1
0
mirror of https://github.com/mirror/tinycc.git synced 2025-01-15 05:20:06 +08:00
tinycc/x86_64-gen.c

1420 lines
40 KiB
C

/*
* x86-64 code generator for TCC
*
* Copyright (c) 2008 Shinichiro Hamaji
*
* Based on i386-gen.c by Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <assert.h>
/* number of available registers */
#define NB_REGS 5
/* a register can belong to several classes. The classes must be
sorted from more general to more precise (see gv2() code which does
assumptions on it). */
#define RC_INT 0x0001 /* generic integer register */
#define RC_FLOAT 0x0002 /* generic float register */
#define RC_RAX 0x0004
#define RC_RCX 0x0008
#define RC_RDX 0x0010
#define RC_XMM0 0x0020
#define RC_ST0 0x0040 /* only for long double */
#define RC_IRET RC_RAX /* function return: integer register */
#define RC_LRET RC_RDX /* function return: second integer register */
#define RC_FRET RC_XMM0 /* function return: float register */
/* pretty names for the registers */
enum {
TREG_RAX = 0,
TREG_RCX = 1,
TREG_RDX = 2,
TREG_RSI = 6,
TREG_RDI = 7,
TREG_R8 = 8,
TREG_R9 = 9,
TREG_R10 = 10,
TREG_R11 = 11,
TREG_XMM0 = 3,
TREG_ST0 = 4,
TREG_MEM = 0x10,
};
#define REX_BASE(reg) (((reg) >> 3) & 1)
#define REG_VALUE(reg) ((reg) & 7)
int reg_classes[NB_REGS] = {
/* eax */ RC_INT | RC_RAX,
/* ecx */ RC_INT | RC_RCX,
/* edx */ RC_INT | RC_RDX,
/* xmm0 */ RC_FLOAT | RC_XMM0,
/* st0 */ RC_ST0,
};
/* return registers for function */
#define REG_IRET TREG_RAX /* single word int return register */
#define REG_LRET TREG_RDX /* second word return register (for long long) */
#define REG_FRET TREG_XMM0 /* float return register */
/* defined if function parameters must be evaluated in reverse order */
#define INVERT_FUNC_PARAMS
/* pointer size, in bytes */
#define PTR_SIZE 8
/* long double size and alignment, in bytes */
#define LDOUBLE_SIZE 16
#define LDOUBLE_ALIGN 8
/* maximum alignment (for aligned attribute support) */
#define MAX_ALIGN 8
/******************************************************/
/* ELF defines */
#define EM_TCC_TARGET EM_X86_64
/* relocation type for 32 bit data relocation */
#define R_DATA_32 R_X86_64_64
#define R_JMP_SLOT R_X86_64_JUMP_SLOT
#define R_COPY R_X86_64_COPY
#define ELF_START_ADDR 0x08048000
#define ELF_PAGE_SIZE 0x1000
/******************************************************/
static unsigned long func_sub_sp_offset;
static int func_ret_sub;
/* XXX: make it faster ? */
void g(int c)
{
int ind1;
ind1 = ind + 1;
if (ind1 > cur_text_section->data_allocated)
section_realloc(cur_text_section, ind1);
cur_text_section->data[ind] = c;
ind = ind1;
}
void o(unsigned int c)
{
while (c) {
g(c);
c = c >> 8;
}
}
void gen_le32(int c)
{
g(c);
g(c >> 8);
g(c >> 16);
g(c >> 24);
}
void gen_le64(int64_t c)
{
g(c);
g(c >> 8);
g(c >> 16);
g(c >> 24);
g(c >> 32);
g(c >> 40);
g(c >> 48);
g(c >> 56);
}
/* output a symbol and patch all calls to it */
void gsym_addr(int t, int a)
{
int n, *ptr;
while (t) {
ptr = (int *)(cur_text_section->data + t);
n = *ptr; /* next value */
*ptr = a - t - 4;
t = n;
}
}
void gsym(int t)
{
gsym_addr(t, ind);
}
/* psym is used to put an instruction with a data field which is a
reference to a symbol. It is in fact the same as oad ! */
#define psym oad
static int is64_type(int t)
{
return ((t & VT_BTYPE) == VT_PTR ||
(t & VT_BTYPE) == VT_FUNC ||
(t & VT_BTYPE) == VT_LLONG);
}
static int is_sse_float(int t) {
int bt;
bt = t & VT_BTYPE;
return bt == VT_DOUBLE || bt == VT_FLOAT;
}
/* instruction + 4 bytes data. Return the address of the data */
static int oad(int c, int s)
{
int ind1;
o(c);
ind1 = ind + 4;
if (ind1 > cur_text_section->data_allocated)
section_realloc(cur_text_section, ind1);
*(int *)(cur_text_section->data + ind) = s;
s = ind;
ind = ind1;
return s;
}
/* output constant with relocation if 'r & VT_SYM' is true */
static void gen_addr64(int r, Sym *sym, int64_t c)
{
if (r & VT_SYM)
greloc(cur_text_section, sym, ind, R_X86_64_64);
gen_le64(c);
}
/* output constant with relocation if 'r & VT_SYM' is true */
static void gen_addrpc32(int r, Sym *sym, int c)
{
if (r & VT_SYM)
greloc(cur_text_section, sym, ind, R_X86_64_PC32);
gen_le32(c-4);
}
/* output got address with relocation */
static void gen_gotpcrel(int r, Sym *sym, int c)
{
Section *sr;
ElfW(Rela) *rel;
greloc(cur_text_section, sym, ind, R_X86_64_GOTPCREL);
sr = cur_text_section->reloc;
rel = (ElfW(Rela) *)(sr->data + sr->data_offset - sizeof(ElfW(Rela)));
rel->r_addend = -4;
gen_le32(0);
if (c) {
/* we use add c, %xxx for displacement */
o(0x48 + REX_BASE(r));
o(0x81);
o(0xc0 + REG_VALUE(r));
gen_le32(c);
}
}
static void gen_modrm_impl(int op_reg, int r, Sym *sym, int c, int is_got)
{
op_reg = REG_VALUE(op_reg) << 3;
if ((r & VT_VALMASK) == VT_CONST) {
/* constant memory reference */
o(0x05 | op_reg);
if (is_got) {
gen_gotpcrel(r, sym, c);
} else {
gen_addrpc32(r, sym, c);
}
} else if ((r & VT_VALMASK) == VT_LOCAL) {
/* currently, we use only ebp as base */
if (c == (char)c) {
/* short reference */
o(0x45 | op_reg);
g(c);
} else {
oad(0x85 | op_reg, c);
}
} else if ((r & VT_VALMASK) >= TREG_MEM) {
if (c) {
g(0x80 | op_reg | REG_VALUE(r));
gen_le32(c);
} else {
g(0x00 | op_reg | REG_VALUE(r));
}
} else {
g(0x00 | op_reg | (r & VT_VALMASK));
}
}
/* generate a modrm reference. 'op_reg' contains the addtionnal 3
opcode bits */
static void gen_modrm(int op_reg, int r, Sym *sym, int c)
{
gen_modrm_impl(op_reg, r, sym, c, 0);
}
/* generate a modrm reference. 'op_reg' contains the addtionnal 3
opcode bits */
static void gen_modrm64(int opcode, int op_reg, int r, Sym *sym, int c)
{
int is_got;
int rex = 0x48 | (REX_BASE(op_reg) << 2);
if ((r & VT_VALMASK) != VT_CONST &&
(r & VT_VALMASK) != VT_LOCAL) {
rex |= REX_BASE(VT_VALMASK & r);
}
o(rex);
o(opcode);
is_got = (op_reg & TREG_MEM) && !(sym->type.t & VT_STATIC);
gen_modrm_impl(op_reg, r, sym, c, is_got);
}
/* load 'r' from value 'sv' */
void load(int r, SValue *sv)
{
int v, t, ft, fc, fr;
SValue v1;
fr = sv->r;
ft = sv->type.t;
fc = sv->c.ul;
/* we use indirect access via got */
if ((fr & VT_VALMASK) == VT_CONST && (fr & VT_SYM) &&
(fr & VT_LVAL) && !(sv->sym->type.t & VT_STATIC)) {
/* use the result register as a temporal register */
int tr = r | TREG_MEM;
if (is_float(ft)) {
/* we cannot use float registers as a temporal register */
tr = get_reg(RC_INT) | TREG_MEM;
}
gen_modrm64(0x8b, tr, fr, sv->sym, 0);
/* load from the temporal register */
fr = tr | VT_LVAL;
}
v = fr & VT_VALMASK;
if (fr & VT_LVAL) {
if (v == VT_LLOCAL) {
v1.type.t = VT_PTR;
v1.r = VT_LOCAL | VT_LVAL;
v1.c.ul = fc;
load(r, &v1);
fr = r;
}
if ((ft & VT_BTYPE) == VT_FLOAT) {
o(0x6e0f66); /* movd */
r = 0;
} else if ((ft & VT_BTYPE) == VT_DOUBLE) {
o(0x7e0ff3); /* movq */
r = 0;
} else if ((ft & VT_BTYPE) == VT_LDOUBLE) {
o(0xdb); /* fldt */
r = 5;
} else if ((ft & VT_TYPE) == VT_BYTE) {
o(0xbe0f); /* movsbl */
} else if ((ft & VT_TYPE) == (VT_BYTE | VT_UNSIGNED)) {
o(0xb60f); /* movzbl */
} else if ((ft & VT_TYPE) == VT_SHORT) {
o(0xbf0f); /* movswl */
} else if ((ft & VT_TYPE) == (VT_SHORT | VT_UNSIGNED)) {
o(0xb70f); /* movzwl */
} else if (is64_type(ft)) {
gen_modrm64(0x8b, r, fr, sv->sym, fc);
return;
} else {
o(0x8b); /* movl */
}
gen_modrm(r, fr, sv->sym, fc);
} else {
if (v == VT_CONST) {
if ((ft & VT_BTYPE) == VT_LLONG) {
assert(!(fr & VT_SYM));
o(0x48);
o(0xb8 + REG_VALUE(r)); /* mov $xx, r */
gen_addr64(fr, sv->sym, sv->c.ull);
} else {
if (fr & VT_SYM) {
if (sv->sym->type.t & VT_STATIC) {
o(0x8d48);
o(0x05 + REG_VALUE(r) * 8); /* lea xx(%rip), r */
gen_addrpc32(fr, sv->sym, fc);
} else {
o(0x8b48);
o(0x05 + REG_VALUE(r) * 8); /* mov xx(%rip), r */
gen_gotpcrel(r, sv->sym, fc);
}
} else {
o(0xb8 + REG_VALUE(r)); /* mov $xx, r */
gen_le32(fc);
}
}
} else if (v == VT_LOCAL) {
o(0x48 | REX_BASE(r));
o(0x8d); /* lea xxx(%ebp), r */
gen_modrm(r, VT_LOCAL, sv->sym, fc);
} else if (v == VT_CMP) {
oad(0xb8 + r, 0); /* mov $0, r */
o(0x0f); /* setxx %br */
o(fc);
o(0xc0 + r);
} else if (v == VT_JMP || v == VT_JMPI) {
t = v & 1;
oad(0xb8 + r, t); /* mov $1, r */
o(0x05eb); /* jmp after */
gsym(fc);
oad(0xb8 + r, t ^ 1); /* mov $0, r */
} else if (v != r) {
if (r == TREG_XMM0) {
assert(v == TREG_ST0);
/* gen_cvt_ftof(VT_DOUBLE); */
o(0xf0245cdd); /* fstpl -0x10(%rsp) */
/* movsd -0x10(%rsp),%xmm0 */
o(0x44100ff2);
o(0xf024);
} else if (r == TREG_ST0) {
assert(v == TREG_XMM0);
/* gen_cvt_ftof(VT_LDOUBLE); */
/* movsd %xmm0,-0x10(%rsp) */
o(0x44110ff2);
o(0xf024);
o(0xf02444dd); /* fldl -0x10(%rsp) */
} else {
o(0x48 | REX_BASE(r) | (REX_BASE(v) << 2));
o(0x89);
o(0xc0 + r + v * 8); /* mov v, r */
}
}
}
}
/* store register 'r' in lvalue 'v' */
void store(int r, SValue *v)
{
int fr, bt, ft, fc;
int op64 = 0;
/* store the REX prefix in this variable when PIC is enabled */
int pic = 0;
ft = v->type.t;
fc = v->c.ul;
fr = v->r & VT_VALMASK;
bt = ft & VT_BTYPE;
/* we need to access the variable via got */
if (fr == VT_CONST && (v->r & VT_SYM)) {
/* mov xx(%rip), %r11 */
o(0x1d8b4c);
gen_gotpcrel(TREG_R11, v->sym, v->c.ul);
pic = is64_type(bt) ? 0x49 : 0x41;
}
/* XXX: incorrect if float reg to reg */
if (bt == VT_FLOAT) {
o(0x66);
o(pic);
o(0x7e0f); /* movd */
r = 0;
} else if (bt == VT_DOUBLE) {
o(0x66);
o(pic);
o(0xd60f); /* movq */
r = 0;
} else if (bt == VT_LDOUBLE) {
o(0xc0d9); /* fld %st(0) */
o(pic);
o(0xdb); /* fstpt */
r = 7;
} else {
if (bt == VT_SHORT)
o(0x66);
o(pic);
if (bt == VT_BYTE || bt == VT_BOOL)
o(0x88);
else if (is64_type(bt))
op64 = 0x89;
else
o(0x89);
}
if (pic) {
/* xxx r, (%r11) where xxx is mov, movq, fld, or etc */
if (op64)
o(op64);
o(3 + (r << 3));
} else if (op64) {
if (fr == VT_CONST ||
fr == VT_LOCAL ||
(v->r & VT_LVAL)) {
gen_modrm64(op64, r, v->r, v->sym, fc);
} else if (fr != r) {
/* XXX: don't we really come here? */
abort();
o(0xc0 + fr + r * 8); /* mov r, fr */
}
} else {
if (fr == VT_CONST ||
fr == VT_LOCAL ||
(v->r & VT_LVAL)) {
gen_modrm(r, v->r, v->sym, fc);
} else if (fr != r) {
/* XXX: don't we really come here? */
abort();
o(0xc0 + fr + r * 8); /* mov r, fr */
}
}
}
static void gadd_sp(int val)
{
if (val == (char)val) {
o(0xc48348);
g(val);
} else {
oad(0xc48148, val); /* add $xxx, %rsp */
}
}
/* 'is_jmp' is '1' if it is a jump */
static void gcall_or_jmp(int is_jmp)
{
int r;
if ((vtop->r & (VT_VALMASK | VT_LVAL)) == VT_CONST) {
/* constant case */
if (vtop->r & VT_SYM) {
/* relocation case */
greloc(cur_text_section, vtop->sym,
ind + 1, R_X86_64_PC32);
} else {
/* put an empty PC32 relocation */
put_elf_reloc(symtab_section, cur_text_section,
ind + 1, R_X86_64_PC32, 0);
}
oad(0xe8 + is_jmp, vtop->c.ul - 4); /* call/jmp im */
} else {
/* otherwise, indirect call */
r = TREG_R11;
load(r, vtop);
o(0x41); /* REX */
o(0xff); /* call/jmp *r */
o(0xd0 + REG_VALUE(r) + (is_jmp << 4));
}
}
static uint8_t arg_regs[6] = {
TREG_RDI, TREG_RSI, TREG_RDX, TREG_RCX, TREG_R8, TREG_R9
};
/* Generate function call. The function address is pushed first, then
all the parameters in call order. This functions pops all the
parameters and the function address. */
void gfunc_call(int nb_args)
{
int size, align, r, args_size, i, func_call;
Sym *func_sym;
SValue *orig_vtop;
int nb_reg_args = 0;
int nb_sse_args = 0;
int sse_reg, gen_reg;
/* calculate the number of integer/float arguments */
args_size = 0;
for(i = 0; i < nb_args; i++) {
if ((vtop[-i].type.t & VT_BTYPE) == VT_STRUCT) {
args_size += type_size(&vtop->type, &align);
} else if ((vtop[-i].type.t & VT_BTYPE) == VT_LDOUBLE) {
args_size += 16;
} else if (is_sse_float(vtop[-i].type.t)) {
nb_sse_args++;
if (nb_sse_args > 8) args_size += 8;
} else {
nb_reg_args++;
if (nb_reg_args > 6) args_size += 8;
}
}
/* for struct arguments, we need to call memcpy and the function
call breaks register passing arguments we are preparing.
So, we process arguments which will be passed by stack first. */
orig_vtop = vtop;
gen_reg = nb_reg_args;
sse_reg = nb_sse_args;
/* adjust stack to align SSE boundary */
if (args_size &= 8) {
o(0x50); /* push $rax */
}
for(i = 0; i < nb_args; i++) {
if ((vtop->type.t & VT_BTYPE) == VT_STRUCT) {
size = type_size(&vtop->type, &align);
/* align to stack align size */
size = (size + 3) & ~3;
/* allocate the necessary size on stack */
o(0x48);
oad(0xec81, size); /* sub $xxx, %rsp */
/* generate structure store */
r = get_reg(RC_INT);
o(0x48 + REX_BASE(r));
o(0x89); /* mov %rsp, r */
o(0xe0 + r);
{
/* following code breaks vtop[1] */
SValue tmp = vtop[1];
vset(&vtop->type, r | VT_LVAL, 0);
vswap();
vstore();
vtop[1] = tmp;
}
args_size += size;
} else if ((vtop->type.t & VT_BTYPE) == VT_LDOUBLE) {
gv(RC_ST0);
size = LDOUBLE_SIZE;
oad(0xec8148, size); /* sub $xxx, %rsp */
o(0x7cdb); /* fstpt 0(%rsp) */
g(0x24);
g(0x00);
args_size += size;
} else if (is_sse_float(vtop->type.t)) {
int j = --sse_reg;
if (j >= 8) {
gv(RC_FLOAT);
o(0x50); /* push $rax */
/* movq %xmm0, (%rsp) */
o(0x04d60f66);
o(0x24);
args_size += 8;
}
} else {
int j = --gen_reg;
/* simple type */
/* XXX: implicit cast ? */
if (j >= 6) {
r = gv(RC_INT);
o(0x50 + r); /* push r */
args_size += 8;
}
}
vtop--;
}
vtop = orig_vtop;
/* then, we prepare register passing arguments.
Note that we cannot set RDX and RCX in this loop because gv()
may break these temporary registers. Let's use R10 and R11
instead of them */
gen_reg = nb_reg_args;
sse_reg = nb_sse_args;
for(i = 0; i < nb_args; i++) {
if ((vtop->type.t & VT_BTYPE) == VT_STRUCT ||
(vtop->type.t & VT_BTYPE) == VT_LDOUBLE) {
} else if (is_sse_float(vtop->type.t)) {
int j = --sse_reg;
if (j < 8) {
gv(RC_FLOAT); /* only one float register */
/* movaps %xmm0, %xmmN */
o(0x280f);
o(0xc0 + (sse_reg << 3));
}
} else {
int j = --gen_reg;
/* simple type */
/* XXX: implicit cast ? */
if (j < 6) {
r = gv(RC_INT);
if (j < 2) {
o(0x8948); /* mov */
o(0xc0 + r * 8 + arg_regs[j]);
} else if (j < 4) {
o(0x8949); /* mov */
/* j=2: r10, j=3: r11 */
o(0xc0 + r * 8 + j);
} else {
o(0x8949); /* mov */
/* j=4: r8, j=5: r9 */
o(0xc0 + r * 8 + j - 4);
}
}
}
vtop--;
}
save_regs(0); /* save used temporary registers */
/* Copy R10 and R11 into RDX and RCX, respectively */
if (nb_reg_args > 2) {
o(0xd2894c); /* mov %r10, %rdx */
if (nb_reg_args > 3) {
o(0xd9894c); /* mov %r11, %rcx */
}
}
func_sym = vtop->type.ref;
func_call = FUNC_CALL(func_sym->r);
oad(0xb8, nb_sse_args < 8 ? nb_sse_args : 8); /* mov nb_sse_args, %eax */
gcall_or_jmp(0);
if (args_size)
gadd_sp(args_size);
vtop--;
}
#ifdef TCC_TARGET_PE
/* XXX: support PE? */
#warning "PE isn't tested at all"
#define FUNC_PROLOG_SIZE 12
#else
#define FUNC_PROLOG_SIZE 11
#endif
static void push_arg_reg(int i) {
loc -= 8;
gen_modrm64(0x89, arg_regs[i], VT_LOCAL, NULL, loc);
}
/* generate function prolog of type 't' */
void gfunc_prolog(CType *func_type)
{
int i, addr, align, size, func_call;
int param_index, param_addr, reg_param_index, sse_param_index;
Sym *sym;
CType *type;
func_ret_sub = 0;
sym = func_type->ref;
func_call = FUNC_CALL(sym->r);
addr = PTR_SIZE * 2;
loc = 0;
ind += FUNC_PROLOG_SIZE;
func_sub_sp_offset = ind;
if (func_type->ref->c == FUNC_ELLIPSIS) {
int seen_reg_num, seen_sse_num, seen_stack_size;
seen_reg_num = seen_sse_num = 0;
/* frame pointer and return address */
seen_stack_size = PTR_SIZE * 2;
/* count the number of seen parameters */
sym = func_type->ref;
while ((sym = sym->next) != NULL) {
type = &sym->type;
if (is_sse_float(type->t)) {
if (seen_sse_num < 8) {
seen_sse_num++;
} else {
seen_stack_size += 8;
}
} else if ((type->t & VT_BTYPE) == VT_STRUCT) {
size = type_size(type, &align);
size = (size + 3) & ~3;
seen_stack_size += size;
} else if ((type->t & VT_BTYPE) == VT_LDOUBLE) {
seen_stack_size += LDOUBLE_SIZE;
} else {
if (seen_reg_num < 6) {
seen_reg_num++;
} else {
seen_stack_size += 8;
}
}
}
loc -= 16;
/* movl $0x????????, -0x10(%rbp) */
o(0xf045c7);
gen_le32(seen_reg_num * 8);
/* movl $0x????????, -0xc(%rbp) */
o(0xf445c7);
gen_le32(seen_sse_num * 16 + 48);
/* movl $0x????????, -0x8(%rbp) */
o(0xf845c7);
gen_le32(seen_stack_size);
/* save all register passing arguments */
for (i = 0; i < 8; i++) {
loc -= 16;
o(0xd60f66); /* movq */
gen_modrm(7 - i, VT_LOCAL, NULL, loc);
/* movq $0, loc+8(%rbp) */
o(0x85c748);
gen_le32(loc + 8);
gen_le32(0);
}
for (i = 0; i < 6; i++) {
push_arg_reg(5 - i);
}
}
sym = func_type->ref;
param_index = 0;
reg_param_index = 0;
sse_param_index = 0;
/* if the function returns a structure, then add an
implicit pointer parameter */
func_vt = sym->type;
if ((func_vt.t & VT_BTYPE) == VT_STRUCT) {
push_arg_reg(reg_param_index);
param_addr = loc;
func_vc = loc;
param_index++;
reg_param_index++;
}
/* define parameters */
while ((sym = sym->next) != NULL) {
type = &sym->type;
size = type_size(type, &align);
size = (size + 3) & ~3;
if (is_sse_float(type->t)) {
if (sse_param_index < 8) {
/* save arguments passed by register */
loc -= 8;
o(0xd60f66); /* movq */
gen_modrm(sse_param_index, VT_LOCAL, NULL, loc);
param_addr = loc;
} else {
param_addr = addr;
addr += size;
}
sse_param_index++;
} else if ((type->t & VT_BTYPE) == VT_STRUCT ||
(type->t & VT_BTYPE) == VT_LDOUBLE) {
param_addr = addr;
addr += size;
} else {
if (reg_param_index < 6) {
/* save arguments passed by register */
push_arg_reg(reg_param_index);
param_addr = loc;
} else {
param_addr = addr;
addr += 8;
}
reg_param_index++;
}
sym_push(sym->v & ~SYM_FIELD, type,
VT_LOCAL | VT_LVAL, param_addr);
param_index++;
}
}
/* generate function epilog */
void gfunc_epilog(void)
{
int v, saved_ind;
o(0xc9); /* leave */
if (func_ret_sub == 0) {
o(0xc3); /* ret */
} else {
o(0xc2); /* ret n */
g(func_ret_sub);
g(func_ret_sub >> 8);
}
/* align local size to word & save local variables */
v = (-loc + 15) & -16;
saved_ind = ind;
ind = func_sub_sp_offset - FUNC_PROLOG_SIZE;
#ifdef TCC_TARGET_PE
if (v >= 4096) {
Sym *sym = external_global_sym(TOK___chkstk, &func_old_type, 0);
oad(0xb8, v); /* mov stacksize, %eax */
oad(0xe8, -4); /* call __chkstk, (does the stackframe too) */
greloc(cur_text_section, sym, ind-4, R_X86_64_PC32);
} else
#endif
{
o(0xe5894855); /* push %rbp, mov %rsp, %rbp */
o(0xec8148); /* sub rsp, stacksize */
gen_le32(v);
#if FUNC_PROLOG_SIZE == 12
o(0x90); /* adjust to FUNC_PROLOG_SIZE */
#endif
}
ind = saved_ind;
}
/* generate a jump to a label */
int gjmp(int t)
{
return psym(0xe9, t);
}
/* generate a jump to a fixed address */
void gjmp_addr(int a)
{
int r;
r = a - ind - 2;
if (r == (char)r) {
g(0xeb);
g(r);
} else {
oad(0xe9, a - ind - 5);
}
}
/* generate a test. set 'inv' to invert test. Stack entry is popped */
int gtst(int inv, int t)
{
int v, *p;
v = vtop->r & VT_VALMASK;
if (v == VT_CMP) {
/* fast case : can jump directly since flags are set */
g(0x0f);
t = psym((vtop->c.i - 16) ^ inv, t);
} else if (v == VT_JMP || v == VT_JMPI) {
/* && or || optimization */
if ((v & 1) == inv) {
/* insert vtop->c jump list in t */
p = &vtop->c.i;
while (*p != 0)
p = (int *)(cur_text_section->data + *p);
*p = t;
t = vtop->c.i;
} else {
t = gjmp(t);
gsym(vtop->c.i);
}
} else {
if (is_float(vtop->type.t) ||
(vtop->type.t & VT_BTYPE) == VT_LLONG) {
vpushi(0);
gen_op(TOK_NE);
}
if ((vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST) {
/* constant jmp optimization */
if ((vtop->c.i != 0) != inv)
t = gjmp(t);
} else {
v = gv(RC_INT);
o(0x85);
o(0xc0 + v * 9);
g(0x0f);
t = psym(0x85 ^ inv, t);
}
}
vtop--;
return t;
}
/* generate an integer binary operation */
void gen_opi(int op)
{
int r, fr, opc, c;
switch(op) {
case '+':
case TOK_ADDC1: /* add with carry generation */
opc = 0;
gen_op8:
if ((vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST &&
!is64_type(vtop->type.t)) {
/* constant case */
vswap();
r = gv(RC_INT);
if (is64_type(vtop->type.t)) {
o(0x48 | REX_BASE(r));
}
vswap();
c = vtop->c.i;
if (c == (char)c) {
/* XXX: generate inc and dec for smaller code ? */
o(0x83);
o(0xc0 | (opc << 3) | REG_VALUE(r));
g(c);
} else {
o(0x81);
oad(0xc0 | (opc << 3) | REG_VALUE(r), c);
}
} else {
gv2(RC_INT, RC_INT);
r = vtop[-1].r;
fr = vtop[0].r;
if (opc != 7 ||
is64_type(vtop[0].type.t) || (vtop[0].type.t & VT_UNSIGNED) ||
is64_type(vtop[-1].type.t) || (vtop[-1].type.t & VT_UNSIGNED)) {
o(0x48 | REX_BASE(r) | (REX_BASE(fr) << 2));
}
o((opc << 3) | 0x01);
o(0xc0 + REG_VALUE(r) + REG_VALUE(fr) * 8);
}
vtop--;
if (op >= TOK_ULT && op <= TOK_GT) {
vtop->r = VT_CMP;
vtop->c.i = op;
}
break;
case '-':
case TOK_SUBC1: /* sub with carry generation */
opc = 5;
goto gen_op8;
case TOK_ADDC2: /* add with carry use */
opc = 2;
goto gen_op8;
case TOK_SUBC2: /* sub with carry use */
opc = 3;
goto gen_op8;
case '&':
opc = 4;
goto gen_op8;
case '^':
opc = 6;
goto gen_op8;
case '|':
opc = 1;
goto gen_op8;
case '*':
gv2(RC_INT, RC_INT);
r = vtop[-1].r;
fr = vtop[0].r;
if (is64_type(vtop[0].type.t) || (vtop[0].type.t & VT_UNSIGNED) ||
is64_type(vtop[-1].type.t) || (vtop[-1].type.t & VT_UNSIGNED)) {
o(0x48 | REX_BASE(fr) | (REX_BASE(r) << 2));
}
vtop--;
o(0xaf0f); /* imul fr, r */
o(0xc0 + fr + r * 8);
break;
case TOK_SHL:
opc = 4;
goto gen_shift;
case TOK_SHR:
opc = 5;
goto gen_shift;
case TOK_SAR:
opc = 7;
gen_shift:
opc = 0xc0 | (opc << 3);
if ((vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST) {
/* constant case */
vswap();
r = gv(RC_INT);
if ((vtop->type.t & VT_BTYPE) == VT_LLONG) {
o(0x48 | REX_BASE(r));
c = 0x3f;
} else {
c = 0x1f;
}
vswap();
c &= vtop->c.i;
o(0xc1); /* shl/shr/sar $xxx, r */
o(opc | r);
g(c);
} else {
/* we generate the shift in ecx */
gv2(RC_INT, RC_RCX);
r = vtop[-1].r;
if ((vtop[-1].type.t & VT_BTYPE) == VT_LLONG) {
o(0x48 | REX_BASE(r));
}
o(0xd3); /* shl/shr/sar %cl, r */
o(opc | r);
}
vtop--;
break;
case '/':
case TOK_UDIV:
case TOK_PDIV:
case '%':
case TOK_UMOD:
case TOK_UMULL:
/* first operand must be in eax */
/* XXX: need better constraint for second operand */
gv2(RC_RAX, RC_RCX);
r = vtop[-1].r;
fr = vtop[0].r;
vtop--;
save_reg(TREG_RDX);
if (op == TOK_UMULL) {
o(0xf7); /* mul fr */
o(0xe0 + fr);
vtop->r2 = TREG_RDX;
r = TREG_RAX;
} else {
if (op == TOK_UDIV || op == TOK_UMOD) {
o(0xf7d231); /* xor %edx, %edx, div fr, %eax */
o(0xf0 + fr);
} else {
if ((vtop->type.t & VT_BTYPE) & VT_LLONG) {
o(0x9948); /* cqto */
o(0x48 + REX_BASE(fr));
} else {
o(0x99); /* cltd */
}
o(0xf7); /* idiv fr, %eax */
o(0xf8 + fr);
}
if (op == '%' || op == TOK_UMOD)
r = TREG_RDX;
else
r = TREG_RAX;
}
vtop->r = r;
break;
default:
opc = 7;
goto gen_op8;
}
}
void gen_opl(int op)
{
gen_opi(op);
}
/* generate a floating point operation 'v = t1 op t2' instruction. The
two operands are guaranted to have the same floating point type */
/* XXX: need to use ST1 too */
void gen_opf(int op)
{
int a, ft, fc, swapped, r;
int float_type =
(vtop->type.t & VT_BTYPE) == VT_LDOUBLE ? RC_ST0 : RC_FLOAT;
/* convert constants to memory references */
if ((vtop[-1].r & (VT_VALMASK | VT_LVAL)) == VT_CONST) {
vswap();
gv(float_type);
vswap();
}
if ((vtop[0].r & (VT_VALMASK | VT_LVAL)) == VT_CONST)
gv(float_type);
/* must put at least one value in the floating point register */
if ((vtop[-1].r & VT_LVAL) &&
(vtop[0].r & VT_LVAL)) {
vswap();
gv(float_type);
vswap();
}
swapped = 0;
/* swap the stack if needed so that t1 is the register and t2 is
the memory reference */
if (vtop[-1].r & VT_LVAL) {
vswap();
swapped = 1;
}
if ((vtop->type.t & VT_BTYPE) == VT_LDOUBLE) {
if (op >= TOK_ULT && op <= TOK_GT) {
/* load on stack second operand */
load(TREG_ST0, vtop);
save_reg(TREG_RAX); /* eax is used by FP comparison code */
if (op == TOK_GE || op == TOK_GT)
swapped = !swapped;
else if (op == TOK_EQ || op == TOK_NE)
swapped = 0;
if (swapped)
o(0xc9d9); /* fxch %st(1) */
o(0xe9da); /* fucompp */
o(0xe0df); /* fnstsw %ax */
if (op == TOK_EQ) {
o(0x45e480); /* and $0x45, %ah */
o(0x40fC80); /* cmp $0x40, %ah */
} else if (op == TOK_NE) {
o(0x45e480); /* and $0x45, %ah */
o(0x40f480); /* xor $0x40, %ah */
op = TOK_NE;
} else if (op == TOK_GE || op == TOK_LE) {
o(0x05c4f6); /* test $0x05, %ah */
op = TOK_EQ;
} else {
o(0x45c4f6); /* test $0x45, %ah */
op = TOK_EQ;
}
vtop--;
vtop->r = VT_CMP;
vtop->c.i = op;
} else {
/* no memory reference possible for long double operations */
load(TREG_ST0, vtop);
swapped = !swapped;
switch(op) {
default:
case '+':
a = 0;
break;
case '-':
a = 4;
if (swapped)
a++;
break;
case '*':
a = 1;
break;
case '/':
a = 6;
if (swapped)
a++;
break;
}
ft = vtop->type.t;
fc = vtop->c.ul;
o(0xde); /* fxxxp %st, %st(1) */
o(0xc1 + (a << 3));
vtop--;
}
} else {
if (op >= TOK_ULT && op <= TOK_GT) {
/* if saved lvalue, then we must reload it */
r = vtop->r;
fc = vtop->c.ul;
if ((r & VT_VALMASK) == VT_LLOCAL) {
SValue v1;
r = get_reg(RC_INT);
v1.type.t = VT_INT;
v1.r = VT_LOCAL | VT_LVAL;
v1.c.ul = fc;
load(r, &v1);
fc = 0;
}
if (op == TOK_EQ || op == TOK_NE) {
swapped = 0;
} else {
if (op == TOK_LE || op == TOK_LT)
swapped = !swapped;
if (op == TOK_LE || op == TOK_GE) {
op = 0x93; /* setae */
} else {
op = 0x97; /* seta */
}
}
if (swapped) {
o(0x7e0ff3); /* movq */
gen_modrm(1, r, vtop->sym, fc);
if ((vtop->type.t & VT_BTYPE) == VT_DOUBLE) {
o(0x66);
}
o(0x2e0f); /* ucomisd %xmm0, %xmm1 */
o(0xc8);
} else {
if ((vtop->type.t & VT_BTYPE) == VT_DOUBLE) {
o(0x66);
}
o(0x2e0f); /* ucomisd */
gen_modrm(0, r, vtop->sym, fc);
}
vtop--;
vtop->r = VT_CMP;
vtop->c.i = op;
} else {
/* no memory reference possible for long double operations */
if ((vtop->type.t & VT_BTYPE) == VT_LDOUBLE) {
load(TREG_XMM0, vtop);
swapped = !swapped;
}
switch(op) {
default:
case '+':
a = 0;
break;
case '-':
a = 4;
break;
case '*':
a = 1;
break;
case '/':
a = 6;
break;
}
ft = vtop->type.t;
fc = vtop->c.ul;
if ((ft & VT_BTYPE) == VT_LDOUBLE) {
o(0xde); /* fxxxp %st, %st(1) */
o(0xc1 + (a << 3));
} else {
/* if saved lvalue, then we must reload it */
r = vtop->r;
if ((r & VT_VALMASK) == VT_LLOCAL) {
SValue v1;
r = get_reg(RC_INT);
v1.type.t = VT_INT;
v1.r = VT_LOCAL | VT_LVAL;
v1.c.ul = fc;
load(r, &v1);
fc = 0;
}
if (swapped) {
/* movq %xmm0,%xmm1 */
o(0x7e0ff3);
o(0xc8);
load(TREG_XMM0, vtop);
/* subsd %xmm1,%xmm0 (f2 0f 5c c1) */
if ((ft & VT_BTYPE) == VT_DOUBLE) {
o(0xf2);
} else {
o(0xf3);
}
o(0x0f);
o(0x58 + a);
o(0xc1);
} else {
if ((ft & VT_BTYPE) == VT_DOUBLE) {
o(0xf2);
} else {
o(0xf3);
}
o(0x0f);
o(0x58 + a);
gen_modrm(0, r, vtop->sym, fc);
}
}
vtop--;
}
}
}
/* convert integers to fp 't' type. Must handle 'int', 'unsigned int'
and 'long long' cases. */
void gen_cvt_itof(int t)
{
if ((t & VT_BTYPE) == VT_LDOUBLE) {
save_reg(TREG_ST0);
gv(RC_INT);
if ((vtop->type.t & VT_BTYPE) == VT_LLONG) {
/* signed long long to float/double/long double (unsigned case
is handled generically) */
o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
o(0x242cdf); /* fildll (%rsp) */
o(0x08c48348); /* add $8, %rsp */
} else if ((vtop->type.t & (VT_BTYPE | VT_UNSIGNED)) ==
(VT_INT | VT_UNSIGNED)) {
/* unsigned int to float/double/long double */
o(0x6a); /* push $0 */
g(0x00);
o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
o(0x242cdf); /* fildll (%rsp) */
o(0x10c48348); /* add $16, %rsp */
} else {
/* int to float/double/long double */
o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
o(0x2404db); /* fildl (%rsp) */
o(0x08c48348); /* add $8, %rsp */
}
vtop->r = TREG_ST0;
} else {
save_reg(TREG_XMM0);
gv(RC_INT);
o(0xf2 + ((t & VT_BTYPE) == VT_FLOAT));
if ((vtop->type.t & (VT_BTYPE | VT_UNSIGNED)) ==
(VT_INT | VT_UNSIGNED) ||
(vtop->type.t & VT_BTYPE) == VT_LLONG) {
o(0x48); /* REX */
}
o(0x2a0f);
o(0xc0 + (vtop->r & VT_VALMASK)); /* cvtsi2sd */
vtop->r = TREG_XMM0;
}
}
/* convert from one floating point type to another */
void gen_cvt_ftof(int t)
{
int ft, bt, tbt;
ft = vtop->type.t;
bt = ft & VT_BTYPE;
tbt = t & VT_BTYPE;
if (bt == VT_FLOAT) {
gv(RC_FLOAT);
if (tbt == VT_DOUBLE) {
o(0xc0140f); /* unpcklps */
o(0xc05a0f); /* cvtps2pd */
} else if (tbt == VT_LDOUBLE) {
/* movss %xmm0,-0x10(%rsp) */
o(0x44110ff3);
o(0xf024);
o(0xf02444d9); /* flds -0x10(%rsp) */
vtop->r = TREG_ST0;
}
} else if (bt == VT_DOUBLE) {
gv(RC_FLOAT);
if (tbt == VT_FLOAT) {
o(0xc0140f66); /* unpcklpd */
o(0xc05a0f66); /* cvtpd2ps */
} else if (tbt == VT_LDOUBLE) {
/* movsd %xmm0,-0x10(%rsp) */
o(0x44110ff2);
o(0xf024);
o(0xf02444dd); /* fldl -0x10(%rsp) */
vtop->r = TREG_ST0;
}
} else {
gv(RC_ST0);
if (tbt == VT_DOUBLE) {
o(0xf0245cdd); /* fstpl -0x10(%rsp) */
/* movsd -0x10(%rsp),%xmm0 */
o(0x44100ff2);
o(0xf024);
vtop->r = TREG_XMM0;
} else if (tbt == VT_FLOAT) {
o(0xf0245cd9); /* fstps -0x10(%rsp) */
/* movss -0x10(%rsp),%xmm0 */
o(0x44100ff3);
o(0xf024);
vtop->r = TREG_XMM0;
}
}
}
/* convert fp to int 't' type */
void gen_cvt_ftoi(int t)
{
int ft, bt, size, r;
ft = vtop->type.t;
bt = ft & VT_BTYPE;
if (bt == VT_LDOUBLE) {
gen_cvt_ftof(VT_DOUBLE);
bt = VT_DOUBLE;
}
gv(RC_FLOAT);
if (t != VT_INT)
size = 8;
else
size = 4;
r = get_reg(RC_INT);
if (bt == VT_FLOAT) {
o(0xf3);
} else if (bt == VT_DOUBLE) {
o(0xf2);
} else {
assert(0);
}
if (size == 8) {
o(0x48 + REX_BASE(r));
}
o(0x2c0f); /* cvttss2si or cvttsd2si */
o(0xc0 + (REG_VALUE(r) << 3));
vtop->r = r;
}
/* computed goto support */
void ggoto(void)
{
gcall_or_jmp(1);
vtop--;
}
/* end of x86-64 code generator */
/*************************************************************/