tinycc/riscv64-asm.c
grischka 6b78e561c8 div fixes
- Makefile: don't produce unknown targets
- libtcc.c: tcc_set_linker(): improve parser
- tcc.h: tcc_internal_error(): don't record __FILE__ (for privacy reasons)
- tccgen.c:
  - reject pointer + float operation
  - use 'int level' for builtin_frame/return_address
  - save_regs(): remove VT_ARRAY (confuses riscv64-gen)
- tccpe.c: store just basename of loaded dlls (rather than full path)
- tccpp.c: remove unused TAL defines
- *-link.c: add missing ST_FUNC
- i386-gen.c: fix thiscall
- riscv64-asm.c/arm-asm.c: stay simple C89
  - avoid .designators, decl after statement
  - avoid multiple instances of same static const objects
  - use skip() instead of next() & expect()
  - use cstr_printf() instead of snprintf() & cstr_cat()
  - tcc_error(), expect(): never return
2024-06-11 14:26:34 +02:00

2438 lines
78 KiB
C

/*************************************************************/
/*
* RISCV64 assembler for TCC
*
*/
#ifdef TARGET_DEFS_ONLY
#define CONFIG_TCC_ASM
/* 32 general purpose + 32 floating point registers */
#define NB_ASM_REGS 64
ST_FUNC void g(int c);
ST_FUNC void gen_le16(int c);
ST_FUNC void gen_le32(int c);
/*************************************************************/
#else
/*************************************************************/
#define USING_GLOBALS
#include "tcc.h"
enum {
OPT_REG,
OPT_IM12S,
OPT_IM32,
};
// Registers go from 0 to 31. We use next bit to choose general/float
#define REG_FLOAT_MASK 0x20
#define REG_IS_FLOAT(register_index) ((register_index) & REG_FLOAT_MASK)
#define REG_VALUE(register_index) ((register_index) & (REG_FLOAT_MASK-1))
#define C_ENCODE_RS1(register_index) (REG_VALUE(register_index) << 7)
#define C_ENCODE_RS2(register_index) (REG_VALUE(register_index) << 2)
#define ENCODE_RD(register_index) (REG_VALUE(register_index) << 7)
#define ENCODE_RS1(register_index) (REG_VALUE(register_index) << 15)
#define ENCODE_RS2(register_index) (REG_VALUE(register_index) << 20)
#define NTH_BIT(b, n) ((b >> n) & 1)
#define OP_IM12S (1 << OPT_IM12S)
#define OP_IM32 (1 << OPT_IM32)
#define OP_REG (1 << OPT_REG)
typedef struct Operand {
uint32_t type;
union {
uint8_t reg;
uint16_t regset;
ExprValue e;
};
} Operand;
static const Operand zero = { OP_REG, { 0 }};
static const Operand ra = { OP_REG, { 1 }};
static const Operand zimm = { OP_IM12S };
static void asm_binary_opcode(TCCState* s1, int token);
ST_FUNC void asm_clobber(uint8_t *clobber_regs, const char *str);
ST_FUNC void asm_compute_constraints(ASMOperand *operands, int nb_operands, int nb_outputs, const uint8_t *clobber_regs, int *pout_reg);
static void asm_emit_a(int token, uint32_t opcode, const Operand *rs1, const Operand *rs2, const Operand *rd1, int aq, int rl);
static void asm_emit_b(int token, uint32_t opcode, const Operand *rs1, const Operand *rs2, const Operand *imm);
static void asm_emit_i(int token, uint32_t opcode, const Operand *rd, const Operand *rs1, const Operand *rs2);
static void asm_emit_j(int token, uint32_t opcode, const Operand *rd, const Operand *rs2);
static void asm_emit_opcode(uint32_t opcode);
static void asm_emit_r(int token, uint32_t opcode, const Operand *rd, const Operand *rs1, const Operand *rs2);
static void asm_emit_s(int token, uint32_t opcode, const Operand *rs1, const Operand *rs2, const Operand *imm);
static void asm_emit_u(int token, uint32_t opcode, const Operand *rd, const Operand *rs2);
ST_FUNC void asm_gen_code(ASMOperand *operands, int nb_operands, int nb_outputs, int is_output, uint8_t *clobber_regs, int out_reg);
static void asm_nullary_opcode(TCCState *s1, int token);
ST_FUNC void asm_opcode(TCCState *s1, int token);
static int asm_parse_csrvar(int t);
ST_FUNC int asm_parse_regvar(int t);
static void asm_ternary_opcode(TCCState *s1, int token);
static void asm_unary_opcode(TCCState *s1, int token);
static void asm_branch_opcode(TCCState *s1, int token, int argc);
ST_FUNC void gen_expr32(ExprValue *pe);
static void parse_operand(TCCState *s1, Operand *op);
static void parse_branch_offset_operand(TCCState *s1, Operand *op);
static void parse_operands(TCCState *s1, Operand *ops, int count);
static void parse_mem_access_operands(TCCState *s1, Operand* ops);
ST_FUNC void subst_asm_operand(CString *add_str, SValue *sv, int modifier);
/* C extension */
static void asm_emit_ca(int token, uint16_t opcode, const Operand *rd, const Operand *rs2);
static void asm_emit_cb(int token, uint16_t opcode, const Operand *rs1, const Operand *imm);
static void asm_emit_ci(int token, uint16_t opcode, const Operand *rd, const Operand *imm);
static void asm_emit_ciw(int token, uint16_t opcode, const Operand *rd, const Operand *imm);
static void asm_emit_cj(int token, uint16_t opcode, const Operand *imm);
static void asm_emit_cl(int token, uint16_t opcode, const Operand *rd, const Operand *rs1, const Operand *imm);
static void asm_emit_cr(int token, uint16_t opcode, const Operand *rd, const Operand *rs2);
static void asm_emit_cs(int token, uint16_t opcode, const Operand *rs2, const Operand *rs1, const Operand *imm);
static void asm_emit_css(int token, uint16_t opcode, const Operand *rs2, const Operand *imm);
/* XXX: make it faster ? */
ST_FUNC void g(int c)
{
int ind1;
if (nocode_wanted)
return;
ind1 = ind + 1;
if (ind1 > cur_text_section->data_allocated)
section_realloc(cur_text_section, ind1);
cur_text_section->data[ind] = c;
ind = ind1;
}
ST_FUNC void gen_le16 (int i)
{
g(i);
g(i>>8);
}
ST_FUNC void gen_le32 (int i)
{
int ind1;
if (nocode_wanted)
return;
ind1 = ind + 4;
if (ind1 > cur_text_section->data_allocated)
section_realloc(cur_text_section, ind1);
cur_text_section->data[ind++] = i & 0xFF;
cur_text_section->data[ind++] = (i >> 8) & 0xFF;
cur_text_section->data[ind++] = (i >> 16) & 0xFF;
cur_text_section->data[ind++] = (i >> 24) & 0xFF;
}
ST_FUNC void gen_expr32(ExprValue *pe)
{
gen_le32(pe->v);
}
static void asm_emit_opcode(uint32_t opcode) {
gen_le32(opcode);
}
static void asm_nullary_opcode(TCCState *s1, int token)
{
switch (token) {
// Sync instructions
case TOK_ASM_fence_i: // I
asm_emit_opcode((0x3 << 2) | 3| (1 << 12));
return;
// System calls
case TOK_ASM_ecall: // I (pseudo)
asm_emit_opcode((0x1C << 2) | 3 | (0 << 12));
return;
case TOK_ASM_ebreak: // I (pseudo)
asm_emit_opcode((0x1C << 2) | 3 | (0 << 12) | (1 << 20));
return;
// Other
case TOK_ASM_nop:
asm_emit_i(token, (4 << 2) | 3, &zero, &zero, &zimm);
return;
case TOK_ASM_wfi:
asm_emit_opcode((0x1C << 2) | 3 | (0x105 << 20));
return;
/* Pseudoinstructions */
case TOK_ASM_ret:
/* jalr zero, x1, 0 */
asm_emit_opcode( 0x67 | (0 << 12) | ENCODE_RS1(1) );
return;
/* C extension */
case TOK_ASM_c_ebreak:
asm_emit_cr(token, 2 | (9 << 12), &zero, &zero);
return;
case TOK_ASM_c_nop:
asm_emit_ci(token, 1, &zero, &zimm);
return;
default:
expect("nullary instruction");
}
}
/* Parse a text containing operand and store the result in OP */
static void parse_operand(TCCState *s1, Operand *op)
{
ExprValue e = {0};
Sym label = {0};
int8_t reg;
op->type = 0;
if ((reg = asm_parse_regvar(tok)) != -1) {
next(); // skip register name
op->type = OP_REG;
op->reg = (uint8_t) reg;
return;
} else if (tok == '$') {
/* constant value */
next(); // skip '#' or '$'
} else if ((e.v = asm_parse_csrvar(tok)) != -1) {
next();
} else {
asm_expr(s1, &e);
}
op->type = OP_IM32;
op->e = e;
/* compare against unsigned 12-bit maximum */
if (!op->e.sym) {
if ((int) op->e.v >= -0x1000 && (int) op->e.v < 0x1000)
op->type = OP_IM12S;
} else if (op->e.sym->type.t & (VT_EXTERN | VT_STATIC)) {
label.type.t = VT_VOID | VT_STATIC;
/* use the medium PIC model: GOT, auipc, lw */
if (op->e.sym->type.t & VT_STATIC)
greloca(cur_text_section, op->e.sym, ind, R_RISCV_PCREL_HI20, 0);
else
greloca(cur_text_section, op->e.sym, ind, R_RISCV_GOT_HI20, 0);
put_extern_sym(&label, cur_text_section, ind, 0);
greloca(cur_text_section, &label, ind+4, R_RISCV_PCREL_LO12_I, 0);
op->type = OP_IM12S;
op->e.v = 0;
} else {
expect("operand");
}
}
static void parse_branch_offset_operand(TCCState *s1, Operand *op){
ExprValue e = {0};
asm_expr(s1, &e);
op->type = OP_IM32;
op->e = e;
/* compare against unsigned 12-bit maximum */
if (!op->e.sym) {
if ((int) op->e.v >= -0x1000 && (int) op->e.v < 0x1000)
op->type = OP_IM12S;
} else if (op->e.sym->type.t & (VT_EXTERN | VT_STATIC)) {
greloca(cur_text_section, op->e.sym, ind, R_RISCV_BRANCH, 0);
/* XXX: Implement far branches */
op->type = OP_IM12S;
op->e.v = 0;
} else {
expect("operand");
}
}
static void parse_jump_offset_operand(TCCState *s1, Operand *op){
ExprValue e = {0};
asm_expr(s1, &e);
op->type = OP_IM32;
op->e = e;
/* compare against unsigned 12-bit maximum */
if (!op->e.sym) {
if ((int) op->e.v >= -0x1000 && (int) op->e.v < 0x1000)
op->type = OP_IM12S;
} else if (op->e.sym->type.t & (VT_EXTERN | VT_STATIC)) {
greloca(cur_text_section, op->e.sym, ind, R_RISCV_JAL, 0);
op->type = OP_IM12S;
op->e.v = 0;
} else {
expect("operand");
}
}
static void parse_operands(TCCState *s1, Operand* ops, int count){
int i;
for (i = 0; i < count; i++) {
if ( i != 0 )
skip(',');
parse_operand(s1, &ops[i]);
}
}
/* parse `X, imm(Y)` to {X, Y, imm} operands */
static void parse_mem_access_operands(TCCState *s1, Operand* ops){
Operand op;
parse_operand(s1, &ops[0]);
skip(',');
if ( tok == '(') {
/* `X, (Y)` case*/
next();
parse_operand(s1, &ops[1]);
skip(')');
ops[2] = zimm;
} else {
parse_operand(s1, &ops[2]);
if ( tok == '('){
/* `X, imm(Y)` case*/
next();
parse_operand(s1, &ops[1]);
skip(')');
} else {
/* `X, Y` case*/
/* we parsed Y thinking it was imm, swap and default imm to zero */
op = ops[2];
ops[1] = ops[2];
ops[2] = op;
ops[2] = zimm;
}
}
}
/* This is special: First operand is optional */
static void asm_jal_opcode(TCCState *s1, int token){
Operand ops[2];
if (token == TOK_ASM_j ){
ops[0] = zero; // j offset
} else if (asm_parse_regvar(tok) == -1) {
ops[0] = ra; // jal offset
} else {
// jal reg, offset
parse_operand(s1, &ops[0]);
if ( tok == ',') next(); else expect("','");
}
parse_jump_offset_operand(s1, &ops[1]);
asm_emit_j(token, 0x6f, &ops[0], &ops[1]);
}
/* This is special: It can be a pseudointruction or a instruction */
static void asm_jalr_opcode(TCCState *s1, int token){
Operand ops[3];
Operand op;
parse_operand(s1, &ops[0]);
if ( tok == ',')
next();
else {
/* no more operands, it's the pseudoinstruction:
* jalr rs
* Expand to:
* jalr ra, 0(rs)
*/
asm_emit_i(token, 0x67 | (0 << 12), &ra, &ops[0], &zimm);
return;
}
if ( tok == '(') {
/* `X, (Y)` case*/
next();
parse_operand(s1, &ops[1]);
skip(')');
ops[2] = zimm;
} else {
parse_operand(s1, &ops[2]);
if ( tok == '('){
/* `X, imm(Y)` case*/
next();
parse_operand(s1, &ops[1]);
skip(')');
} else {
/* `X, Y` case*/
/* we parsed Y thinking it was imm, swap and default imm to zero */
op = ops[2];
ops[1] = ops[2];
ops[2] = op;
ops[2] = zimm;
}
}
/* jalr(RD, RS1, IMM); I-format */
asm_emit_i(token, 0x67 | (0 << 12), &ops[0], &ops[1], &ops[2]);
}
static void asm_unary_opcode(TCCState *s1, int token)
{
uint32_t opcode = (0x1C << 2) | 3 | (2 << 12);
Operand op;
parse_operands(s1, &op, 1);
/* Note: Those all map to CSR--so they are pseudo-instructions. */
opcode |= ENCODE_RD(op.reg);
switch (token) {
/* pseudoinstructions */
case TOK_ASM_rdcycle:
asm_emit_opcode(opcode | (0xC00 << 20));
return;
case TOK_ASM_rdcycleh:
asm_emit_opcode(opcode | (0xC80 << 20));
return;
case TOK_ASM_rdtime:
asm_emit_opcode(opcode | (0xC01 << 20) | ENCODE_RD(op.reg));
return;
case TOK_ASM_rdtimeh:
asm_emit_opcode(opcode | (0xC81 << 20) | ENCODE_RD(op.reg));
return;
case TOK_ASM_rdinstret:
asm_emit_opcode(opcode | (0xC02 << 20) | ENCODE_RD(op.reg));
return;
case TOK_ASM_rdinstreth:
asm_emit_opcode(opcode | (0xC82 << 20) | ENCODE_RD(op.reg));
return;
case TOK_ASM_jr:
/* jalr zero, 0(rs)*/
asm_emit_i(token, 0x67 | (0 << 12), &zero, &op, &zimm);
return;
case TOK_ASM_call:
/* auipc ra, 0 */
greloca(cur_text_section, op.e.sym, ind, R_RISCV_CALL, 0);
asm_emit_opcode(3 | (5 << 2) | ENCODE_RD(1));
/* jalr zero, 0(ra) */
asm_emit_opcode(0x67 | (0 << 12) | ENCODE_RS1(1));
return;
case TOK_ASM_tail:
/* auipc x6, 0 */
greloca(cur_text_section, op.e.sym, ind, R_RISCV_CALL, 0);
asm_emit_opcode(3 | (5 << 2) | ENCODE_RD(6));
/* jalr zero, 0(x6) */
asm_emit_opcode(0x67 | (0 << 12) | ENCODE_RS1(6));
return;
/* C extension */
case TOK_ASM_c_j:
asm_emit_cj(token, 1 | (5 << 13), &op);
return;
case TOK_ASM_c_jal: /* RV32C-only */
asm_emit_cj(token, 1 | (1 << 13), &op);
return;
case TOK_ASM_c_jalr:
asm_emit_cr(token, 2 | (9 << 12), &op, &zero);
return;
case TOK_ASM_c_jr:
asm_emit_cr(token, 2 | (8 << 12), &op, &zero);
return;
default:
expect("unary instruction");
}
}
static void asm_emit_u(int token, uint32_t opcode, const Operand* rd, const Operand* rs2)
{
if (rd->type != OP_REG) {
tcc_error("'%s': Expected destination operand that is a register", get_tok_str(token, NULL));
}
if (rs2->type != OP_IM12S && rs2->type != OP_IM32) {
tcc_error("'%s': Expected second source operand that is an immediate value", get_tok_str(token, NULL));
} else if (rs2->e.v >= 0x100000) {
tcc_error("'%s': Expected second source operand that is an immediate value between 0 and 0xfffff", get_tok_str(token, NULL));
}
/* U-type instruction:
31...12 imm[31:12]
11...7 rd
6...0 opcode */
gen_le32(opcode | ENCODE_RD(rd->reg) | (rs2->e.v << 12));
}
static int parse_fence_operand(){
int t = tok;
if ( tok == TOK_ASM_or ){
// we are in a fence instruction, parse as output read
t = TOK_ASM_or_fence;
}
next();
return t - (TOK_ASM_w_fence - 1);
}
static void asm_fence_opcode(TCCState *s1, int token){
// `fence` is both an instruction and a pseudoinstruction:
// `fence` expands to `fence iorw, iorw`
int succ = 0xF, pred = 0xF;
if (tok != TOK_LINEFEED && tok != ';' && tok != CH_EOF){
pred = parse_fence_operand();
if ( pred > 0xF || pred < 0) {
tcc_error("'%s': Expected first operand that is a valid predecessor operand", get_tok_str(token, NULL));
}
skip(',');
succ = parse_fence_operand();
if ( succ > 0xF || succ < 0) {
tcc_error("'%s': Expected second operand that is a valid successor operand", get_tok_str(token, NULL));
}
}
asm_emit_opcode((0x3 << 2) | 3 | (0 << 12) | succ<<20 | pred<<24);
}
static void asm_binary_opcode(TCCState* s1, int token)
{
Operand imm = { OP_IM12S };
Operand ops[2];
int32_t lo;
uint32_t hi;
parse_operands(s1, &ops[0], 2);
switch (token) {
case TOK_ASM_lui:
asm_emit_u(token, (0xD << 2) | 3, &ops[0], &ops[1]);
return;
case TOK_ASM_auipc:
asm_emit_u(token, (0x05 << 2) | 3, &ops[0], &ops[1]);
return;
/* C extension */
case TOK_ASM_c_add:
asm_emit_cr(token, 2 | (9 << 12), ops, ops + 1);
return;
case TOK_ASM_c_mv:
asm_emit_cr(token, 2 | (8 << 12), ops, ops + 1);
return;
case TOK_ASM_c_addi16sp:
asm_emit_ci(token, 1 | (3 << 13), ops, ops + 1);
return;
case TOK_ASM_c_addi:
asm_emit_ci(token, 1, ops, ops + 1);
return;
case TOK_ASM_c_addiw:
asm_emit_ci(token, 1 | (1 << 13), ops, ops + 1);
return;
case TOK_ASM_c_fldsp:
asm_emit_ci(token, 2 | (1 << 13), ops, ops + 1);
return;
case TOK_ASM_c_flwsp: /* RV32FC-only */
asm_emit_ci(token, 2 | (3 << 13), ops, ops + 1);
return;
case TOK_ASM_c_ldsp:
asm_emit_ci(token, 2 | (3 << 13), ops, ops + 1);
return;
case TOK_ASM_c_li:
asm_emit_ci(token, 1 | (2 << 13), ops, ops + 1);
return;
case TOK_ASM_c_lui:
asm_emit_ci(token, 1 | (3 << 13), ops, ops + 1);
return;
case TOK_ASM_c_lwsp:
asm_emit_ci(token, 2 | (2 << 13), ops, ops + 1);
return;
case TOK_ASM_c_slli:
asm_emit_ci(token, 2, ops, ops + 1);
return;
case TOK_ASM_c_addi4spn:
asm_emit_ciw(token, 0, ops, ops + 1);
return;
#define CA (1 | (3 << 10) | (4 << 13))
case TOK_ASM_c_addw:
asm_emit_ca(token, CA | (1 << 5) | (1 << 12), ops, ops + 1);
return;
case TOK_ASM_c_and:
asm_emit_ca(token, CA | (3 << 5), ops, ops + 1);
return;
case TOK_ASM_c_or:
asm_emit_ca(token, CA | (2 << 5), ops, ops + 1);
return;
case TOK_ASM_c_sub:
asm_emit_ca(token, CA, ops, ops + 1);
return;
case TOK_ASM_c_subw:
asm_emit_ca(token, CA | (1 << 12), ops, ops + 1);
return;
case TOK_ASM_c_xor:
asm_emit_ca(token, CA | (1 << 5), ops, ops + 1);
return;
#undef CA
case TOK_ASM_c_andi:
asm_emit_cb(token, 1 | (2 << 10) | (4 << 13), ops, ops + 1);
return;
case TOK_ASM_c_beqz:
asm_emit_cb(token, 1 | (6 << 13), ops, ops + 1);
return;
case TOK_ASM_c_bnez:
asm_emit_cb(token, 1 | (7 << 13), ops, ops + 1);
return;
case TOK_ASM_c_srai:
asm_emit_cb(token, 1 | (1 << 10) | (4 << 13), ops, ops + 1);
return;
case TOK_ASM_c_srli:
asm_emit_cb(token, 1 | (4 << 13), ops, ops + 1);
return;
case TOK_ASM_c_sdsp:
asm_emit_css(token, 2 | (7 << 13), ops, ops + 1);
return;
case TOK_ASM_c_swsp:
asm_emit_css(token, 2 | (6 << 13), ops, ops + 1);
return;
case TOK_ASM_c_fswsp: /* RV32FC-only */
asm_emit_css(token, 2 | (7 << 13), ops, ops + 1);
return;
case TOK_ASM_c_fsdsp:
asm_emit_css(token, 2 | (5 << 13), ops, ops + 1);
return;
/* pseudoinstructions */
/* rd, sym */
case TOK_ASM_la:
/* auipc rd, 0 */
asm_emit_u(token, 3 | (5 << 2), ops, ops + 1);
/* lw rd, rd, 0 */
asm_emit_i(token, 3 | (2 << 12), ops, ops, ops + 1);
return;
case TOK_ASM_lla:
/* auipc rd, 0 */
asm_emit_u(token, 3 | (5 << 2), ops, ops + 1);
/* addi rd, rd, 0 */
asm_emit_i(token, 3 | (4 << 2), ops, ops, ops + 1);
return;
case TOK_ASM_li:
if(ops[1].type != OP_IM32 && ops[1].type != OP_IM12S){
tcc_error("'%s': Expected first source operand that is an immediate value between 0 and 0xFFFFFFFFFFFFFFFF", get_tok_str(token, NULL));
}
lo = ops[1].e.v;
hi = (int64_t)ops[1].e.v >> 32;
if(lo < 0){
hi += 1;
}
imm.e.v = ((hi + 0x800) & 0xfffff000) >> 12;
/* lui rd, HI_20(HI_32(imm)) */
asm_emit_u(token, (0xD << 2) | 3, &ops[0], &imm);
/* addi rd, rd, LO_12(HI_32(imm)) */
imm.e.v = (int32_t)hi<<20>>20;
asm_emit_i(token, 3 | (4 << 2), &ops[0], &ops[0], &imm);
/* slli rd, rd, 12 */
imm.e.v = 12;
asm_emit_i(token, (4 << 2) | 3 | (1 << 12), &ops[0], &ops[0], &imm);
/* addi rd, rd, HI_12(LO_32(imm)) */
imm.e.v = (lo + (1<<19)) >> 20;
asm_emit_i(token, 3 | (4 << 2), &ops[0], &ops[0], &imm);
/* slli rd, rd, 12 */
imm.e.v = 12;
asm_emit_i(token, (4 << 2) | 3 | (1 << 12), &ops[0], &ops[0], &imm);
/* addi rd, rd, HI_12(LO_20(LO_32imm)) */
lo = lo << 12 >> 12;
imm.e.v = lo >> 8;
asm_emit_i(token, 3 | (4 << 2), &ops[0], &ops[0], &imm);
/* slli rd, rd, 8 */
imm.e.v = 8;
asm_emit_i(token, (4 << 2) | 3 | (1 << 12), &ops[0], &ops[0], &imm);
/* addi rd, rd, LO_8(LO_20(LO_32imm)) */
lo &= 0xff;
imm.e.v = lo << 20 >> 20;
asm_emit_i(token, 3 | (4 << 2), &ops[0], &ops[0], &imm);
return;
case TOK_ASM_mv:
/* addi rd, rs, 0 */
asm_emit_i(token, 3 | (4 << 2), &ops[0], &ops[1], &imm);
return;
case TOK_ASM_not:
/* xori rd, rs, -1 */
imm.e.v = -1;
asm_emit_i(token, (0x4 << 2) | 3 | (4 << 12), &ops[0], &ops[1], &imm);
return;
case TOK_ASM_neg:
/* sub rd, x0, rs */
imm.e.v = 1;
asm_emit_i(token, (0x4 << 2) | 3 | (4 << 12), &ops[0], &zero, &imm);
return;
case TOK_ASM_negw:
/* sub rd, x0, rs */
imm.e.v = 1;
asm_emit_i(token, (0x4 << 2) | 3 | (4 << 12), &ops[0], &zero, &imm);
return;
case TOK_ASM_jump:
/* auipc x5, 0 */
asm_emit_opcode(3 | (5 << 2) | ENCODE_RD(5));
greloca(cur_text_section, ops->e.sym, ind, R_RISCV_CALL, 0);
/* jalr zero, 0(x5) */
asm_emit_opcode(0x67 | (0 << 12) | ENCODE_RS1(5));
return;
case TOK_ASM_seqz:
/* sltiu rd, rs, 1 */
imm.e.v = 1;
asm_emit_i(token, (0x4 << 2) | 3 | (3 << 12), &ops[0], &ops[1], &imm);
return;
case TOK_ASM_snez:
/* sltu rd, zero, rs */
imm.e.v = 1;
asm_emit_r(token, (0xC << 2) | 3 | (3 << 12), &ops[0], &zero, &ops[1]);
return;
case TOK_ASM_sltz:
/* slt rd, rs, zero */
asm_emit_r(token, (0xC << 2) | 3 | (2 << 12), &ops[0], &ops[1], &zero);
return;
case TOK_ASM_sgtz:
/* slt rd, zero, rs */
asm_emit_r(token, (0xC << 2) | 3 | (2 << 12), &ops[0], &zero, &ops[1]);
return;
default:
expect("binary instruction");
}
}
/* caller: Add funct3, funct7 into opcode */
static void asm_emit_r(int token, uint32_t opcode, const Operand* rd, const Operand* rs1, const Operand* rs2)
{
if (rd->type != OP_REG) {
tcc_error("'%s': Expected destination operand that is a register", get_tok_str(token, NULL));
}
if (rs1->type != OP_REG) {
tcc_error("'%s': Expected first source operand that is a register", get_tok_str(token, NULL));
}
if (rs2->type != OP_REG) {
tcc_error("'%s': Expected second source operand that is a register or immediate", get_tok_str(token, NULL));
}
/* R-type instruction:
31...25 funct7
24...20 rs2
19...15 rs1
14...12 funct3
11...7 rd
6...0 opcode */
gen_le32(opcode | ENCODE_RD(rd->reg) | ENCODE_RS1(rs1->reg) | ENCODE_RS2(rs2->reg));
}
/* caller: Add funct3 into opcode */
static void asm_emit_i(int token, uint32_t opcode, const Operand* rd, const Operand* rs1, const Operand* rs2)
{
if (rd->type != OP_REG) {
tcc_error("'%s': Expected destination operand that is a register", get_tok_str(token, NULL));
}
if (rs1->type != OP_REG) {
tcc_error("'%s': Expected first source operand that is a register", get_tok_str(token, NULL));
}
if (rs2->type != OP_IM12S) {
tcc_error("'%s': Expected second source operand that is an immediate value between 0 and 8191", get_tok_str(token, NULL));
}
/* I-type instruction:
31...20 imm[11:0]
19...15 rs1
14...12 funct3
11...7 rd
6...0 opcode */
gen_le32(opcode | ENCODE_RD(rd->reg) | ENCODE_RS1(rs1->reg) | (rs2->e.v << 20));
}
static void asm_emit_j(int token, uint32_t opcode, const Operand* rd, const Operand* rs2)
{
uint32_t imm;
if (rd->type != OP_REG) {
tcc_error("'%s': Expected destination operand that is a register", get_tok_str(token, NULL));
}
if (rs2->type != OP_IM12S && rs2->type != OP_IM32) {
tcc_error("'%s': Expected second source operand that is an immediate value", get_tok_str(token, NULL));
}
imm = rs2->e.v;
/* even offsets in a +- 1 MiB range */
if ((int)imm > (1 << 20) -1 || (int)imm <= -1 * ((1 << 20) -1)) {
tcc_error("'%s': Expected second source operand that is an immediate value between 0 and 0x1fffff", get_tok_str(token, NULL));
}
if (imm & 1) {
tcc_error("'%s': Expected second source operand that is an even immediate value", get_tok_str(token, NULL));
}
/* J-type instruction:
31 imm[20]
30...21 imm[10:1]
20 imm[11]
19...12 imm[19:12]
11...7 rd
6...0 opcode */
gen_le32(opcode | ENCODE_RD(rd->reg) | (((imm >> 20) & 1) << 31) | (((imm >> 1) & 0x3ff) << 21) | (((imm >> 11) & 1) << 20) | (((imm >> 12) & 0xff) << 12));
}
static void asm_mem_access_opcode(TCCState *s1, int token)
{
Operand ops[3];
parse_mem_access_operands(s1, &ops[0]);
/* Pseudoinstruction: inst reg, label
* expand to:
* auipc reg, 0
* inst reg, 0(reg)
* And with the proper relocation to label
*/
if (ops[1].type == OP_IM32 && ops[1].e.sym && ops[1].e.sym->type.t & VT_STATIC){
ops[1] = ops[0];
/* set the offset to zero */
ops[2].type = OP_IM12S;
ops[2].e.v = 0;
/* auipc reg, 0 */
asm_emit_u(token, (0x05 << 2) | 3, &ops[0], &ops[2]);
}
switch (token) {
// l{b|h|w|d}[u] rd, imm(rs1); I-format
case TOK_ASM_lb:
asm_emit_i(token, (0x0 << 2) | 3, &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_lh:
asm_emit_i(token, (0x0 << 2) | 3 | (1 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_lw:
asm_emit_i(token, (0x0 << 2) | 3 | (2 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_ld:
asm_emit_i(token, (0x0 << 2) | 3 | (3 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_lbu:
asm_emit_i(token, (0x0 << 2) | 3 | (4 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_lhu:
asm_emit_i(token, (0x0 << 2) | 3 | (5 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_lwu:
asm_emit_i(token, (0x0 << 2) | 3 | (6 << 12), &ops[0], &ops[1], &ops[2]);
return;
// s{b|h|w|d} rs2, imm(rs1); S-format (with rsX swapped)
case TOK_ASM_sb:
asm_emit_s(token, (0x8 << 2) | 3 | (0 << 12), &ops[1], &ops[0], &ops[2]);
return;
case TOK_ASM_sh:
asm_emit_s(token, (0x8 << 2) | 3 | (1 << 12), &ops[1], &ops[0], &ops[2]);
return;
case TOK_ASM_sw:
asm_emit_s(token, (0x8 << 2) | 3 | (2 << 12), &ops[1], &ops[0], &ops[2]);
return;
case TOK_ASM_sd:
asm_emit_s(token, (0x8 << 2) | 3 | (3 << 12), &ops[1], &ops[0], &ops[2]);
return;
}
}
static void asm_branch_opcode(TCCState *s1, int token, int argc)
{
Operand ops[3];
parse_operands(s1, &ops[0], argc-1);
skip(',');
parse_branch_offset_operand(s1, &ops[argc-1]);
switch(token){
/* branch (RS1, RS2, IMM); B-format */
case TOK_ASM_beq:
asm_emit_b(token, 0x63 | (0 << 12), ops, ops + 1, ops + 2);
return;
case TOK_ASM_bne:
asm_emit_b(token, 0x63 | (1 << 12), ops, ops + 1, ops + 2);
return;
case TOK_ASM_blt:
asm_emit_b(token, 0x63 | (4 << 12), ops, ops + 1, ops + 2);
return;
case TOK_ASM_bge:
asm_emit_b(token, 0x63 | (5 << 12), ops, ops + 1, ops + 2);
return;
case TOK_ASM_bltu:
asm_emit_b(token, 0x63 | (6 << 12), ops, ops + 1, ops + 2);
return;
case TOK_ASM_bgeu:
asm_emit_b(token, 0x63 | (7 << 12), ops, ops + 1, ops + 2);
return;
/* related pseudoinstructions */
case TOK_ASM_bgt:
asm_emit_b(token, 0x63 | (4 << 12), ops + 1, ops, ops + 2);
return;
case TOK_ASM_ble:
asm_emit_b(token, 0x63 | (5 << 12), ops + 1, ops, ops + 2);
return;
case TOK_ASM_bgtu:
asm_emit_b(token, 0x63 | (6 << 12), ops + 1, ops, ops + 2);
return;
case TOK_ASM_bleu:
asm_emit_b(token, 0x63 | (7 << 12), ops + 1, ops, ops + 2);
return;
/* shorter pseudoinstructions */
case TOK_ASM_bnez:
/* bne rs, zero, offset */
asm_emit_b(token, 0x63 | (1 << 12), &ops[0], &zero, &ops[1]);
return;
case TOK_ASM_beqz:
/* bne rs, zero, offset */
asm_emit_b(token, 0x63 | (0 << 12), &ops[0], &zero, &ops[1]);
return;
case TOK_ASM_blez:
/* bge rs, zero, offset */
asm_emit_b(token, 0x63 | (5 << 12), &ops[0], &zero, &ops[1]);
return;
case TOK_ASM_bgez:
/* bge zero, rs, offset */
asm_emit_b(token, 0x63 | (5 << 12), &zero, &ops[0], &ops[1]);
return;
case TOK_ASM_bltz:
/* blt rs, zero, offset */
asm_emit_b(token, 0x63 | (4 << 12), &ops[0], &zero, &ops[1]);
return;
case TOK_ASM_bgtz:
/* blt zero, rs, offset */
asm_emit_b(token, 0x63 | (4 << 12), &zero, &ops[0], &ops[1]);
return;
}
}
static void asm_ternary_opcode(TCCState *s1, int token)
{
Operand ops[3];
parse_operands(s1, &ops[0], 3);
switch (token) {
case TOK_ASM_sll:
asm_emit_r(token, (0xC << 2) | 3 | (1 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_slli:
asm_emit_i(token, (4 << 2) | 3 | (1 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_srl:
asm_emit_r(token, (0xC << 2) | 3 | (4 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_srli:
asm_emit_i(token, (0x4 << 2) | 3 | (5 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_sra:
asm_emit_r(token, (0xC << 2) | 3 | (5 << 12) | (32 << 25), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_srai:
asm_emit_i(token, (0x4 << 2) | 3 | (5 << 12) | (16 << 26), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_sllw:
asm_emit_r(token, (0xE << 2) | 3 | (1 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_slliw:
asm_emit_i(token, (6 << 2) | 3 | (1 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_srlw:
asm_emit_r(token, (0xE << 2) | 3 | (5 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_srliw:
asm_emit_i(token, (0x6 << 2) | 3 | (5 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_sraw:
asm_emit_r(token, (0xE << 2) | 3 | (5 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_sraiw:
asm_emit_i(token, (0x6 << 2) | 3 | (5 << 12), &ops[0], &ops[1], &ops[2]);
return;
// Arithmetic (RD,RS1,(RS2|IMM)); R-format, I-format or U-format
case TOK_ASM_add:
asm_emit_r(token, (0xC << 2) | 3, &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_addi:
asm_emit_i(token, (4 << 2) | 3, &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_sub:
asm_emit_r(token, (0xC << 2) | 3 | (32 << 25), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_addw:
asm_emit_r(token, (0xE << 2) | 3 | (0 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_addiw: // 64 bit
asm_emit_i(token, (0x6 << 2) | 3 | (0 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_subw:
asm_emit_r(token, (0xE << 2) | 3 | (0 << 12) | (32 << 25), &ops[0], &ops[1], &ops[2]);
return;
// Logical (RD,RS1,(RS2|IMM)); R-format or I-format
case TOK_ASM_xor:
asm_emit_r(token, (0xC << 2) | 3 | (4 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_xori:
asm_emit_i(token, (0x4 << 2) | 3 | (4 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_or:
asm_emit_r(token, (0xC << 2) | 3 | (6 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_ori:
asm_emit_i(token, (0x4 << 2) | 3 | (6 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_and:
asm_emit_r(token, (0xC << 2) | 3 | (7 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_andi:
asm_emit_i(token, (0x4 << 2) | 3 | (7 << 12), &ops[0], &ops[1], &ops[2]);
return;
// Compare (RD,RS1,(RS2|IMM)); R-format or I-format
case TOK_ASM_slt:
asm_emit_r(token, (0xC << 2) | 3 | (2 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_slti:
asm_emit_i(token, (0x4 << 2) | 3 | (2 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_sltu:
asm_emit_r(token, (0xC << 2) | 3 | (3 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_sltiu:
asm_emit_i(token, (0x4 << 2) | 3 | (3 << 12), &ops[0], &ops[1], &ops[2]);
return;
/* M extension */
case TOK_ASM_div:
asm_emit_r(token, 0x33 | (4 << 12) | (1 << 25), ops, ops + 1, ops + 2);
return;
case TOK_ASM_divu:
asm_emit_r(token, 0x33 | (5 << 12) | (1 << 25), ops, ops + 1, ops + 2);
return;
case TOK_ASM_divuw:
asm_emit_r(token, 0x3b | (5 << 12) | (1 << 25), ops, ops + 1, ops + 2);
return;
case TOK_ASM_divw:
asm_emit_r(token, 0x3b | (4 << 12) | (1 << 25), ops, ops + 1, ops + 2);
return;
case TOK_ASM_mul:
asm_emit_r(token, 0x33 | (1 << 25), ops, ops + 1, ops + 2);
return;
case TOK_ASM_mulh:
asm_emit_r(token, 0x33 | (1 << 12) | (1 << 25), ops, ops + 1, ops + 2);
return;
case TOK_ASM_mulhsu:
asm_emit_r(token, 0x33 | (2 << 12) | (1 << 25), ops, ops + 1, ops + 2);
return;
case TOK_ASM_mulhu:
asm_emit_r(token, 0x33 | (3 << 12) | (1 << 25), ops, ops + 1, ops + 2);
return;
case TOK_ASM_mulw:
asm_emit_r(token, 0x3b | (1 << 25), ops, ops + 1, ops + 2);
return;
case TOK_ASM_rem:
asm_emit_r(token, 0x33 | (6 << 12) | (1 << 25), ops, ops + 1, ops + 2);
return;
case TOK_ASM_remu:
asm_emit_r(token, 0x33 | (7 << 12) | (1 << 25), ops, ops + 1, ops + 2);
return;
case TOK_ASM_remuw:
asm_emit_r(token, 0x3b | (7 << 12) | (1 << 25), ops, ops + 1, ops + 2);
return;
case TOK_ASM_remw:
asm_emit_r(token, 0x3b | (6 << 12) | (1 << 25), ops, ops + 1, ops + 2);
return;
/* Zicsr extension; (rd, csr, rs/uimm) */
case TOK_ASM_csrrc:
asm_emit_i(token, 0x73 | (3 << 12), ops, ops + 2, ops + 1);
return;
case TOK_ASM_csrrci:
/* using rs1 field for uimmm */
ops[2].type = OP_REG;
asm_emit_i(token, 0x73 | (7 << 12), ops, ops + 2, ops + 1);
return;
case TOK_ASM_csrrs:
asm_emit_i(token, 0x73 | (2 << 12), ops, ops + 2, ops + 1);
return;
case TOK_ASM_csrrsi:
ops[2].type = OP_REG;
asm_emit_i(token, 0x73 | (6 << 12), ops, ops + 2, ops + 1);
return;
case TOK_ASM_csrrw:
asm_emit_i(token, 0x73 | (1 << 12), ops, ops + 2, ops + 1);
return;
case TOK_ASM_csrrwi:
ops[2].type = OP_REG;
asm_emit_i(token, 0x73 | (5 << 12), ops, ops + 2, ops + 1);
return;
/* C extension */
/* register-based loads and stores (RD, RS1, IMM); CL-format */
case TOK_ASM_c_fld:
asm_emit_cl(token, 1 << 13, ops, ops + 1, ops + 2);
return;
case TOK_ASM_c_flw: /* RV32FC-only */
asm_emit_cl(token, 3 << 13, ops, ops + 1, ops + 2);
return;
case TOK_ASM_c_fsd:
asm_emit_cs(token, 5 << 13, ops, ops + 1, ops + 2);
return;
case TOK_ASM_c_fsw: /* RV32FC-only */
asm_emit_cs(token, 7 << 13, ops, ops + 1, ops + 2);
return;
case TOK_ASM_c_ld:
asm_emit_cl(token, 3 << 13, ops, ops + 1, ops + 2);
return;
case TOK_ASM_c_lw:
asm_emit_cl(token, 2 << 13, ops, ops + 1, ops + 2);
return;
case TOK_ASM_c_sd:
asm_emit_cs(token, 7 << 13, ops, ops + 1, ops + 2);
return;
case TOK_ASM_c_sw:
asm_emit_cs(token, 6 << 13, ops, ops + 1, ops + 2);
return;
default:
expect("ternary instruction");
}
}
static void asm_atomic_opcode(TCCState *s1, int token)
{
Operand ops[3];
parse_operand(s1, &ops[0]);
skip(',');
if ( token <= TOK_ASM_lr_d_aqrl && token >= TOK_ASM_lr_w ) {
ops[1] = zero;
} else {
parse_operand(s1, &ops[1]);
skip(',');
}
skip('(');
parse_operand(s1, &ops[2]);
skip(')');
switch(token){
case TOK_ASM_lr_w:
asm_emit_a(token, 0x2F | 0x2<<12 | 0x2<<27, &ops[0], &ops[1], &ops[2], 0, 0);
break;
case TOK_ASM_lr_w_aq:
asm_emit_a(token, 0x2F | 0x2<<12 | 0x2<<27, &ops[0], &ops[1], &ops[2], 1, 0);
break;
case TOK_ASM_lr_w_rl:
asm_emit_a(token, 0x2F | 0x2<<12 | 0x2<<27, &ops[0], &ops[1], &ops[2], 0, 1);
break;
case TOK_ASM_lr_w_aqrl:
asm_emit_a(token, 0x2F | 0x2<<12 | 0x2<<27, &ops[0], &ops[1], &ops[2], 1, 1);
break;
case TOK_ASM_lr_d:
asm_emit_a(token, 0x2F | 0x3<<12 | 0x2<<27, &ops[0], &ops[1], &ops[2], 0, 0);
break;
case TOK_ASM_lr_d_aq:
asm_emit_a(token, 0x2F | 0x3<<12 | 0x2<<27, &ops[0], &ops[1], &ops[2], 1, 0);
break;
case TOK_ASM_lr_d_rl:
asm_emit_a(token, 0x2F | 0x3<<12 | 0x2<<27, &ops[0], &ops[1], &ops[2], 0, 1);
break;
case TOK_ASM_lr_d_aqrl:
asm_emit_a(token, 0x2F | 0x3<<12 | 0x2<<27, &ops[0], &ops[1], &ops[2], 1, 1);
break;
case TOK_ASM_sc_w:
asm_emit_a(token, 0x2F | 0x2<<12 | 0x3<<27, &ops[0], &ops[1], &ops[2], 0, 0);
break;
case TOK_ASM_sc_w_aq:
asm_emit_a(token, 0x2F | 0x2<<12 | 0x3<<27, &ops[0], &ops[1], &ops[2], 1, 0);
break;
case TOK_ASM_sc_w_rl:
asm_emit_a(token, 0x2F | 0x2<<12 | 0x3<<27, &ops[0], &ops[1], &ops[2], 0, 1);
break;
case TOK_ASM_sc_w_aqrl:
asm_emit_a(token, 0x2F | 0x2<<12 | 0x3<<27, &ops[0], &ops[1], &ops[2], 1, 1);
break;
case TOK_ASM_sc_d:
asm_emit_a(token, 0x2F | 0x3<<12 | 0x3<<27, &ops[0], &ops[1], &ops[2], 0, 0);
break;
case TOK_ASM_sc_d_aq:
asm_emit_a(token, 0x2F | 0x3<<12 | 0x3<<27, &ops[0], &ops[1], &ops[2], 1, 0);
break;
case TOK_ASM_sc_d_rl:
asm_emit_a(token, 0x2F | 0x3<<12 | 0x3<<27, &ops[0], &ops[1], &ops[2], 0, 1);
break;
case TOK_ASM_sc_d_aqrl:
asm_emit_a(token, 0x2F | 0x3<<12 | 0x3<<27, &ops[0], &ops[1], &ops[2], 1, 1);
break;
}
}
/* caller: Add funct3 and func5 to opcode */
static void asm_emit_a(int token, uint32_t opcode, const Operand *rd1, const Operand *rs2, const Operand *rs1, int aq, int rl)
{
if (rd1->type != OP_REG)
tcc_error("'%s': Expected first destination operand that is a register", get_tok_str(token, NULL));
if (rs2->type != OP_REG)
tcc_error("'%s': Expected second source operand that is a register", get_tok_str(token, NULL));
if (rs1->type != OP_REG)
tcc_error("'%s': Expected third source operand that is a register", get_tok_str(token, NULL));
/* A-type instruction:
31...27 funct5
26 aq
25 rl
24...20 rs2
19...15 rs1
14...11 funct3
11...7 rd
6...0 opcode
opcode always fixed pos. */
gen_le32(opcode | ENCODE_RS1(rs1->reg) | ENCODE_RS2(rs2->reg) | ENCODE_RD(rd1->reg) | aq << 26 | rl << 25);
}
/* caller: Add funct3 to opcode */
static void asm_emit_s(int token, uint32_t opcode, const Operand* rs1, const Operand* rs2, const Operand* imm)
{
if (rs1->type != OP_REG) {
tcc_error("'%s': Expected first source operand that is a register", get_tok_str(token, NULL));
}
if (rs2->type != OP_REG) {
tcc_error("'%s': Expected second source operand that is a register", get_tok_str(token, NULL));
}
if (imm->type != OP_IM12S) {
tcc_error("'%s': Expected third operand that is an immediate value between 0 and 8191", get_tok_str(token, NULL));
}
{
uint16_t v = imm->e.v;
/* S-type instruction:
31...25 imm[11:5]
24...20 rs2
19...15 rs1
14...12 funct3
11...7 imm[4:0]
6...0 opcode
opcode always fixed pos. */
gen_le32(opcode | ENCODE_RS1(rs1->reg) | ENCODE_RS2(rs2->reg) | ((v & 0x1F) << 7) | ((v >> 5) << 25));
}
}
static void asm_emit_b(int token, uint32_t opcode, const Operand *rs1, const Operand *rs2, const Operand *imm)
{
uint32_t offset;
if (rs1->type != OP_REG) {
tcc_error("'%s': Expected first source operand that is a register", get_tok_str(token, NULL));
}
if (rs2->type != OP_REG) {
tcc_error("'%s': Expected destination operand that is a register", get_tok_str(token, NULL));
}
if (imm->type != OP_IM12S) {
tcc_error("'%s': Expected second source operand that is an immediate value between 0 and 8191", get_tok_str(token, NULL));
}
offset = imm->e.v;
/* B-type instruction:
31 imm[12]
30...25 imm[10:5]
24...20 rs2
19...15 rs1
14...12 funct3
8...11 imm[4:1]
7 imm[11]
6...0 opcode */
asm_emit_opcode(opcode | ENCODE_RS1(rs1->reg) | ENCODE_RS2(rs2->reg) | (((offset >> 1) & 0xF) << 8) | (((offset >> 5) & 0x1f) << 25) | (((offset >> 11) & 1) << 7) | (((offset >> 12) & 1) << 31));
}
ST_FUNC void asm_opcode(TCCState *s1, int token)
{
switch (token) {
case TOK_ASM_ebreak:
case TOK_ASM_ecall:
case TOK_ASM_fence_i:
case TOK_ASM_hrts:
case TOK_ASM_mrth:
case TOK_ASM_mrts:
case TOK_ASM_wfi:
asm_nullary_opcode(s1, token);
return;
case TOK_ASM_fence:
asm_fence_opcode(s1, token);
return;
case TOK_ASM_rdcycle:
case TOK_ASM_rdcycleh:
case TOK_ASM_rdtime:
case TOK_ASM_rdtimeh:
case TOK_ASM_rdinstret:
case TOK_ASM_rdinstreth:
asm_unary_opcode(s1, token);
return;
case TOK_ASM_lui:
case TOK_ASM_auipc:
asm_binary_opcode(s1, token);
return;
case TOK_ASM_lb:
case TOK_ASM_lh:
case TOK_ASM_lw:
case TOK_ASM_ld:
case TOK_ASM_lbu:
case TOK_ASM_lhu:
case TOK_ASM_lwu:
case TOK_ASM_sb:
case TOK_ASM_sh:
case TOK_ASM_sw:
case TOK_ASM_sd:
asm_mem_access_opcode(s1, token);
break;
case TOK_ASM_jalr:
asm_jalr_opcode(s1, token); /* it can be a pseudo instruction too*/
break;
case TOK_ASM_j:
asm_jal_opcode(s1, token); /* jal zero, offset*/
return;
case TOK_ASM_jal:
asm_jal_opcode(s1, token); /* it can be a pseudo instruction too*/
break;
case TOK_ASM_add:
case TOK_ASM_addi:
case TOK_ASM_addiw:
case TOK_ASM_addw:
case TOK_ASM_and:
case TOK_ASM_andi:
case TOK_ASM_or:
case TOK_ASM_ori:
case TOK_ASM_sll:
case TOK_ASM_slli:
case TOK_ASM_slliw:
case TOK_ASM_sllw:
case TOK_ASM_slt:
case TOK_ASM_slti:
case TOK_ASM_sltiu:
case TOK_ASM_sltu:
case TOK_ASM_sra:
case TOK_ASM_srai:
case TOK_ASM_sraiw:
case TOK_ASM_sraw:
case TOK_ASM_srl:
case TOK_ASM_srli:
case TOK_ASM_srliw:
case TOK_ASM_srlw:
case TOK_ASM_sub:
case TOK_ASM_subw:
case TOK_ASM_xor:
case TOK_ASM_xori:
/* M extension */
case TOK_ASM_div:
case TOK_ASM_divu:
case TOK_ASM_divuw:
case TOK_ASM_divw:
case TOK_ASM_mul:
case TOK_ASM_mulh:
case TOK_ASM_mulhsu:
case TOK_ASM_mulhu:
case TOK_ASM_mulw:
case TOK_ASM_rem:
case TOK_ASM_remu:
case TOK_ASM_remuw:
case TOK_ASM_remw:
/* Zicsr extension */
case TOK_ASM_csrrc:
case TOK_ASM_csrrci:
case TOK_ASM_csrrs:
case TOK_ASM_csrrsi:
case TOK_ASM_csrrw:
case TOK_ASM_csrrwi:
asm_ternary_opcode(s1, token);
return;
/* Branches */
case TOK_ASM_beq:
case TOK_ASM_bge:
case TOK_ASM_bgeu:
case TOK_ASM_blt:
case TOK_ASM_bltu:
case TOK_ASM_bne:
asm_branch_opcode(s1, token, 3);
break;
/* C extension */
case TOK_ASM_c_ebreak:
case TOK_ASM_c_nop:
asm_nullary_opcode(s1, token);
return;
case TOK_ASM_c_j:
case TOK_ASM_c_jal:
case TOK_ASM_c_jalr:
case TOK_ASM_c_jr:
asm_unary_opcode(s1, token);
return;
case TOK_ASM_c_add:
case TOK_ASM_c_addi16sp:
case TOK_ASM_c_addi4spn:
case TOK_ASM_c_addi:
case TOK_ASM_c_addiw:
case TOK_ASM_c_addw:
case TOK_ASM_c_and:
case TOK_ASM_c_andi:
case TOK_ASM_c_beqz:
case TOK_ASM_c_bnez:
case TOK_ASM_c_fldsp:
case TOK_ASM_c_flwsp:
case TOK_ASM_c_fsdsp:
case TOK_ASM_c_fswsp:
case TOK_ASM_c_ldsp:
case TOK_ASM_c_li:
case TOK_ASM_c_lui:
case TOK_ASM_c_lwsp:
case TOK_ASM_c_mv:
case TOK_ASM_c_or:
case TOK_ASM_c_sdsp:
case TOK_ASM_c_slli:
case TOK_ASM_c_srai:
case TOK_ASM_c_srli:
case TOK_ASM_c_sub:
case TOK_ASM_c_subw:
case TOK_ASM_c_swsp:
case TOK_ASM_c_xor:
asm_binary_opcode(s1, token);
return;
case TOK_ASM_c_fld:
case TOK_ASM_c_flw:
case TOK_ASM_c_fsd:
case TOK_ASM_c_fsw:
case TOK_ASM_c_ld:
case TOK_ASM_c_lw:
case TOK_ASM_c_sd:
case TOK_ASM_c_sw:
asm_ternary_opcode(s1, token);
return;
/* pseudoinstructions */
case TOK_ASM_nop:
case TOK_ASM_ret:
asm_nullary_opcode(s1, token);
return;
case TOK_ASM_jr:
case TOK_ASM_call:
case TOK_ASM_tail:
asm_unary_opcode(s1, token);
return;
case TOK_ASM_la:
case TOK_ASM_lla:
case TOK_ASM_li:
case TOK_ASM_jump:
case TOK_ASM_seqz:
case TOK_ASM_snez:
case TOK_ASM_sltz:
case TOK_ASM_sgtz:
case TOK_ASM_mv:
case TOK_ASM_not:
case TOK_ASM_neg:
case TOK_ASM_negw:
asm_binary_opcode(s1, token);
return;
case TOK_ASM_bnez:
case TOK_ASM_beqz:
case TOK_ASM_blez:
case TOK_ASM_bgez:
case TOK_ASM_bltz:
case TOK_ASM_bgtz:
asm_branch_opcode(s1, token, 2);
return;
case TOK_ASM_bgt:
case TOK_ASM_bgtu:
case TOK_ASM_ble:
case TOK_ASM_bleu:
asm_branch_opcode(s1, token, 3);
return;
/* Atomic operations */
case TOK_ASM_lr_w:
case TOK_ASM_lr_w_aq:
case TOK_ASM_lr_w_rl:
case TOK_ASM_lr_w_aqrl:
case TOK_ASM_lr_d:
case TOK_ASM_lr_d_aq:
case TOK_ASM_lr_d_rl:
case TOK_ASM_lr_d_aqrl:
case TOK_ASM_sc_w:
case TOK_ASM_sc_w_aq:
case TOK_ASM_sc_w_rl:
case TOK_ASM_sc_w_aqrl:
case TOK_ASM_sc_d:
case TOK_ASM_sc_d_aq:
case TOK_ASM_sc_d_rl:
case TOK_ASM_sc_d_aqrl:
asm_atomic_opcode(s1, token);
break;
default:
expect("known instruction");
}
}
static int asm_parse_csrvar(int t)
{
switch (t) {
case TOK_ASM_cycle:
return 0xc00;
case TOK_ASM_fcsr:
return 3;
case TOK_ASM_fflags:
return 1;
case TOK_ASM_frm:
return 2;
case TOK_ASM_instret:
return 0xc02;
case TOK_ASM_time:
return 0xc01;
case TOK_ASM_cycleh:
return 0xc80;
case TOK_ASM_instreth:
return 0xc82;
case TOK_ASM_timeh:
return 0xc81;
default:
return -1;
}
}
ST_FUNC void subst_asm_operand(CString *add_str, SValue *sv, int modifier)
{
int r, reg, val;
r = sv->r;
if ((r & VT_VALMASK) == VT_CONST) {
if (!(r & VT_LVAL) && modifier != 'c' && modifier != 'n' &&
modifier != 'P') {
//cstr_ccat(add_str, '#');
}
if (r & VT_SYM) {
const char *name = get_tok_str(sv->sym->v, NULL);
if (sv->sym->v >= SYM_FIRST_ANOM) {
/* In case of anonymous symbols ("L.42", used
for static data labels) we can't find them
in the C symbol table when later looking up
this name. So enter them now into the asm label
list when we still know the symbol. */
get_asm_sym(tok_alloc(name, strlen(name))->tok, sv->sym);
}
if (tcc_state->leading_underscore)
cstr_ccat(add_str, '_');
cstr_cat(add_str, name, -1);
if ((uint32_t) sv->c.i == 0)
goto no_offset;
cstr_ccat(add_str, '+');
}
val = sv->c.i;
if (modifier == 'n')
val = -val;
if (modifier == 'z' && sv->c.i == 0) {
cstr_cat(add_str, "zero", -1);
} else {
cstr_printf(add_str, "%d", (int) sv->c.i);
}
no_offset:;
} else if ((r & VT_VALMASK) == VT_LOCAL) {
cstr_printf(add_str, "%d", (int) sv->c.i);
} else if (r & VT_LVAL) {
reg = r & VT_VALMASK;
if (reg >= VT_CONST)
tcc_internal_error("");
if ((sv->type.t & VT_BTYPE) == VT_FLOAT ||
(sv->type.t & VT_BTYPE) == VT_DOUBLE) {
/* floating point register */
reg = TOK_ASM_f0 + reg;
} else {
/* general purpose register */
reg = TOK_ASM_x0 + reg;
}
cstr_cat(add_str, get_tok_str(reg, NULL), -1);
} else {
/* register case */
reg = r & VT_VALMASK;
if (reg >= VT_CONST)
tcc_internal_error("");
if ((sv->type.t & VT_BTYPE) == VT_FLOAT ||
(sv->type.t & VT_BTYPE) == VT_DOUBLE) {
/* floating point register */
reg = TOK_ASM_f0 + reg;
} else {
/* general purpose register */
reg = TOK_ASM_x0 + reg;
}
cstr_cat(add_str, get_tok_str(reg, NULL), -1);
}
}
/* TCC does not use RISC-V register numbers internally, it uses 0-8 for
* integers and 8-16 for floats instead */
static int tcc_ireg(int r){
return REG_VALUE(r) - 10;
}
static int tcc_freg(int r){
return REG_VALUE(r) - 10 + 8;
}
/* generate prolog and epilog code for asm statement */
ST_FUNC void asm_gen_code(ASMOperand *operands, int nb_operands,
int nb_outputs, int is_output,
uint8_t *clobber_regs,
int out_reg)
{
uint8_t regs_allocated[NB_ASM_REGS];
ASMOperand *op;
int i, reg;
static const uint8_t reg_saved[] = {
// General purpose regs
8, 9, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
// Float regs
40, 41, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59
};
/* mark all used registers */
memcpy(regs_allocated, clobber_regs, sizeof(regs_allocated));
for(i = 0; i < nb_operands; i++) {
op = &operands[i];
if (op->reg >= 0) {
regs_allocated[op->reg] = 1;
}
}
if(!is_output) {
/* generate reg save code */
for(i = 0; i < sizeof(reg_saved)/sizeof(reg_saved[0]); i++) {
reg = reg_saved[i];
if (regs_allocated[reg]) {
/* push */
/* addi sp, sp, -offset */
gen_le32((4 << 2) | 3 |
ENCODE_RD(2) | ENCODE_RS1(2) | -8 << 20);
if (REG_IS_FLOAT(reg)){
/* fsd reg, offset(sp) */
gen_le32( 0x27 | (3 << 12) |
ENCODE_RS2(reg) | ENCODE_RS1(2) );
} else {
/* sd reg, offset(sp) */
gen_le32((0x8 << 2) | 3 | (3 << 12) |
ENCODE_RS2(reg) | ENCODE_RS1(2) );
}
}
}
/* generate load code */
for(i = 0; i < nb_operands; i++) {
op = &operands[i];
if (op->reg >= 0) {
if ((op->vt->r & VT_VALMASK) == VT_LLOCAL &&
op->is_memory) {
/* memory reference case (for both input and
output cases) */
SValue sv;
sv = *op->vt;
sv.r = (sv.r & ~VT_VALMASK) | VT_LOCAL | VT_LVAL;
sv.type.t = VT_PTR;
load(tcc_ireg(op->reg), &sv);
} else if (i >= nb_outputs || op->is_rw) {
/* load value in register */
if ((op->vt->type.t & VT_BTYPE) == VT_FLOAT ||
(op->vt->type.t & VT_BTYPE) == VT_DOUBLE) {
load(tcc_freg(op->reg), op->vt);
} else {
load(tcc_ireg(op->reg), op->vt);
}
if (op->is_llong) {
tcc_error("long long not implemented");
}
}
}
}
} else {
/* generate save code */
for(i = 0 ; i < nb_outputs; i++) {
op = &operands[i];
if (op->reg >= 0) {
if ((op->vt->r & VT_VALMASK) == VT_LLOCAL) {
if (!op->is_memory) {
SValue sv;
sv = *op->vt;
sv.r = (sv.r & ~VT_VALMASK) | VT_LOCAL;
sv.type.t = VT_PTR;
load(tcc_ireg(out_reg), &sv);
sv = *op->vt;
sv.r = (sv.r & ~VT_VALMASK) | out_reg;
store(tcc_ireg(op->reg), &sv);
}
} else {
if ((op->vt->type.t & VT_BTYPE) == VT_FLOAT ||
(op->vt->type.t & VT_BTYPE) == VT_DOUBLE) {
store(tcc_freg(op->reg), op->vt);
} else {
store(tcc_ireg(op->reg), op->vt);
}
if (op->is_llong) {
tcc_error("long long not implemented");
}
}
}
}
/* generate reg restore code for floating point registers */
for(i = sizeof(reg_saved)/sizeof(reg_saved[0]) - 1; i >= 0; i--) {
reg = reg_saved[i];
if (regs_allocated[reg]) {
/* pop */
if (REG_IS_FLOAT(reg)){
/* fld reg, offset(sp) */
gen_le32(7 | (3 << 12) |
ENCODE_RD(reg) | ENCODE_RS1(2) | 0);
} else {
/* ld reg, offset(sp) */
gen_le32(3 | (3 << 12) |
ENCODE_RD(reg) | ENCODE_RS1(2) | 0);
}
/* addi sp, sp, offset */
gen_le32((4 << 2) | 3 |
ENCODE_RD(2) | ENCODE_RS1(2) | 8 << 20);
}
}
}
}
/* return the constraint priority (we allocate first the lowest
numbered constraints) */
static inline int constraint_priority(const char *str)
{
// TODO: How is this chosen??
int priority, c, pr;
/* we take the lowest priority */
priority = 0;
for(;;) {
c = *str;
if (c == '\0')
break;
str++;
switch(c) {
case 'A': // address that is held in a general-purpose register.
case 'S': // constraint that matches an absolute symbolic address.
case 'f': // register [float]
case 'r': // register [general]
case 'p': // valid memory address for load,store [general]
pr = 3;
break;
case 'I': // 12 bit signed immedate
case 'i': // immediate integer operand, including symbolic constants [general]
case 'm': // memory operand [general]
case 'g': // general-purpose-register, memory, immediate integer [general]
pr = 4;
break;
case 'v':
tcc_error("unimp: constraint '%c'", c);
default:
tcc_error("unknown constraint '%d'", c);
}
if (pr > priority)
priority = pr;
}
return priority;
}
static const char *skip_constraint_modifiers(const char *p)
{
/* Constraint modifier:
= Operand is written to by this instruction
+ Operand is both read and written to by this instruction
% Instruction is commutative for this operand and the following operand.
Per-alternative constraint modifier:
& Operand is clobbered before the instruction is done using the input operands
*/
while (*p == '=' || *p == '&' || *p == '+' || *p == '%')
p++;
return p;
}
#define REG_OUT_MASK 0x01
#define REG_IN_MASK 0x02
#define is_reg_allocated(reg) (regs_allocated[reg] & reg_mask)
ST_FUNC void asm_compute_constraints(ASMOperand *operands,
int nb_operands, int nb_outputs,
const uint8_t *clobber_regs,
int *pout_reg)
{
/* TODO: Simple constraints
whitespace ignored
o memory operand that is offsetable
V memory but not offsetable
< memory operand with autodecrement addressing is allowed. Restrictions apply.
> memory operand with autoincrement addressing is allowed. Restrictions apply.
n immediate integer operand with a known numeric value
E immediate floating operand (const_double) is allowed, but only if target=host
F immediate floating operand (const_double or const_vector) is allowed
s immediate integer operand whose value is not an explicit integer
X any operand whatsoever
0...9 (postfix); (can also be more than 1 digit number); an operand that matches the specified operand number is allowed
*/
/* TODO: RISCV constraints
J The integer 0.
K A 5-bit unsigned immediate for CSR access instructions.
A An address that is held in a general-purpose register.
S A constraint that matches an absolute symbolic address.
vr A vector register (if available)..
vd A vector register, excluding v0 (if available).
vm A vector register, only v0 (if available).
*/
ASMOperand *op;
int sorted_op[MAX_ASM_OPERANDS];
int i, j, k, p1, p2, tmp, reg, c, reg_mask;
const char *str;
uint8_t regs_allocated[NB_ASM_REGS];
/* init fields */
for (i = 0; i < nb_operands; i++) {
op = &operands[i];
op->input_index = -1;
op->ref_index = -1;
op->reg = -1;
op->is_memory = 0;
op->is_rw = 0;
}
/* compute constraint priority and evaluate references to output
constraints if input constraints */
for (i = 0; i < nb_operands; i++) {
op = &operands[i];
str = op->constraint;
str = skip_constraint_modifiers(str);
if (isnum(*str) || *str == '[') {
/* this is a reference to another constraint */
k = find_constraint(operands, nb_operands, str, NULL);
if ((unsigned) k >= i || i < nb_outputs)
tcc_error("invalid reference in constraint %d ('%s')",
i, str);
op->ref_index = k;
if (operands[k].input_index >= 0)
tcc_error("cannot reference twice the same operand");
operands[k].input_index = i;
op->priority = 5;
} else if ((op->vt->r & VT_VALMASK) == VT_LOCAL
&& op->vt->sym
&& (reg = op->vt->sym->r & VT_VALMASK) < VT_CONST) {
op->priority = 1;
op->reg = reg;
} else {
op->priority = constraint_priority(str);
}
}
/* sort operands according to their priority */
for (i = 0; i < nb_operands; i++)
sorted_op[i] = i;
for (i = 0; i < nb_operands - 1; i++) {
for (j = i + 1; j < nb_operands; j++) {
p1 = operands[sorted_op[i]].priority;
p2 = operands[sorted_op[j]].priority;
if (p2 < p1) {
tmp = sorted_op[i];
sorted_op[i] = sorted_op[j];
sorted_op[j] = tmp;
}
}
}
for (i = 0; i < NB_ASM_REGS; i++) {
if (clobber_regs[i])
regs_allocated[i] = REG_IN_MASK | REG_OUT_MASK;
else
regs_allocated[i] = 0;
}
/* allocate registers and generate corresponding asm moves */
for (i = 0; i < nb_operands; i++) {
j = sorted_op[i];
op = &operands[j];
str = op->constraint;
/* no need to allocate references */
if (op->ref_index >= 0)
continue;
/* select if register is used for output, input or both */
if (op->input_index >= 0) {
reg_mask = REG_IN_MASK | REG_OUT_MASK;
} else if (j < nb_outputs) {
reg_mask = REG_OUT_MASK;
} else {
reg_mask = REG_IN_MASK;
}
if (op->reg >= 0) {
if (is_reg_allocated(op->reg))
tcc_error
("asm regvar requests register that's taken already");
reg = op->reg;
}
try_next:
c = *str++;
switch (c) {
case '=': // Operand is written-to
goto try_next;
case '+': // Operand is both READ and written-to
op->is_rw = 1;
/* FALL THRU */
case '&': // Operand is clobbered before the instruction is done using the input operands
if (j >= nb_outputs)
tcc_error("'%c' modifier can only be applied to outputs", c);
reg_mask = REG_IN_MASK | REG_OUT_MASK;
goto try_next;
case 'r': // general-purpose register
case 'p': // loadable/storable address
/* any general register */
/* From a0 to a7 */
if ((reg = op->reg) >= 0)
goto reg_found;
else for (reg = 10; reg <= 18; reg++) {
if (!is_reg_allocated(reg))
goto reg_found;
}
goto try_next;
reg_found:
/* now we can reload in the register */
op->is_llong = 0;
op->reg = reg;
regs_allocated[reg] |= reg_mask;
break;
case 'f': // floating pont register
/* floating point register */
/* From fa0 to fa7 */
if ((reg = op->reg) >= 0)
goto reg_found;
else for (reg = 42; reg <= 50; reg++) {
if (!is_reg_allocated(reg))
goto reg_found;
}
goto try_next;
case 'I': // I-Type 12 bit signed immediate
case 'i': // immediate integer operand, including symbolic constants
if (!((op->vt->r & (VT_VALMASK | VT_LVAL)) == VT_CONST))
goto try_next;
break;
case 'm': // memory operand
case 'g': // any register
/* nothing special to do because the operand is already in
memory, except if the pointer itself is stored in a
memory variable (VT_LLOCAL case) */
/* XXX: fix constant case */
/* if it is a reference to a memory zone, it must lie
in a register, so we reserve the register in the
input registers and a load will be generated
later */
if (j < nb_outputs || c == 'm') {
if ((op->vt->r & VT_VALMASK) == VT_LLOCAL) {
/* any general register: from a0 to a7 */
for (reg = 10; reg <= 18; reg++) {
if (!(regs_allocated[reg] & REG_IN_MASK))
goto reg_found1;
}
goto try_next;
reg_found1:
/* now we can reload in the register */
regs_allocated[reg] |= REG_IN_MASK;
op->reg = reg;
op->is_memory = 1;
}
}
break;
default:
tcc_error("asm constraint %d ('%s') could not be satisfied",
j, op->constraint);
break;
}
/* if a reference is present for that operand, we assign it too */
if (op->input_index >= 0) {
operands[op->input_index].reg = op->reg;
operands[op->input_index].is_llong = op->is_llong;
}
}
/* compute out_reg. It is used to store outputs registers to memory
locations references by pointers (VT_LLOCAL case) */
*pout_reg = -1;
for (i = 0; i < nb_operands; i++) {
op = &operands[i];
if (op->reg >= 0 &&
(op->vt->r & VT_VALMASK) == VT_LLOCAL && !op->is_memory) {
if (REG_IS_FLOAT(op->reg)){
/* From fa0 to fa7 */
for (reg = 42; reg <= 50; reg++) {
if (!(regs_allocated[reg] & REG_OUT_MASK))
goto reg_found2;
}
} else {
/* From a0 to a7 */
for (reg = 10; reg <= 18; reg++) {
if (!(regs_allocated[reg] & REG_OUT_MASK))
goto reg_found2;
}
}
tcc_error("could not find free output register for reloading");
reg_found2:
*pout_reg = reg;
break;
}
}
/* print sorted constraints */
#ifdef ASM_DEBUG
for (i = 0; i < nb_operands; i++) {
j = sorted_op[i];
op = &operands[j];
printf("%%%d [%s]: \"%s\" r=0x%04x reg=%d\n",
j,
op->id ? get_tok_str(op->id, NULL) : "",
op->constraint, op->vt->r, op->reg);
}
if (*pout_reg >= 0)
printf("out_reg=%d\n", *pout_reg);
#endif
}
ST_FUNC void asm_clobber(uint8_t *clobber_regs, const char *str)
{
int reg;
TokenSym *ts;
if (!strcmp(str, "memory") ||
!strcmp(str, "cc") ||
!strcmp(str, "flags"))
return;
ts = tok_alloc(str, strlen(str));
reg = asm_parse_regvar(ts->tok);
if (reg == -1) {
tcc_error("invalid clobber register '%s'", str);
}
clobber_regs[reg] = 1;
}
ST_FUNC int asm_parse_regvar (int t)
{
/* PC register not implemented */
if (t >= TOK_ASM_pc || t < TOK_ASM_x0)
return -1;
if (t < TOK_ASM_f0)
return t - TOK_ASM_x0;
if (t < TOK_ASM_zero)
return t - TOK_ASM_f0 + 32; // Use higher 32 for floating point
/* ABI mnemonic */
if (t < TOK_ASM_ft0)
return t - TOK_ASM_zero;
return t - TOK_ASM_ft0 + 32; // Use higher 32 for floating point
}
/*************************************************************/
/* C extension */
/* caller: Add funct6, funct2 into opcode */
static void asm_emit_ca(int token, uint16_t opcode, const Operand *rd, const Operand *rs2)
{
uint8_t dst, src;
if (rd->type != OP_REG) {
tcc_error("'%s': Expected destination operand that is a register", get_tok_str(token, NULL));
}
if (rs2->type != OP_REG) {
tcc_error("'%s': Expected source operand that is a register", get_tok_str(token, NULL));
}
/* subtract index of x8 */
dst = rd->reg - 8;
src = rs2->reg - 8;
/* only registers {x,f}8 to {x,f}15 are valid (3-bit) */
if (dst > 7) {
tcc_error("'%s': Expected destination operand that is a valid C-extension register", get_tok_str(token, NULL));
}
if (src > 7) {
tcc_error("'%s': Expected source operand that is a valid C-extension register", get_tok_str(token, NULL));
}
/* CA-type instruction:
15...10 funct6
9...7 rd'/rs1'
6..5 funct2
4...2 rs2'
1...0 opcode */
gen_le16(opcode | C_ENCODE_RS2(src) | C_ENCODE_RS1(dst));
}
static void asm_emit_cb(int token, uint16_t opcode, const Operand *rs1, const Operand *imm)
{
uint32_t offset;
uint8_t src;
if (rs1->type != OP_REG) {
tcc_error("'%s': Expected source operand that is a register", get_tok_str(token, NULL));
}
if (imm->type != OP_IM12S && imm->type != OP_IM32) {
tcc_error("'%s': Expected source operand that is an immediate value", get_tok_str(token, NULL));
}
offset = imm->e.v;
if (offset & 1) {
tcc_error("'%s': Expected source operand that is an even immediate value", get_tok_str(token, NULL));
}
src = rs1->reg - 8;
if (src > 7) {
tcc_error("'%s': Expected source operand that is a valid C-extension register", get_tok_str(token, NULL));
}
/* CB-type instruction:
15...13 funct3
12...10 offset
9..7 rs1'
6...2 offset
1...0 opcode */
/* non-branch also using CB:
15...13 funct3
12 imm
11..10 funct2
9...7 rd'/rs1'
6..2 imm
1...0 opcode */
switch (token) {
case TOK_ASM_c_beqz:
case TOK_ASM_c_bnez:
gen_le16(opcode | C_ENCODE_RS1(src) | ((NTH_BIT(offset, 5) | (((offset >> 1) & 3) << 1) | (((offset >> 6) & 3) << 3)) << 2) | ((((offset >> 3) & 3) | NTH_BIT(offset, 8)) << 10));
return;
default:
gen_le16(opcode | C_ENCODE_RS1(src) | ((offset & 0x1f) << 2) | (NTH_BIT(offset, 5) << 12));
return;
}
}
static void asm_emit_ci(int token, uint16_t opcode, const Operand *rd, const Operand *imm)
{
uint32_t immediate;
if (rd->type != OP_REG) {
tcc_error("'%s': Expected destination operand that is a register", get_tok_str(token, NULL));
}
if (imm->type != OP_IM12S && imm->type != OP_IM32) {
tcc_error("'%s': Expected source operand that is an immediate value", get_tok_str(token, NULL));
}
immediate = imm->e.v;
/* CI-type instruction:
15...13 funct3
12 imm
11...7 rd/rs1
6...2 imm
1...0 opcode */
switch (token) {
case TOK_ASM_c_addi:
case TOK_ASM_c_addiw:
case TOK_ASM_c_li:
case TOK_ASM_c_slli:
gen_le16(opcode | ((immediate & 0x1f) << 2) | ENCODE_RD(rd->reg) | (NTH_BIT(immediate, 5) << 12));
return;
case TOK_ASM_c_addi16sp:
gen_le16(opcode | NTH_BIT(immediate, 5) << 2 | (((immediate >> 7) & 3) << 3) | NTH_BIT(immediate, 6) << 5 | NTH_BIT(immediate, 4) << 6 | ENCODE_RD(rd->reg) | (NTH_BIT(immediate, 9) << 12));
return;
case TOK_ASM_c_lui:
gen_le16(opcode | (((immediate >> 12) & 0x1f) << 2) | ENCODE_RD(rd->reg) | (NTH_BIT(immediate, 17) << 12));
return;
case TOK_ASM_c_fldsp:
case TOK_ASM_c_ldsp:
gen_le16(opcode | (((immediate >> 6) & 7) << 2) | (((immediate >> 3) & 2) << 5) | ENCODE_RD(rd->reg) | (NTH_BIT(immediate, 5) << 12));
return;
case TOK_ASM_c_flwsp:
case TOK_ASM_c_lwsp:
gen_le16(opcode | (((immediate >> 6) & 3) << 2) | (((immediate >> 2) & 7) << 4) | ENCODE_RD(rd->reg) | (NTH_BIT(immediate, 5) << 12));
return;
case TOK_ASM_c_nop:
gen_le16(opcode);
return;
default:
expect("known instruction");
}
}
/* caller: Add funct3 into opcode */
static void asm_emit_ciw(int token, uint16_t opcode, const Operand *rd, const Operand *imm)
{
uint32_t nzuimm;
uint8_t dst;
if (rd->type != OP_REG) {
tcc_error("'%s': Expected destination operand that is a register", get_tok_str(token, NULL));
}
if (imm->type != OP_IM12S && imm->type != OP_IM32) {
tcc_error("'%s': Expected source operand that is an immediate value", get_tok_str(token, NULL));
}
dst = rd->reg - 8;
if (dst > 7) {
tcc_error("'%s': Expected destination operand that is a valid C-extension register", get_tok_str(token, NULL));
}
nzuimm = imm->e.v;
if (nzuimm > 0x3fc) {
tcc_error("'%s': Expected source operand that is an immediate value between 0 and 0x3ff", get_tok_str(token, NULL));
}
if (nzuimm & 3) {
tcc_error("'%s': Expected source operand that is a non-zero immediate value divisible by 4", get_tok_str(token, NULL));
}
/* CIW-type instruction:
15...13 funct3
12...5 imm
4...2 rd'
1...0 opcode */
gen_le16(opcode | ENCODE_RS2(rd->reg) | ((NTH_BIT(nzuimm, 3) | (NTH_BIT(nzuimm, 2) << 1) | (((nzuimm >> 6) & 0xf) << 2) | (((nzuimm >> 4) & 3) << 6)) << 5));
}
/* caller: Add funct3 into opcode */
static void asm_emit_cj(int token, uint16_t opcode, const Operand *imm)
{
uint32_t offset;
/* +-2 KiB range */
if (imm->type != OP_IM12S) {
tcc_error("'%s': Expected source operand that is a 12-bit immediate value", get_tok_str(token, NULL));
}
offset = imm->e.v;
if (offset & 1) {
tcc_error("'%s': Expected source operand that is an even immediate value", get_tok_str(token, NULL));
}
/* CJ-type instruction:
15...13 funct3
12...2 offset[11|4|9:8|10|6|7|3:1|5]
1...0 opcode */
gen_le16(opcode | (NTH_BIT(offset, 5) << 2) | (((offset >> 1) & 7) << 3) | (NTH_BIT(offset, 7) << 6) | (NTH_BIT(offset, 6) << 7) | (NTH_BIT(offset, 10) << 8) | (((offset >> 8) & 3) << 9) | (NTH_BIT(offset, 4) << 11) | (NTH_BIT(offset, 11) << 12));
}
/* caller: Add funct3 into opcode */
static void asm_emit_cl(int token, uint16_t opcode, const Operand *rd, const Operand *rs1, const Operand *imm)
{
uint32_t offset;
uint8_t dst, src;
if (rd->type != OP_REG) {
tcc_error("'%s': Expected destination operand that is a register", get_tok_str(token, NULL));
}
if (rs1->type != OP_REG) {
tcc_error("'%s': Expected source operand that is a register", get_tok_str(token, NULL));
}
if (imm->type != OP_IM12S && imm->type != OP_IM32) {
tcc_error("'%s': Expected source operand that is an immediate value", get_tok_str(token, NULL));
}
dst = rd->reg - 8;
src = rs1->reg - 8;
if (dst > 7) {
tcc_error("'%s': Expected destination operand that is a valid C-extension register", get_tok_str(token, NULL));
}
if (src > 7) {
tcc_error("'%s': Expected source operand that is a valid C-extension register", get_tok_str(token, NULL));
}
offset = imm->e.v;
if (offset > 0xff) {
tcc_error("'%s': Expected source operand that is an immediate value between 0 and 0xff", get_tok_str(token, NULL));
}
if (offset & 3) {
tcc_error("'%s': Expected source operand that is an immediate value divisible by 4", get_tok_str(token, NULL));
}
/* CL-type instruction:
15...13 funct3
12...10 imm
9...7 rs1'
6...5 imm
4...2 rd'
1...0 opcode */
switch (token) {
/* imm variant 1 */
case TOK_ASM_c_flw:
case TOK_ASM_c_lw:
gen_le16(opcode | C_ENCODE_RS2(dst) | C_ENCODE_RS1(src) | (NTH_BIT(offset, 6) << 5) | (NTH_BIT(offset, 2) << 6) | (((offset >> 3) & 7) << 10));
return;
/* imm variant 2 */
case TOK_ASM_c_fld:
case TOK_ASM_c_ld:
gen_le16(opcode | C_ENCODE_RS2(dst) | C_ENCODE_RS1(src) | (((offset >> 6) & 3) << 5) | (((offset >> 3) & 7) << 10));
return;
default:
expect("known instruction");
}
}
/* caller: Add funct4 into opcode */
static void asm_emit_cr(int token, uint16_t opcode, const Operand *rd, const Operand *rs2)
{
if (rd->type != OP_REG) {
tcc_error("'%s': Expected destination operand that is a register", get_tok_str(token, NULL));
}
if (rs2->type != OP_REG) {
tcc_error("'%s': Expected source operand that is a register", get_tok_str(token, NULL));
}
/* CR-type instruction:
15...12 funct4
11..7 rd/rs1
6...2 rs2
1...0 opcode */
gen_le16(opcode | C_ENCODE_RS1(rd->reg) | C_ENCODE_RS2(rs2->reg));
}
/* caller: Add funct3 into opcode */
static void asm_emit_cs(int token, uint16_t opcode, const Operand *rs2, const Operand *rs1, const Operand *imm)
{
uint32_t offset;
uint8_t base, src;
if (rs2->type != OP_REG) {
tcc_error("'%s': Expected destination operand that is a register", get_tok_str(token, NULL));
}
if (rs1->type != OP_REG) {
tcc_error("'%s': Expected source operand that is a register", get_tok_str(token, NULL));
}
if (imm->type != OP_IM12S && imm->type != OP_IM32) {
tcc_error("'%s': Expected source operand that is an immediate value", get_tok_str(token, NULL));
}
base = rs1->reg - 8;
src = rs2->reg - 8;
if (base > 7) {
tcc_error("'%s': Expected destination operand that is a valid C-extension register", get_tok_str(token, NULL));
}
if (src > 7) {
tcc_error("'%s': Expected source operand that is a valid C-extension register", get_tok_str(token, NULL));
}
offset = imm->e.v;
if (offset > 0xff) {
tcc_error("'%s': Expected source operand that is an immediate value between 0 and 0xff", get_tok_str(token, NULL));
}
if (offset & 3) {
tcc_error("'%s': Expected source operand that is an immediate value divisible by 4", get_tok_str(token, NULL));
}
/* CS-type instruction:
15...13 funct3
12...10 imm
9...7 rs1'
6...5 imm
4...2 rs2'
1...0 opcode */
switch (token) {
/* imm variant 1 */
case TOK_ASM_c_fsw:
case TOK_ASM_c_sw:
gen_le16(opcode | C_ENCODE_RS2(base) | C_ENCODE_RS1(src) | (NTH_BIT(offset, 6) << 5) | (NTH_BIT(offset, 2) << 6) | (((offset >> 3) & 7) << 10));
return;
/* imm variant 2 */
case TOK_ASM_c_fsd:
case TOK_ASM_c_sd:
gen_le16(opcode | C_ENCODE_RS2(base) | C_ENCODE_RS1(src) | (((offset >> 6) & 3) << 5) | (((offset >> 3) & 7) << 10));
return;
default:
expect("known instruction");
}
}
/* caller: Add funct3 into opcode */
static void asm_emit_css(int token, uint16_t opcode, const Operand *rs2, const Operand *imm)
{
uint32_t offset;
if (rs2->type != OP_REG) {
tcc_error("'%s': Expected destination operand that is a register", get_tok_str(token, NULL));
}
if (imm->type != OP_IM12S && imm->type != OP_IM32) {
tcc_error("'%s': Expected source operand that is an immediate value", get_tok_str(token, NULL));
}
offset = imm->e.v;
if (offset > 0xff) {
tcc_error("'%s': Expected source operand that is an immediate value between 0 and 0xff", get_tok_str(token, NULL));
}
if (offset & 3) {
tcc_error("'%s': Expected source operand that is an immediate value divisible by 4", get_tok_str(token, NULL));
}
/* CSS-type instruction:
15...13 funct3
12...7 imm
6...2 rs2
1...0 opcode */
switch (token) {
/* imm variant 1 */
case TOK_ASM_c_fswsp:
case TOK_ASM_c_swsp:
gen_le16(opcode | ENCODE_RS2(rs2->reg) | (((offset >> 6) & 3) << 7) | (((offset >> 2) & 0xf) << 9));
return;
/* imm variant 2 */
case TOK_ASM_c_fsdsp:
case TOK_ASM_c_sdsp:
gen_le16(opcode | ENCODE_RS2(rs2->reg) | (((offset >> 6) & 7) << 7) | (((offset >> 3) & 7) << 10));
return;
default:
expect("known instruction");
}
}
/*************************************************************/
#endif /* ndef TARGET_DEFS_ONLY */