOK_ASM_vmrseq:
|
|
asm_floating_point_status_register_opcode(s1, token);
|
|
return;
|
|
#endif
|
|
|
|
default:
|
|
expect("known instruction");
|
|
}
|
|
}
|
|
|
|
ST_FUNC void subst_asm_operand(CString *add_str, SValue *sv, int modifier)
|
|
{
|
|
int r, reg, size, val;
|
|
char buf[64];
|
|
|
|
r = sv->r;
|
|
if ((r & VT_VALMASK) == VT_CONST) {
|
|
if (!(r & VT_LVAL) && modifier != 'c' && modifier != 'n' &&
|
|
modifier != 'P')
|
|
cstr_ccat(add_str, '#');
|
|
if (r & VT_SYM) {
|
|
const char *name = get_tok_str(sv->sym->v, NULL);
|
|
if (sv->sym->v >= SYM_FIRST_ANOM) {
|
|
/* In case of anonymous symbols ("L.42", used
|
|
for static data labels) we can't find them
|
|
in the C symbol table when later looking up
|
|
this name. So enter them now into the asm label
|
|
list when we still know the symbol. */
|
|
get_asm_sym(tok_alloc(name, strlen(name))->tok, sv->sym);
|
|
}
|
|
if (tcc_state->leading_underscore)
|
|
cstr_ccat(add_str, '_');
|
|
cstr_cat(add_str, name, -1);
|
|
if ((uint32_t) sv->c.i == 0)
|
|
goto no_offset;
|
|
cstr_ccat(add_str, '+');
|
|
}
|
|
val = sv->c.i;
|
|
if (modifier == 'n')
|
|
val = -val;
|
|
snprintf(buf, sizeof(buf), "%d", (int) sv->c.i);
|
|
cstr_cat(add_str, buf, -1);
|
|
no_offset:;
|
|
} else if ((r & VT_VALMASK) == VT_LOCAL) {
|
|
snprintf(buf, sizeof(buf), "[fp,#%d]", (int) sv->c.i);
|
|
cstr_cat(add_str, buf, -1);
|
|
} else if (r & VT_LVAL) {
|
|
reg = r & VT_VALMASK;
|
|
if (reg >= VT_CONST)
|
|
tcc_internal_error("");
|
|
snprintf(buf, sizeof(buf), "[%s]",
|
|
get_tok_str(TOK_ASM_r0 + reg, NULL));
|
|
cstr_cat(add_str, buf, -1);
|
|
} else {
|
|
/* register case */
|
|
reg = r & VT_VALMASK;
|
|
if (reg >= VT_CONST)
|
|
tcc_internal_error("");
|
|
|
|
/* choose register operand size */
|
|
if ((sv->type.t & VT_BTYPE) == VT_BYTE ||
|
|
(sv->type.t & VT_BTYPE) == VT_BOOL)
|
|
size = 1;
|
|
else if ((sv->type.t & VT_BTYPE) == VT_SHORT)
|
|
size = 2;
|
|
else
|
|
size = 4;
|
|
|
|
if (modifier == 'b') {
|
|
size = 1;
|
|
} else if (modifier == 'w') {
|
|
size = 2;
|
|
} else if (modifier == 'k') {
|
|
size = 4;
|
|
}
|
|
|
|
switch (size) {
|
|
default:
|
|
reg = TOK_ASM_r0 + reg;
|
|
break;
|
|
}
|
|
snprintf(buf, sizeof(buf), "%s", get_tok_str(reg, NULL));
|
|
cstr_cat(add_str, buf, -1);
|
|
}
|
|
}
|
|
|
|
/* generate prolog and epilog code for asm statement */
|
|
ST_FUNC void asm_gen_code(ASMOperand *operands, int nb_operands,
|
|
int nb_outputs, int is_output,
|
|
uint8_t *clobber_regs,
|
|
int out_reg)
|
|
{
|
|
uint8_t regs_allocated[NB_ASM_REGS];
|
|
ASMOperand *op;
|
|
int i, reg;
|
|
uint32_t saved_regset = 0;
|
|
|
|
// TODO: Check non-E ABI.
|
|
// Note: Technically, r13 (sp) is also callee-saved--but that does not matter yet
|
|
static const uint8_t reg_saved[] = { 4, 5, 6, 7, 8, 9 /* Note: sometimes special reg "sb" */ , 10, 11 };
|
|
|
|
/* mark all used registers */
|
|
memcpy(regs_allocated, clobber_regs, sizeof(regs_allocated));
|
|
for(i = 0; i < nb_operands;i++) {
|
|
op = &operands[i];
|
|
if (op->reg >= 0)
|
|
regs_allocated[op->reg] = 1;
|
|
}
|
|
for(i = 0; i < sizeof(reg_saved)/sizeof(reg_saved[0]); i++) {
|
|
reg = reg_saved[i];
|
|
if (regs_allocated[reg])
|
|
saved_regset |= 1 << reg;
|
|
}
|
|
|
|
if (!is_output) { // prolog
|
|
/* generate reg save code */
|
|
if (saved_regset)
|
|
gen_le32(0xe92d0000 | saved_regset); // push {...}
|
|
|
|
/* generate load code */
|
|
for(i = 0; i < nb_operands; i++) {
|
|
op = &operands[i];
|
|
if (op->reg >= 0) {
|
|
if ((op->vt->r & VT_VALMASK) == VT_LLOCAL &&
|
|
op->is_memory) {
|
|
/* memory reference case (for both input and
|
|
output cases) */
|
|
SValue sv;
|
|
sv = *op->vt;
|
|
sv.r = (sv.r & ~VT_VALMASK) | VT_LOCAL | VT_LVAL;
|
|
sv.type.t = VT_PTR;
|
|
load(op->reg, &sv);
|
|
} else if (i >= nb_outputs || op->is_rw) { // not write-only
|
|
/* load value in register */
|
|
load(op->reg, op->vt);
|
|
if (op->is_llong)
|
|
tcc_error("long long not implemented");
|
|
}
|
|
}
|
|
}
|
|
} else { // epilog
|
|
/* generate save code */
|
|
for(i = 0 ; i < nb_outputs; i++) {
|
|
op = &operands[i];
|
|
if (op->reg >= 0) {
|
|
if ((op->vt->r & VT_VALMASK) == VT_LLOCAL) {
|
|
if (!op->is_memory) {
|
|
SValue sv;
|
|
sv = *op->vt;
|
|
sv.r = (sv.r & ~VT_VALMASK) | VT_LOCAL;
|
|
sv.type.t = VT_PTR;
|
|
load(out_reg, &sv);
|
|
|
|
sv = *op->vt;
|
|
sv.r = (sv.r & ~VT_VALMASK) | out_reg;
|
|
store(op->reg, &sv);
|
|
}
|
|
} else {
|
|
store(op->reg, op->vt);
|
|
if (op->is_llong)
|
|
tcc_error("long long not implemented");
|
|
}
|
|
}
|
|
}
|
|
|
|
/* generate reg restore code */
|
|
if (saved_regset)
|
|
gen_le32(0xe8bd0000 | saved_regset); // pop {...}
|
|
}
|
|
}
|
|
|
|
/* return the constraint priority (we allocate first the lowest
|
|
numbered constraints) */
|
|
static inline int constraint_priority(const char *str)
|
|
{
|
|
int priority, c, pr;
|
|
|
|
/* we take the lowest priority */
|
|
priority = 0;
|
|
for(;;) {
|
|
c = *str;
|
|
if (c == '\0')
|
|
break;
|
|
str++;
|
|
switch(c) {
|
|
case 'l': // in ARM mode, that's an alias for 'r' [ARM].
|
|
case 'r': // register [general]
|
|
case 'p': // valid memory address for load,store [general]
|
|
pr = 3;
|
|
break;
|
|
case 'M': // integer constant for shifts [ARM]
|
|
case 'I': // integer valid for data processing instruction immediate
|
|
case 'J': // integer in range -4095...4095
|
|
|
|
case 'i': // immediate integer operand, including symbolic constants [general]
|
|
case 'm': // memory operand [general]
|
|
case 'g': // general-purpose-register, memory, immediate integer [general]
|
|
pr = 4;
|
|
break;
|
|
default:
|
|
tcc_error("unknown constraint '%c'", c);
|
|
pr = 0;
|
|
}
|
|
if (pr > priority)
|
|
priority = pr;
|
|
}
|
|
return priority;
|
|
}
|
|
|
|
static const char *skip_constraint_modifiers(const char *p)
|
|
{
|
|
/* Constraint modifier:
|
|
= Operand is written to by this instruction
|
|
+ Operand is both read and written to by this instruction
|
|
% Instruction is commutative for this operand and the following operand.
|
|
|
|
Per-alternative constraint modifier:
|
|
& Operand is clobbered before the instruction is done using the input operands
|
|
*/
|
|
while (*p == '=' || *p == '&' || *p == '+' || *p == '%')
|
|
p++;
|
|
return p;
|
|
}
|
|
|
|
#define REG_OUT_MASK 0x01
|
|
#define REG_IN_MASK 0x02
|
|
|
|
#define is_reg_allocated(reg) (regs_allocated[reg] & reg_mask)
|
|
|
|
ST_FUNC void asm_compute_constraints(ASMOperand *operands,
|
|
int nb_operands, int nb_outputs,
|
|
const uint8_t *clobber_regs,
|
|
int *pout_reg)
|
|
{
|
|
/* overall format: modifier, then ,-seperated list of alternatives; all operands for a single instruction must have the same number of alternatives */
|
|
/* TODO: Simple constraints
|
|
whitespace ignored
|
|
o memory operand that is offsetable
|
|
V memory but not offsetable
|
|
< memory operand with autodecrement addressing is allowed. Restrictions apply.
|
|
> memory operand with autoincrement addressing is allowed. Restrictions apply.
|
|
n immediate integer operand with a known numeric value
|
|
E immediate floating operand (const_double) is allowed, but only if target=host
|
|
F immediate floating operand (const_double or const_vector) is allowed
|
|
s immediate integer operand whose value is not an explicit integer
|
|
X any operand whatsoever
|
|
0...9 (postfix); (can also be more than 1 digit number); an operand that matches the specified operand number is allowed
|
|
*/
|
|
|
|
/* TODO: ARM constraints:
|
|
k the stack pointer register
|
|
G the floating-point constant 0.0
|
|
Q memory reference where the exact address is in a single register ("m" is preferable for asm statements)
|
|
R an item in the constant pool
|
|
S symbol in the text segment of the current file
|
|
[ Uv memory reference suitable for VFP load/store insns (reg+constant offset)]
|
|
[ Uy memory reference suitable for iWMMXt load/store instructions]
|
|
Uq memory reference suitable for the ARMv4 ldrsb instruction
|
|
*/
|
|
ASMOperand *op;
|
|
int sorted_op[MAX_ASM_OPERANDS];
|
|
int i, j, k, p1, p2, tmp, reg, c, reg_mask;
|
|
const char *str;
|
|
uint8_t regs_allocated[NB_ASM_REGS];
|
|
|
|
/* init fields */
|
|
for (i = 0; i < nb_operands; i++) {
|
|
op = &operands[i];
|
|
op->input_index = -1;
|
|
op->ref_index = -1;
|
|
op->reg = -1;
|
|
op->is_memory = 0;
|
|
op->is_rw = 0;
|
|
}
|
|
/* compute constraint priority and evaluate references to output
|
|
constraints if input constraints */
|
|
for (i = 0; i < nb_operands; i++) {
|
|
op = &operands[i];
|
|
str = op->constraint;
|
|
str = skip_constraint_modifiers(str);
|
|
if (isnum(*str) || *str == '[') {
|
|
/* this is a reference to another constraint */
|
|
k = find_constraint(operands, nb_operands, str, NULL);
|
|
if ((unsigned) k >= i || i < nb_outputs)
|
|
tcc_error("invalid reference in constraint %d ('%s')",
|
|
i, str);
|
|
op->ref_index = k;
|
|
if (operands[k].input_index >= 0)
|
|
tcc_error("cannot reference twice the same operand");
|
|
operands[k].input_index = i;
|
|
op->priority = 5;
|
|
} else if ((op->vt->r & VT_VALMASK) == VT_LOCAL
|
|
&& op->vt->sym
|
|
&& (reg = op->vt->sym->r & VT_VALMASK) < VT_CONST) {
|
|
op->priority = 1;
|
|
op->reg = reg;
|
|
} else {
|
|
op->priority = constraint_priority(str);
|
|
}
|
|
}
|
|
|
|
/* sort operands according to their priority */
|
|
for (i = 0; i < nb_operands; i++)
|
|
sorted_op[i] = i;
|
|
for (i = 0; i < nb_operands - 1; i++) {
|
|
for (j = i + 1; j < nb_operands; j++) {
|
|
p1 = operands[sorted_op[i]].priority;
|
|
p2 = operands[sorted_op[j]].priority;
|
|
if (p2 < p1) {
|
|
tmp = sorted_op[i];
|
|
sorted_op[i] = sorted_op[j];
|
|
sorted_op[j] = tmp;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < NB_ASM_REGS; i++) {
|
|
if (clobber_regs[i])
|
|
regs_allocated[i] = REG_IN_MASK | REG_OUT_MASK;
|
|
else
|
|
regs_allocated[i] = 0;
|
|
}
|
|
/* sp cannot be used */
|
|
regs_allocated[13] = REG_IN_MASK | REG_OUT_MASK;
|
|
/* fp cannot be used yet */
|
|
regs_allocated[11] = REG_IN_MASK | REG_OUT_MASK;
|
|
|
|
/* allocate registers and generate corresponding asm moves */
|
|
for (i = 0; i < nb_operands; i++) {
|
|
j = sorted_op[i];
|
|
op = &operands[j];
|
|
str = op->constraint;
|
|
/* no need to allocate references */
|
|
if (op->ref_index >= 0)
|
|
continue;
|
|
/* select if register is used for output, input or both */
|
|
if (op->input_index >= 0) {
|
|
reg_mask = REG_IN_MASK | REG_OUT_MASK;
|
|
} else if (j < nb_outputs) {
|
|
reg_mask = REG_OUT_MASK;
|
|
} else {
|
|
reg_mask = REG_IN_MASK;
|
|
}
|
|
if (op->reg >= 0) {
|
|
if (is_reg_allocated(op->reg))
|
|
tcc_error
|
|
("asm regvar requests register that's taken already");
|
|
reg = op->reg;
|
|
goto reg_found;
|
|
}
|
|
try_next:
|
|
c = *str++;
|
|
switch (c) {
|
|
case '=': // Operand is written-to
|
|
goto try_next;
|
|
case '+': // Operand is both READ and written-to
|
|
op->is_rw = 1;
|
|
/* FALL THRU */
|
|
case '&': // Operand is clobbered before the instruction is done using the input operands
|
|
if (j >= nb_outputs)
|
|
tcc_error("'%c' modifier can only be applied to outputs",
|
|
c);
|
|
reg_mask = REG_IN_MASK | REG_OUT_MASK;
|
|
goto try_next;
|
|
case 'l': // In non-thumb mode, alias for 'r'--otherwise r0-r7 [ARM]
|
|
case 'r': // general-purpose register
|
|
case 'p': // loadable/storable address
|
|
/* any general register */
|
|
for (reg = 0; reg <= 8; reg++) {
|
|
if (!is_reg_allocated(reg))
|
|
goto reg_found;
|
|
}
|
|
goto try_next;
|
|
reg_found:
|
|
/* now we can reload in the register */
|
|
op->is_llong = 0;
|
|
op->reg = reg;
|
|
regs_allocated[reg] |= reg_mask;
|
|
break;
|
|
case 'I': // integer that is valid as an data processing instruction immediate (0...255, rotated by a multiple of two)
|
|
case 'J': // integer in the range -4095 to 4095 [ARM]
|
|
case 'K': // integer that satisfies constraint I when inverted (one's complement)
|
|
case 'L': // integer that satisfies constraint I when inverted (two's complement)
|
|
case 'i': // immediate integer operand, including symbolic constants
|
|
if (!((op->vt->r & (VT_VALMASK | VT_LVAL)) == VT_CONST))
|
|
goto try_next;
|
|
break;
|
|
case 'M': // integer in the range 0 to 32
|
|
if (!
|
|
((op->vt->r & (VT_VALMASK | VT_LVAL | VT_SYM)) ==
|
|
VT_CONST))
|
|
goto try_next;
|
|
break;
|
|
case 'm': // memory operand
|
|
case 'g':
|
|
/* nothing special to do because the operand is already in
|
|
memory, except if the pointer itself is stored in a
|
|
memory variable (VT_LLOCAL case) */
|
|
/* XXX: fix constant case */
|
|
/* if it is a reference to a memory zone, it must lie
|
|
in a register, so we reserve the register in the
|
|
input registers and a load will be generated
|
|
later */
|
|
if (j < nb_outputs || c == 'm') {
|
|
if ((op->vt->r & VT_VALMASK) == VT_LLOCAL) {
|
|
/* any general register */
|
|
for (reg = 0; reg <= 8; reg++) {
|
|
if (!(regs_allocated[reg] & REG_IN_MASK))
|
|
goto reg_found1;
|
|
}
|
|
goto try_next;
|
|
reg_found1:
|
|
/* now we can reload in the register */
|
|
regs_allocated[reg] |= REG_IN_MASK;
|
|
op->reg = reg;
|
|
op->is_memory = 1;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
tcc_error("asm constraint %d ('%s') could not be satisfied",
|
|
j, op->constraint);
|
|
break;
|
|
}
|
|
/* if a reference is present for that operand, we assign it too */
|
|
if (op->input_index >= 0) {
|
|
operands[op->input_index].reg = op->reg;
|
|
operands[op->input_index].is_llong = op->is_llong;
|
|
}
|
|
}
|
|
|
|
/* compute out_reg. It is used to store outputs registers to memory
|
|
locations references by pointers (VT_LLOCAL case) */
|
|
*pout_reg = -1;
|
|
for (i = 0; i < nb_operands; i++) {
|
|
op = &operands[i];
|
|
if (op->reg >= 0 &&
|
|
(op->vt->r & VT_VALMASK) == VT_LLOCAL && !op->is_memory) {
|
|
for (reg = 0; reg <= 8; reg++) {
|
|
if (!(regs_allocated[reg] & REG_OUT_MASK))
|
|
goto reg_found2;
|
|
}
|
|
tcc_error("could not find free output register for reloading");
|
|
reg_found2:
|
|
*pout_reg = reg;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* print sorted constraints */
|
|
#ifdef ASM_DEBUG
|
|
for (i = 0; i < nb_operands; i++) {
|
|
j = sorted_op[i];
|
|
op = &operands[j];
|
|
printf("%%%d [%s]: \"%s\" r=0x%04x reg=%d\n",
|
|
j,
|
|
op->id ? get_tok_str(op->id, NULL) : "",
|
|
op->constraint, op->vt->r, op->reg);
|
|
}
|
|
if (*pout_reg >= 0)
|
|
printf("out_reg=%d\n", *pout_reg);
|
|
#endif
|
|
}
|
|
|
|
ST_FUNC void asm_clobber(uint8_t *clobber_regs, const char *str)
|
|
{
|
|
int reg;
|
|
TokenSym *ts;
|
|
|
|
if (!strcmp(str, "memory") ||
|
|
!strcmp(str, "cc") ||
|
|
!strcmp(str, "flags"))
|
|
return;
|
|
ts = tok_alloc(str, strlen(str));
|
|
reg = asm_parse_regvar(ts->tok);
|
|
if (reg == -1) {
|
|
tcc_error("invalid clobber register '%s'", str);
|
|
}
|
|
clobber_regs[reg] = 1;
|
|
}
|
|
|
|
/* If T refers to a register then return the register number and type.
|
|
Otherwise return -1. */
|
|
ST_FUNC int asm_parse_regvar (int t)
|
|
{
|
|
if (t >= TOK_ASM_r0 && t <= TOK_ASM_pc) { /* register name */
|
|
switch (t) {
|
|
case TOK_ASM_fp:
|
|
return TOK_ASM_r11 - TOK_ASM_r0;
|
|
case TOK_ASM_ip:
|
|
return TOK_ASM_r12 - TOK_ASM_r0;
|
|
case TOK_ASM_sp:
|
|
return TOK_ASM_r13 - TOK_ASM_r0;
|
|
case TOK_ASM_lr:
|
|
return TOK_ASM_r14 - TOK_ASM_r0;
|
|
case TOK_ASM_pc:
|
|
return TOK_ASM_r15 - TOK_ASM_r0;
|
|
default:
|
|
return t - TOK_ASM_r0;
|
|
}
|
|
} else
|
|
return -1;
|
|
}
|
|
|
|
/*************************************************************/
|
|
#endif /* ndef TARGET_DEFS_ONLY */
|