tinycc/riscv64-asm.c
noneofyourbusiness ada17a08eb
riscv64-asm.c: add support for calculating addresses of symbols
add some pseudoinstructions
riscv64-tok.h: add pseudoinstructions from tables 25.{2,3}
2023-12-12 09:44:37 +01:00

1514 lines
45 KiB
C

/*************************************************************/
/*
* RISCV64 assembler for TCC
*
*/
#ifdef TARGET_DEFS_ONLY
#define CONFIG_TCC_ASM
#define NB_ASM_REGS 32
ST_FUNC void g(int c);
ST_FUNC void gen_le16(int c);
ST_FUNC void gen_le32(int c);
/*************************************************************/
#else
/*************************************************************/
#define USING_GLOBALS
#include "tcc.h"
enum {
OPT_REG,
OPT_IM12S,
OPT_IM32,
};
#define C_ENCODE_RS1(register_index) ((register_index) << 7)
#define C_ENCODE_RS2(register_index) ((register_index) << 2)
#define ENCODE_RD(register_index) ((register_index) << 7)
#define ENCODE_RS1(register_index) ((register_index) << 15)
#define ENCODE_RS2(register_index) ((register_index) << 20)
#define NTH_BIT(b, n) ((b >> n) & 1)
#define OP_IM12S (1 << OPT_IM12S)
#define OP_IM32 (1 << OPT_IM32)
#define OP_REG (1 << OPT_REG)
typedef struct Operand {
uint32_t type;
union {
uint8_t reg;
uint16_t regset;
ExprValue e;
};
} Operand;
static void asm_binary_opcode(TCCState* s1, int token);
static void asm_clobber(uint8_t *clobber_regs, const char *str);
static void asm_compute_constraints(ASMOperand *operands, int nb_operands, int nb_outputs, const uint8_t *clobber_regs, int *pout_reg);
static void asm_emit_b(int token, uint32_t opcode, const Operand *rs1, const Operand *rs2, const Operand *imm);
static void asm_emit_i(int token, uint32_t opcode, const Operand *rd, const Operand *rs1, const Operand *rs2);
static void asm_emit_j(int token, uint32_t opcode, const Operand *rd, const Operand *rs2);
static void asm_emit_opcode(uint32_t opcode);
static void asm_emit_r(int token, uint32_t opcode, const Operand *rd, const Operand *rs1, const Operand *rs2);
static void asm_emit_s(int token, uint32_t opcode, const Operand *rs1, const Operand *rs2, const Operand *imm);
static void asm_emit_u(int token, uint32_t opcode, const Operand *rd, const Operand *rs2);
static void asm_gen_code(ASMOperand *operands, int nb_operands, int nb_outputs, int is_output, uint8_t *clobber_regs, int out_reg);
static void asm_nullary_opcode(TCCState *s1, int token);
static void asm_opcode(TCCState *s1, int token);
static int asm_parse_csrvar(int t);
static int asm_parse_regvar(int t);
static void asm_ternary_opcode(TCCState *s1, int token);
static void asm_unary_opcode(TCCState *s1, int token);
static void gen_expr32(ExprValue *pe);
static void parse_operand(TCCState *s1, Operand *op);
static void subst_asm_operand(CString *add_str, SValue *sv, int modifier);
/* C extension */
static void asm_emit_ca(int token, uint16_t opcode, const Operand *rd, const Operand *rs2);
static void asm_emit_cb(int token, uint16_t opcode, const Operand *rs1, const Operand *imm);
static void asm_emit_ci(int token, uint16_t opcode, const Operand *rd, const Operand *imm);
static void asm_emit_ciw(int token, uint16_t opcode, const Operand *rd, const Operand *imm);
static void asm_emit_cj(int token, uint16_t opcode, const Operand *imm);
static void asm_emit_cl(int token, uint16_t opcode, const Operand *rd, const Operand *rs1, const Operand *imm);
static void asm_emit_cr(int token, uint16_t opcode, const Operand *rd, const Operand *rs2);
static void asm_emit_cs(int token, uint16_t opcode, const Operand *rs2, const Operand *rs1, const Operand *imm);
static void asm_emit_css(int token, uint16_t opcode, const Operand *rs2, const Operand *imm);
/* XXX: make it faster ? */
ST_FUNC void g(int c)
{
int ind1;
if (nocode_wanted)
return;
ind1 = ind + 1;
if (ind1 > cur_text_section->data_allocated)
section_realloc(cur_text_section, ind1);
cur_text_section->data[ind] = c;
ind = ind1;
}
ST_FUNC void gen_le16 (int i)
{
g(i);
g(i>>8);
}
ST_FUNC void gen_le32 (int i)
{
int ind1;
if (nocode_wanted)
return;
ind1 = ind + 4;
if (ind1 > cur_text_section->data_allocated)
section_realloc(cur_text_section, ind1);
cur_text_section->data[ind++] = i & 0xFF;
cur_text_section->data[ind++] = (i >> 8) & 0xFF;
cur_text_section->data[ind++] = (i >> 16) & 0xFF;
cur_text_section->data[ind++] = (i >> 24) & 0xFF;
}
ST_FUNC void gen_expr32(ExprValue *pe)
{
gen_le32(pe->v);
}
static void asm_emit_opcode(uint32_t opcode) {
gen_le32(opcode);
}
static void asm_nullary_opcode(TCCState *s1, int token)
{
static const Operand nil = {.type = OP_REG};
static const Operand zimm = {.type = OP_IM12S};
switch (token) {
// Sync instructions
case TOK_ASM_fence: // I
asm_emit_opcode((0x3 << 2) | 3 | (0 << 12));
return;
case TOK_ASM_fence_i: // I
asm_emit_opcode((0x3 << 2) | 3| (1 << 12));
return;
// System calls
case TOK_ASM_ecall: // I (pseudo)
asm_emit_opcode((0x1C << 2) | 3 | (0 << 12));
return;
case TOK_ASM_ebreak: // I (pseudo)
asm_emit_opcode((0x1C << 2) | 3 | (0 << 12) | (1 << 20));
return;
// Other
case TOK_ASM_nop:
asm_emit_i(token, (4 << 2) | 3, &nil, &nil, &zimm);
return;
case TOK_ASM_wfi:
asm_emit_opcode((0x1C << 2) | 3 | (0x105 << 20));
return;
/* C extension */
case TOK_ASM_c_ebreak:
asm_emit_cr(token, 2 | (9 << 12), &nil, &nil);
return;
case TOK_ASM_c_nop:
asm_emit_ci(token, 1, &nil, &zimm);
return;
default:
expect("nullary instruction");
}
}
/* Parse a text containing operand and store the result in OP */
static void parse_operand(TCCState *s1, Operand *op)
{
ExprValue e = {0};
Sym label = {0};
int8_t reg;
op->type = 0;
if ((reg = asm_parse_regvar(tok)) != -1) {
next(); // skip register name
op->type = OP_REG;
op->reg = (uint8_t) reg;
return;
} else if (tok == '$') {
/* constant value */
next(); // skip '#' or '$'
} else if ((e.v = asm_parse_csrvar(tok)) != -1) {
next();
} else {
asm_expr(s1, &e);
}
op->type = OP_IM32;
op->e = e;
/* compare against unsigned 12-bit maximum */
if (!op->e.sym) {
if (op->e.v < 0x1000)
op->type = OP_IM12S;
} else if (op->e.sym->type.t & (VT_EXTERN | VT_STATIC)) {
label.type.t = VT_VOID | VT_STATIC;
/* use the medium PIC model: GOT, auipc, lw */
if (op->e.sym->type.t & VT_STATIC)
greloca(cur_text_section, op->e.sym, ind, R_RISCV_PCREL_HI20, 0);
else
greloca(cur_text_section, op->e.sym, ind, R_RISCV_GOT_HI20, 0);
put_extern_sym(&label, cur_text_section, ind, 0);
greloca(cur_text_section, &label, ind+4, R_RISCV_PCREL_LO12_I, 0);
op->type = OP_IM12S;
op->e.v = 0;
} else {
expect("operand");
}
}
static void asm_unary_opcode(TCCState *s1, int token)
{
uint32_t opcode = (0x1C << 2) | 3 | (2 << 12);
Operand op;
static const Operand nil = {.type = OP_REG};
parse_operand(s1, &op);
/* Note: Those all map to CSR--so they are pseudo-instructions. */
opcode |= ENCODE_RD(op.reg);
switch (token) {
/* pseudoinstructions */
case TOK_ASM_rdcycle:
asm_emit_opcode(opcode | (0xC00 << 20));
return;
case TOK_ASM_rdcycleh:
asm_emit_opcode(opcode | (0xC80 << 20));
return;
case TOK_ASM_rdtime:
asm_emit_opcode(opcode | (0xC01 << 20) | ENCODE_RD(op.reg));
return;
case TOK_ASM_rdtimeh:
asm_emit_opcode(opcode | (0xC81 << 20) | ENCODE_RD(op.reg));
return;
case TOK_ASM_rdinstret:
asm_emit_opcode(opcode | (0xC02 << 20) | ENCODE_RD(op.reg));
return;
case TOK_ASM_rdinstreth:
asm_emit_opcode(opcode | (0xC82 << 20) | ENCODE_RD(op.reg));
return;
/* C extension */
case TOK_ASM_c_j:
asm_emit_cj(token, 1 | (5 << 13), &op);
return;
case TOK_ASM_c_jal: /* RV32C-only */
asm_emit_cj(token, 1 | (1 << 13), &op);
return;
case TOK_ASM_c_jalr:
asm_emit_cr(token, 2 | (9 << 12), &op, &nil);
return;
case TOK_ASM_c_jr:
asm_emit_cr(token, 2 | (8 << 12), &op, &nil);
return;
default:
expect("unary instruction");
}
}
static void asm_emit_u(int token, uint32_t opcode, const Operand* rd, const Operand* rs2)
{
if (rd->type != OP_REG) {
tcc_error("'%s': Expected destination operand that is a register", get_tok_str(token, NULL));
return;
}
if (rs2->type != OP_IM12S && rs2->type != OP_IM32) {
tcc_error("'%s': Expected second source operand that is an immediate value", get_tok_str(token, NULL));
return;
} else if (rs2->e.v >= 0x100000) {
tcc_error("'%s': Expected second source operand that is an immediate value between 0 and 0xfffff", get_tok_str(token, NULL));
return;
}
/* U-type instruction:
31...12 imm[31:12]
11...7 rd
6...0 opcode */
gen_le32(opcode | ENCODE_RD(rd->reg) | (rs2->e.v << 12));
}
static void asm_binary_opcode(TCCState* s1, int token)
{
Operand ops[2];
parse_operand(s1, &ops[0]);
if (tok == ',')
next();
else
expect("','");
parse_operand(s1, &ops[1]);
switch (token) {
case TOK_ASM_lui:
asm_emit_u(token, (0xD << 2) | 3, &ops[0], &ops[1]);
return;
case TOK_ASM_auipc:
asm_emit_u(token, (0x05 << 2) | 3, &ops[0], &ops[1]);
return;
case TOK_ASM_jal:
asm_emit_j(token, 0x6f, ops, ops + 1);
return;
/* C extension */
case TOK_ASM_c_add:
asm_emit_cr(token, 2 | (9 << 12), ops, ops + 1);
return;
case TOK_ASM_c_mv:
asm_emit_cr(token, 2 | (8 << 12), ops, ops + 1);
return;
case TOK_ASM_c_addi16sp:
asm_emit_ci(token, 1 | (3 << 13), ops, ops + 1);
return;
case TOK_ASM_c_addi:
asm_emit_ci(token, 1, ops, ops + 1);
return;
case TOK_ASM_c_addiw:
asm_emit_ci(token, 1 | (1 << 13), ops, ops + 1);
return;
case TOK_ASM_c_fldsp:
asm_emit_ci(token, 2 | (1 << 13), ops, ops + 1);
return;
case TOK_ASM_c_flwsp: /* RV32FC-only */
asm_emit_ci(token, 2 | (3 << 13), ops, ops + 1);
return;
case TOK_ASM_c_ldsp:
asm_emit_ci(token, 2 | (3 << 13), ops, ops + 1);
return;
case TOK_ASM_c_li:
asm_emit_ci(token, 1 | (2 << 13), ops, ops + 1);
return;
case TOK_ASM_c_lui:
asm_emit_ci(token, 1 | (3 << 13), ops, ops + 1);
return;
case TOK_ASM_c_lwsp:
asm_emit_ci(token, 2 | (2 << 13), ops, ops + 1);
return;
case TOK_ASM_c_slli:
asm_emit_ci(token, 2, ops, ops + 1);
return;
case TOK_ASM_c_addi4spn:
asm_emit_ciw(token, 0, ops, ops + 1);
return;
#define CA (1 | (3 << 10) | (4 << 13))
case TOK_ASM_c_addw:
asm_emit_ca(token, CA | (1 << 5) | (1 << 12), ops, ops + 1);
return;
case TOK_ASM_c_and:
asm_emit_ca(token, CA | (3 << 5), ops, ops + 1);
return;
case TOK_ASM_c_or:
asm_emit_ca(token, CA | (2 << 5), ops, ops + 1);
return;
case TOK_ASM_c_sub:
asm_emit_ca(token, CA, ops, ops + 1);
return;
case TOK_ASM_c_subw:
asm_emit_ca(token, CA | (1 << 12), ops, ops + 1);
return;
case TOK_ASM_c_xor:
asm_emit_ca(token, CA | (1 << 5), ops, ops + 1);
return;
#undef CA
case TOK_ASM_c_andi:
asm_emit_cb(token, 1 | (2 << 10) | (4 << 13), ops, ops + 1);
return;
case TOK_ASM_c_beqz:
asm_emit_cb(token, 1 | (6 << 13), ops, ops + 1);
return;
case TOK_ASM_c_bnez:
asm_emit_cb(token, 1 | (7 << 13), ops, ops + 1);
return;
case TOK_ASM_c_srai:
asm_emit_cb(token, 1 | (1 << 10) | (4 << 13), ops, ops + 1);
return;
case TOK_ASM_c_srli:
asm_emit_cb(token, 1 | (4 << 13), ops, ops + 1);
return;
case TOK_ASM_c_sdsp:
asm_emit_css(token, 2 | (7 << 13), ops, ops + 1);
return;
case TOK_ASM_c_swsp:
asm_emit_css(token, 2 | (6 << 13), ops, ops + 1);
return;
case TOK_ASM_c_fswsp: /* RV32FC-only */
asm_emit_css(token, 2 | (7 << 13), ops, ops + 1);
return;
case TOK_ASM_c_fsdsp:
asm_emit_css(token, 2 | (5 << 13), ops, ops + 1);
return;
/* pseudoinstructions */
/* rd, sym */
case TOK_ASM_la:
/* auipc rd, 0 */
asm_emit_u(token, 3 | (5 << 2), ops, ops + 1);
/* lw rd, rd, 0 */
asm_emit_i(token, 3 | (2 << 12), ops, ops, ops + 1);
return;
case TOK_ASM_lla:
/* auipc rd, 0 */
asm_emit_u(token, 3 | (5 << 2), ops, ops + 1);
/* addi rd, rd, 0 */
asm_emit_i(token, 3 | (4 << 2), ops, ops, ops + 1);
return;
default:
expect("binary instruction");
}
}
/* caller: Add funct3, funct7 into opcode */
static void asm_emit_r(int token, uint32_t opcode, const Operand* rd, const Operand* rs1, const Operand* rs2)
{
if (rd->type != OP_REG) {
tcc_error("'%s': Expected destination operand that is a register", get_tok_str(token, NULL));
return;
}
if (rs1->type != OP_REG) {
tcc_error("'%s': Expected first source operand that is a register", get_tok_str(token, NULL));
return;
}
if (rs2->type != OP_REG) {
tcc_error("'%s': Expected second source operand that is a register or immediate", get_tok_str(token, NULL));
return;
}
/* R-type instruction:
31...25 funct7
24...20 rs2
19...15 rs1
14...12 funct3
11...7 rd
6...0 opcode */
gen_le32(opcode | ENCODE_RD(rd->reg) | ENCODE_RS1(rs1->reg) | ENCODE_RS2(rs2->reg));
}
/* caller: Add funct3 into opcode */
static void asm_emit_i(int token, uint32_t opcode, const Operand* rd, const Operand* rs1, const Operand* rs2)
{
if (rd->type != OP_REG) {
tcc_error("'%s': Expected destination operand that is a register", get_tok_str(token, NULL));
return;
}
if (rs1->type != OP_REG) {
tcc_error("'%s': Expected first source operand that is a register", get_tok_str(token, NULL));
return;
}
if (rs2->type != OP_IM12S) {
tcc_error("'%s': Expected second source operand that is an immediate value between 0 and 8191", get_tok_str(token, NULL));
return;
}
/* I-type instruction:
31...20 imm[11:0]
19...15 rs1
14...12 funct3
11...7 rd
6...0 opcode */
gen_le32(opcode | ENCODE_RD(rd->reg) | ENCODE_RS1(rs1->reg) | (rs2->e.v << 20));
}
static void asm_emit_j(int token, uint32_t opcode, const Operand* rd, const Operand* rs2)
{
uint32_t imm;
if (rd->type != OP_REG) {
tcc_error("'%s': Expected destination operand that is a register", get_tok_str(token, NULL));
return;
}
if (rs2->type != OP_IM12S && rs2->type != OP_IM32) {
tcc_error("'%s': Expected second source operand that is an immediate value", get_tok_str(token, NULL));
return;
}
imm = rs2->e.v;
/* even offsets in a +- 1 MiB range */
if (imm > 0x1ffffe) {
tcc_error("'%s': Expected second source operand that is an immediate value between 0 and 0x1fffff", get_tok_str(token, NULL));
return;
}
if (imm & 1) {
tcc_error("'%s': Expected second source operand that is an even immediate value", get_tok_str(token, NULL));
return;
}
/* J-type instruction:
31 imm[20]
30...21 imm[10:1]
20 imm[11]
19...12 imm[19:12]
11...7 rd
6...0 opcode */
gen_le32(opcode | ENCODE_RD(rd->reg) | (((imm >> 20) & 1) << 31) | (((imm >> 1) & 0x3ff) << 21) | (((imm >> 11) & 1) << 20) | (((imm >> 12) & 0xff) << 12));
}
static void asm_ternary_opcode(TCCState *s1, int token)
{
Operand ops[3];
parse_operand(s1, &ops[0]);
if (tok == ',')
next();
else
expect("','");
parse_operand(s1, &ops[1]);
if (tok == ',')
next();
else
expect("','");
parse_operand(s1, &ops[2]);
switch (token) {
case TOK_ASM_sll:
asm_emit_r(token, (0xC << 2) | 3 | (1 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_slli:
asm_emit_i(token, (4 << 2) | 3 | (1 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_srl:
asm_emit_r(token, (0xC << 2) | 3 | (4 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_srli:
asm_emit_i(token, (0x4 << 2) | 3 | (5 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_sra:
asm_emit_r(token, (0xC << 2) | 3 | (5 << 12) | (32 << 25), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_srai:
asm_emit_i(token, (0x4 << 2) | 3 | (5 << 12) | (16 << 26), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_sllw:
asm_emit_r(token, (0xE << 2) | 3 | (1 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_slliw:
asm_emit_i(token, (6 << 2) | 3 | (1 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_srlw:
asm_emit_r(token, (0xE << 2) | 3 | (5 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_srliw:
asm_emit_i(token, (0x6 << 2) | 3 | (5 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_sraw:
asm_emit_r(token, (0xE << 2) | 3 | (5 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_sraiw:
asm_emit_i(token, (0x6 << 2) | 3 | (5 << 12), &ops[0], &ops[1], &ops[2]);
return;
// Arithmetic (RD,RS1,(RS2|IMM)); R-format, I-format or U-format
case TOK_ASM_add:
asm_emit_r(token, (0xC << 2) | 3, &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_addi:
asm_emit_i(token, (4 << 2) | 3, &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_sub:
asm_emit_r(token, (0xC << 2) | 3 | (32 << 25), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_addw:
asm_emit_r(token, (0xE << 2) | 3 | (0 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_addiw: // 64 bit
asm_emit_i(token, (0x6 << 2) | 3 | (0 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_subw:
asm_emit_r(token, (0xE << 2) | 3 | (0 << 12) | (32 << 25), &ops[0], &ops[1], &ops[2]);
return;
// Logical (RD,RS1,(RS2|IMM)); R-format or I-format
case TOK_ASM_xor:
asm_emit_r(token, (0xC << 2) | 3 | (4 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_xori:
asm_emit_i(token, (0x4 << 2) | 3 | (4 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_or:
asm_emit_r(token, (0xC << 2) | 3 | (6 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_ori:
asm_emit_i(token, (0x4 << 2) | 3 | (6 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_and:
asm_emit_r(token, (0xC << 2) | 3 | (7 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_andi:
asm_emit_i(token, (0x4 << 2) | 3 | (7 << 12), &ops[0], &ops[1], &ops[2]);
return;
// Compare (RD,RS1,(RS2|IMM)); R-format or I-format
case TOK_ASM_slt:
asm_emit_r(token, (0xC << 2) | 3 | (2 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_slti:
asm_emit_i(token, (0x4 << 2) | 3 | (2 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_sltu:
asm_emit_r(token, (0xC << 2) | 3 | (3 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_sltiu:
asm_emit_i(token, (0x4 << 2) | 3 | (3 << 12), &ops[0], &ops[1], &ops[2]);
return;
/* indirect jump (RD, RS1, IMM); I-format */
case TOK_ASM_jalr:
asm_emit_i(token, 0x67 | (0 << 12), ops, ops + 1, ops + 2);
return;
/* branch (RS1, RS2, IMM); B-format */
case TOK_ASM_beq:
asm_emit_b(token, 0x63 | (0 << 12), ops, ops + 1, ops + 2);
return;
case TOK_ASM_bne:
asm_emit_b(token, 0x63 | (1 << 12), ops, ops + 1, ops + 2);
return;
case TOK_ASM_blt:
asm_emit_b(token, 0x63 | (4 << 12), ops, ops + 1, ops + 2);
return;
case TOK_ASM_bge:
asm_emit_b(token, 0x63 | (5 << 12), ops, ops + 1, ops + 2);
return;
case TOK_ASM_bltu:
asm_emit_b(token, 0x63 | (6 << 12), ops, ops + 1, ops + 2);
return;
case TOK_ASM_bgeu:
asm_emit_b(token, 0x63 | (7 << 12), ops, ops + 1, ops + 2);
return;
// Loads (RD,RS1,I); I-format
case TOK_ASM_lb:
asm_emit_i(token, (0x0 << 2) | 3, &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_lh:
asm_emit_i(token, (0x0 << 2) | 3 | (1 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_lw:
asm_emit_i(token, (0x0 << 2) | 3 | (2 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_lbu:
asm_emit_i(token, (0x0 << 2) | 3 | (4 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_lhu:
asm_emit_i(token, (0x0 << 2) | 3 | (5 << 12), &ops[0], &ops[1], &ops[2]);
return;
// 64 bit
case TOK_ASM_ld:
asm_emit_i(token, (0x0 << 2) | 3 | (3 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_lwu:
asm_emit_i(token, (0x0 << 2) | 3 | (6 << 12), &ops[0], &ops[1], &ops[2]);
return;
// Stores (RS1,RS2,I); S-format
case TOK_ASM_sb:
asm_emit_s(token, (0x8 << 2) | 3 | (0 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_sh:
asm_emit_s(token, (0x8 << 2) | 3 | (1 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_sw:
asm_emit_s(token, (0x8 << 2) | 3 | (2 << 12), &ops[0], &ops[1], &ops[2]);
return;
case TOK_ASM_sd:
asm_emit_s(token, (0x8 << 2) | 3 | (3 << 12), &ops[0], &ops[1], &ops[2]);
return;
/* M extension */
case TOK_ASM_div:
asm_emit_r(token, 0x33 | (4 << 12) | (1 << 25), ops, ops + 1, ops + 2);
return;
case TOK_ASM_divu:
asm_emit_r(token, 0x33 | (5 << 12) | (1 << 25), ops, ops + 1, ops + 2);
return;
case TOK_ASM_divuw:
asm_emit_r(token, 0x3b | (5 << 12) | (1 << 25), ops, ops + 1, ops + 2);
return;
case TOK_ASM_divw:
asm_emit_r(token, 0x3b | (4 << 12) | (1 << 25), ops, ops + 1, ops + 2);
return;
case TOK_ASM_mul:
asm_emit_r(token, 0x33 | (1 << 25), ops, ops + 1, ops + 2);
return;
case TOK_ASM_mulh:
asm_emit_r(token, 0x33 | (1 << 12) | (1 << 25), ops, ops + 1, ops + 2);
return;
case TOK_ASM_mulhsu:
asm_emit_r(token, 0x33 | (2 << 12) | (1 << 25), ops, ops + 1, ops + 2);
return;
case TOK_ASM_mulhu:
asm_emit_r(token, 0x33 | (3 << 12) | (1 << 25), ops, ops + 1, ops + 2);
return;
case TOK_ASM_mulw:
asm_emit_r(token, 0x3b | (1 << 25), ops, ops + 1, ops + 2);
return;
case TOK_ASM_rem:
asm_emit_r(token, 0x33 | (6 << 12) | (1 << 25), ops, ops + 1, ops + 2);
return;
case TOK_ASM_remu:
asm_emit_r(token, 0x33 | (7 << 12) | (1 << 25), ops, ops + 1, ops + 2);
return;
case TOK_ASM_remuw:
asm_emit_r(token, 0x3b | (7 << 12) | (1 << 25), ops, ops + 1, ops + 2);
return;
case TOK_ASM_remw:
asm_emit_r(token, 0x3b | (6 << 12) | (1 << 25), ops, ops + 1, ops + 2);
return;
/* Zicsr extension; (rd, csr, rs/uimm) */
case TOK_ASM_csrrc:
asm_emit_i(token, 0x73 | (3 << 12), ops, ops + 2, ops + 1);
return;
case TOK_ASM_csrrci:
/* using rs1 field for uimmm */
ops[2].type = OP_REG;
asm_emit_i(token, 0x73 | (7 << 12), ops, ops + 2, ops + 1);
return;
case TOK_ASM_csrrs:
asm_emit_i(token, 0x73 | (2 << 12), ops, ops + 2, ops + 1);
return;
case TOK_ASM_csrrsi:
ops[2].type = OP_REG;
asm_emit_i(token, 0x73 | (6 << 12), ops, ops + 2, ops + 1);
return;
case TOK_ASM_csrrw:
asm_emit_i(token, 0x73 | (1 << 12), ops, ops + 2, ops + 1);
return;
case TOK_ASM_csrrwi:
ops[2].type = OP_REG;
asm_emit_i(token, 0x73 | (5 << 12), ops, ops + 2, ops + 1);
return;
/* C extension */
/* register-based loads and stores (RD, RS1, IMM); CL-format */
case TOK_ASM_c_fld:
asm_emit_cl(token, 1 << 13, ops, ops + 1, ops + 2);
return;
case TOK_ASM_c_flw: /* RV32FC-only */
asm_emit_cl(token, 3 << 13, ops, ops + 1, ops + 2);
return;
case TOK_ASM_c_fsd:
asm_emit_cs(token, 5 << 13, ops, ops + 1, ops + 2);
return;
case TOK_ASM_c_fsw: /* RV32FC-only */
asm_emit_cs(token, 7 << 13, ops, ops + 1, ops + 2);
return;
case TOK_ASM_c_ld:
asm_emit_cl(token, 3 << 13, ops, ops + 1, ops + 2);
return;
case TOK_ASM_c_lw:
asm_emit_cl(token, 2 << 13, ops, ops + 1, ops + 2);
return;
case TOK_ASM_c_sd:
asm_emit_cs(token, 7 << 13, ops, ops + 1, ops + 2);
return;
case TOK_ASM_c_sw:
asm_emit_cs(token, 6 << 13, ops, ops + 1, ops + 2);
return;
default:
expect("ternary instruction");
}
}
/* caller: Add funct3 to opcode */
static void asm_emit_s(int token, uint32_t opcode, const Operand* rs1, const Operand* rs2, const Operand* imm)
{
if (rs1->type != OP_REG) {
tcc_error("'%s': Expected first source operand that is a register", get_tok_str(token, NULL));
return;
}
if (rs2->type != OP_REG) {
tcc_error("'%s': Expected second source operand that is a register", get_tok_str(token, NULL));
return;
}
if (imm->type != OP_IM12S) {
tcc_error("'%s': Expected third operand that is an immediate value between 0 and 8191", get_tok_str(token, NULL));
return;
}
{
uint16_t v = imm->e.v;
/* S-type instruction:
31...25 imm[11:5]
24...20 rs2
19...15 rs1
14...12 funct3
11...7 imm[4:0]
6...0 opcode
opcode always fixed pos. */
gen_le32(opcode | ENCODE_RS1(rs1->reg) | ENCODE_RS2(rs2->reg) | ((v & 0x1F) << 7) | ((v >> 5) << 25));
}
}
static void asm_emit_b(int token, uint32_t opcode, const Operand *rs1, const Operand *rs2, const Operand *imm)
{
uint32_t offset;
if (rs1->type != OP_REG) {
tcc_error("'%s': Expected first source operand that is a register", get_tok_str(token, NULL));
return;
}
if (rs2->type != OP_REG) {
tcc_error("'%s': Expected destination operand that is a register", get_tok_str(token, NULL));
return;
}
if (imm->type != OP_IM12S) {
tcc_error("'%s': Expected second source operand that is an immediate value between 0 and 8191", get_tok_str(token, NULL));
return;
}
offset = imm->e.v;
/* B-type instruction:
31 imm[12]
30...25 imm[10:5]
24...20 rs2
19...15 rs1
14...12 funct3
8...11 imm[4:1]
7 imm[11]
6...0 opcode */
asm_emit_opcode(opcode | ENCODE_RS1(rs1->reg) | ENCODE_RS2(rs2->reg) | (((offset >> 1) & 0xF) << 8) | (((offset >> 5) & 0x1f) << 25) | (((offset >> 11) & 1) << 7) | (((offset >> 12) & 1) << 31));
}
ST_FUNC void asm_opcode(TCCState *s1, int token)
{
switch (token) {
case TOK_ASM_ebreak:
case TOK_ASM_ecall:
case TOK_ASM_fence:
case TOK_ASM_fence_i:
case TOK_ASM_hrts:
case TOK_ASM_mrth:
case TOK_ASM_mrts:
case TOK_ASM_wfi:
asm_nullary_opcode(s1, token);
return;
case TOK_ASM_rdcycle:
case TOK_ASM_rdcycleh:
case TOK_ASM_rdtime:
case TOK_ASM_rdtimeh:
case TOK_ASM_rdinstret:
case TOK_ASM_rdinstreth:
asm_unary_opcode(s1, token);
return;
case TOK_ASM_lui:
case TOK_ASM_auipc:
case TOK_ASM_jal:
asm_binary_opcode(s1, token);
return;
case TOK_ASM_add:
case TOK_ASM_addi:
case TOK_ASM_addiw:
case TOK_ASM_addw:
case TOK_ASM_and:
case TOK_ASM_andi:
case TOK_ASM_beq:
case TOK_ASM_bge:
case TOK_ASM_bgeu:
case TOK_ASM_blt:
case TOK_ASM_bltu:
case TOK_ASM_bne:
case TOK_ASM_jalr:
case TOK_ASM_lb:
case TOK_ASM_lbu:
case TOK_ASM_ld:
case TOK_ASM_lh:
case TOK_ASM_lhu:
case TOK_ASM_lw:
case TOK_ASM_lwu:
case TOK_ASM_or:
case TOK_ASM_ori:
case TOK_ASM_sb:
case TOK_ASM_sd:
case TOK_ASM_sh:
case TOK_ASM_sll:
case TOK_ASM_slli:
case TOK_ASM_slliw:
case TOK_ASM_sllw:
case TOK_ASM_slt:
case TOK_ASM_slti:
case TOK_ASM_sltiu:
case TOK_ASM_sltu:
case TOK_ASM_sra:
case TOK_ASM_srai:
case TOK_ASM_sraiw:
case TOK_ASM_sraw:
case TOK_ASM_srl:
case TOK_ASM_srli:
case TOK_ASM_srliw:
case TOK_ASM_srlw:
case TOK_ASM_sub:
case TOK_ASM_subw:
case TOK_ASM_sw:
case TOK_ASM_xor:
case TOK_ASM_xori:
/* M extension */
case TOK_ASM_div:
case TOK_ASM_divu:
case TOK_ASM_divuw:
case TOK_ASM_divw:
case TOK_ASM_mul:
case TOK_ASM_mulh:
case TOK_ASM_mulhsu:
case TOK_ASM_mulhu:
case TOK_ASM_mulw:
case TOK_ASM_rem:
case TOK_ASM_remu:
case TOK_ASM_remuw:
case TOK_ASM_remw:
/* Zicsr extension */
case TOK_ASM_csrrc:
case TOK_ASM_csrrci:
case TOK_ASM_csrrs:
case TOK_ASM_csrrsi:
case TOK_ASM_csrrw:
case TOK_ASM_csrrwi:
asm_ternary_opcode(s1, token);
return;
/* C extension */
case TOK_ASM_c_ebreak:
case TOK_ASM_c_nop:
asm_nullary_opcode(s1, token);
return;
case TOK_ASM_c_j:
case TOK_ASM_c_jal:
case TOK_ASM_c_jalr:
case TOK_ASM_c_jr:
asm_unary_opcode(s1, token);
return;
case TOK_ASM_c_add:
case TOK_ASM_c_addi16sp:
case TOK_ASM_c_addi4spn:
case TOK_ASM_c_addi:
case TOK_ASM_c_addiw:
case TOK_ASM_c_addw:
case TOK_ASM_c_and:
case TOK_ASM_c_andi:
case TOK_ASM_c_beqz:
case TOK_ASM_c_bnez:
case TOK_ASM_c_fldsp:
case TOK_ASM_c_flwsp:
case TOK_ASM_c_fsdsp:
case TOK_ASM_c_fswsp:
case TOK_ASM_c_ldsp:
case TOK_ASM_c_li:
case TOK_ASM_c_lui:
case TOK_ASM_c_lwsp:
case TOK_ASM_c_mv:
case TOK_ASM_c_or:
case TOK_ASM_c_sdsp:
case TOK_ASM_c_slli:
case TOK_ASM_c_srai:
case TOK_ASM_c_srli:
case TOK_ASM_c_sub:
case TOK_ASM_c_subw:
case TOK_ASM_c_swsp:
case TOK_ASM_c_xor:
asm_binary_opcode(s1, token);
return;
case TOK_ASM_c_fld:
case TOK_ASM_c_flw:
case TOK_ASM_c_fsd:
case TOK_ASM_c_fsw:
case TOK_ASM_c_ld:
case TOK_ASM_c_lw:
case TOK_ASM_c_sd:
case TOK_ASM_c_sw:
asm_ternary_opcode(s1, token);
return;
/* pseudoinstructions */
case TOK_ASM_nop:
asm_nullary_opcode(s1, token);
return;
case TOK_ASM_la:
case TOK_ASM_lla:
asm_binary_opcode(s1, token);
return;
default:
expect("known instruction");
}
}
static int asm_parse_csrvar(int t)
{
switch (t) {
case TOK_ASM_cycle:
return 0xc00;
case TOK_ASM_fcsr:
return 3;
case TOK_ASM_fflags:
return 1;
case TOK_ASM_frm:
return 2;
case TOK_ASM_instret:
return 0xc02;
case TOK_ASM_time:
return 0xc01;
case TOK_ASM_cycleh:
return 0xc80;
case TOK_ASM_instreth:
return 0xc82;
case TOK_ASM_timeh:
return 0xc81;
default:
return -1;
}
}
ST_FUNC void subst_asm_operand(CString *add_str, SValue *sv, int modifier)
{
tcc_error("RISCV64 asm not implemented.");
}
/* generate prolog and epilog code for asm statement */
ST_FUNC void asm_gen_code(ASMOperand *operands, int nb_operands,
int nb_outputs, int is_output,
uint8_t *clobber_regs,
int out_reg)
{
}
ST_FUNC void asm_compute_constraints(ASMOperand *operands,
int nb_operands, int nb_outputs,
const uint8_t *clobber_regs,
int *pout_reg)
{
}
ST_FUNC void asm_clobber(uint8_t *clobber_regs, const char *str)
{
int reg;
TokenSym *ts;
if (!strcmp(str, "memory") ||
!strcmp(str, "cc") ||
!strcmp(str, "flags"))
return;
ts = tok_alloc(str, strlen(str));
reg = asm_parse_regvar(ts->tok);
if (reg == -1) {
tcc_error("invalid clobber register '%s'", str);
}
clobber_regs[reg] = 1;
}
ST_FUNC int asm_parse_regvar (int t)
{
/* PC register not implemented */
if (t >= TOK_ASM_pc || t < TOK_ASM_x0)
return -1;
if (t < TOK_ASM_f0)
return t - TOK_ASM_x0;
if (t < TOK_ASM_zero)
return t - TOK_ASM_f0;
/* ABI mnemonic */
if (t < TOK_ASM_ft0)
return t - TOK_ASM_zero;
return t - TOK_ASM_ft0;
}
/*************************************************************/
/* C extension */
/* caller: Add funct6, funct2 into opcode */
static void asm_emit_ca(int token, uint16_t opcode, const Operand *rd, const Operand *rs2)
{
uint8_t dst, src;
if (rd->type != OP_REG) {
tcc_error("'%s': Expected destination operand that is a register", get_tok_str(token, NULL));
return;
}
if (rs2->type != OP_REG) {
tcc_error("'%s': Expected source operand that is a register", get_tok_str(token, NULL));
return;
}
/* subtract index of x8 */
dst = rd->reg - 8;
src = rs2->reg - 8;
/* only registers {x,f}8 to {x,f}15 are valid (3-bit) */
if (dst > 7) {
tcc_error("'%s': Expected destination operand that is a valid C-extension register", get_tok_str(token, NULL));
return;
}
if (src > 7) {
tcc_error("'%s': Expected source operand that is a valid C-extension register", get_tok_str(token, NULL));
return;
}
/* CA-type instruction:
15...10 funct6
9...7 rd'/rs1'
6..5 funct2
4...2 rs2'
1...0 opcode */
gen_le16(opcode | C_ENCODE_RS2(src) | C_ENCODE_RS1(dst));
}
static void asm_emit_cb(int token, uint16_t opcode, const Operand *rs1, const Operand *imm)
{
uint32_t offset;
uint8_t dst, src;
if (rs1->type != OP_REG) {
tcc_error("'%s': Expected source operand that is a register", get_tok_str(token, NULL));
return;
}
if (imm->type != OP_IM12S && imm->type != OP_IM32) {
tcc_error("'%s': Expected source operand that is an immediate value", get_tok_str(token, NULL));
return;
}
offset = imm->e.v;
if (offset & 1) {
tcc_error("'%s': Expected source operand that is an even immediate value", get_tok_str(token, NULL));
return;
}
src = rs1->reg - 8;
if (src > 7) {
tcc_error("'%s': Expected source operand that is a valid C-extension register", get_tok_str(token, NULL));
return;
}
/* CB-type instruction:
15...13 funct3
12...10 offset
9..7 rs1'
6...2 offset
1...0 opcode */
/* non-branch also using CB:
15...13 funct3
12 imm
11..10 funct2
9...7 rd'/rs1'
6..2 imm
1...0 opcode */
switch (token) {
case TOK_ASM_c_beqz:
case TOK_ASM_c_bnez:
gen_le16(opcode | C_ENCODE_RS1(src) | ((NTH_BIT(offset, 5) | (((offset >> 1) & 3) << 1) | (((offset >> 6) & 3) << 3)) << 2) | ((((offset >> 3) & 3) | NTH_BIT(offset, 8)) << 10));
return;
default:
gen_le16(opcode | C_ENCODE_RS1(src) | ((offset & 0x1f) << 2) | (NTH_BIT(offset, 5) << 12));
return;
}
}
static void asm_emit_ci(int token, uint16_t opcode, const Operand *rd, const Operand *imm)
{
uint32_t immediate;
if (rd->type != OP_REG) {
tcc_error("'%s': Expected destination operand that is a register", get_tok_str(token, NULL));
return;
}
if (imm->type != OP_IM12S && imm->type != OP_IM32) {
tcc_error("'%s': Expected source operand that is an immediate value", get_tok_str(token, NULL));
return;
}
immediate = imm->e.v;
/* CI-type instruction:
15...13 funct3
12 imm
11...7 rd/rs1
6...2 imm
1...0 opcode */
switch (token) {
case TOK_ASM_c_addi:
case TOK_ASM_c_addiw:
case TOK_ASM_c_li:
case TOK_ASM_c_slli:
gen_le16(opcode | ((immediate & 0x1f) << 2) | ENCODE_RD(rd->reg) | (NTH_BIT(immediate, 5) << 12));
return;
case TOK_ASM_c_addi16sp:
gen_le16(opcode | NTH_BIT(immediate, 5) << 2 | (((immediate >> 7) & 3) << 3) | NTH_BIT(immediate, 6) << 5 | NTH_BIT(immediate, 4) << 6 | ENCODE_RD(rd->reg) | (NTH_BIT(immediate, 9) << 12));
return;
case TOK_ASM_c_lui:
gen_le16(opcode | (((immediate >> 12) & 0x1f) << 2) | ENCODE_RD(rd->reg) | (NTH_BIT(immediate, 17) << 12));
return;
case TOK_ASM_c_fldsp:
case TOK_ASM_c_ldsp:
gen_le16(opcode | (((immediate >> 6) & 7) << 2) | (((immediate >> 3) & 2) << 5) | ENCODE_RD(rd->reg) | (NTH_BIT(immediate, 5) << 12));
return;
case TOK_ASM_c_flwsp:
case TOK_ASM_c_lwsp:
gen_le16(opcode | (((immediate >> 6) & 3) << 2) | (((immediate >> 2) & 7) << 4) | ENCODE_RD(rd->reg) | (NTH_BIT(immediate, 5) << 12));
return;
case TOK_ASM_c_nop:
gen_le16(opcode);
return;
default:
expect("known instruction");
}
}
/* caller: Add funct3 into opcode */
static void asm_emit_ciw(int token, uint16_t opcode, const Operand *rd, const Operand *imm)
{
uint32_t nzuimm;
uint8_t dst;
if (rd->type != OP_REG) {
tcc_error("'%s': Expected destination operand that is a register", get_tok_str(token, NULL));
return;
}
if (imm->type != OP_IM12S && imm->type != OP_IM32) {
tcc_error("'%s': Expected source operand that is an immediate value", get_tok_str(token, NULL));
return;
}
dst = rd->reg - 8;
if (dst > 7) {
tcc_error("'%s': Expected destination operand that is a valid C-extension register", get_tok_str(token, NULL));
return;
}
nzuimm = imm->e.v;
if (nzuimm > 0x3fc) {
tcc_error("'%s': Expected source operand that is an immediate value between 0 and 0x3ff", get_tok_str(token, NULL));
return;
}
if (nzuimm & 3) {
tcc_error("'%s': Expected source operand that is a non-zero immediate value divisible by 4", get_tok_str(token, NULL));
return;
}
/* CIW-type instruction:
15...13 funct3
12...5 imm
4...2 rd'
1...0 opcode */
gen_le16(opcode | ENCODE_RS2(rd->reg) | ((NTH_BIT(nzuimm, 3) | (NTH_BIT(nzuimm, 2) << 1) | (((nzuimm >> 6) & 0xf) << 2) | (((nzuimm >> 4) & 3) << 6)) << 5));
}
/* caller: Add funct3 into opcode */
static void asm_emit_cj(int token, uint16_t opcode, const Operand *imm)
{
uint32_t offset;
/* +-2 KiB range */
if (imm->type != OP_IM12S) {
tcc_error("'%s': Expected source operand that is a 12-bit immediate value", get_tok_str(token, NULL));
return;
}
offset = imm->e.v;
if (offset & 1) {
tcc_error("'%s': Expected source operand that is an even immediate value", get_tok_str(token, NULL));
return;
}
/* CJ-type instruction:
15...13 funct3
12...2 offset[11|4|9:8|10|6|7|3:1|5]
1...0 opcode */
gen_le16(opcode | (NTH_BIT(offset, 5) << 2) | (((offset >> 1) & 7) << 3) | (NTH_BIT(offset, 7) << 6) | (NTH_BIT(offset, 6) << 7) | (NTH_BIT(offset, 10) << 8) | (((offset >> 8) & 3) << 9) | (NTH_BIT(offset, 4) << 11) | (NTH_BIT(offset, 11) << 12));
}
/* caller: Add funct3 into opcode */
static void asm_emit_cl(int token, uint16_t opcode, const Operand *rd, const Operand *rs1, const Operand *imm)
{
uint32_t offset;
uint8_t dst, src;
if (rd->type != OP_REG) {
tcc_error("'%s': Expected destination operand that is a register", get_tok_str(token, NULL));
return;
}
if (rs1->type != OP_REG) {
tcc_error("'%s': Expected source operand that is a register", get_tok_str(token, NULL));
return;
}
if (imm->type != OP_IM12S && imm->type != OP_IM32) {
tcc_error("'%s': Expected source operand that is an immediate value", get_tok_str(token, NULL));
return;
}
dst = rd->reg - 8;
src = rs1->reg - 8;
if (dst > 7) {
tcc_error("'%s': Expected destination operand that is a valid C-extension register", get_tok_str(token, NULL));
return;
}
if (src > 7) {
tcc_error("'%s': Expected source operand that is a valid C-extension register", get_tok_str(token, NULL));
return;
}
offset = imm->e.v;
if (offset > 0xff) {
tcc_error("'%s': Expected source operand that is an immediate value between 0 and 0xff", get_tok_str(token, NULL));
return;
}
if (offset & 3) {
tcc_error("'%s': Expected source operand that is an immediate value divisible by 4", get_tok_str(token, NULL));
return;
}
/* CL-type instruction:
15...13 funct3
12...10 imm
9...7 rs1'
6...5 imm
4...2 rd'
1...0 opcode */
switch (token) {
/* imm variant 1 */
case TOK_ASM_c_flw:
case TOK_ASM_c_lw:
gen_le16(opcode | C_ENCODE_RS2(dst) | C_ENCODE_RS1(src) | (NTH_BIT(offset, 6) << 5) | (NTH_BIT(offset, 2) << 6) | (((offset >> 3) & 7) << 10));
return;
/* imm variant 2 */
case TOK_ASM_c_fld:
case TOK_ASM_c_ld:
gen_le16(opcode | C_ENCODE_RS2(dst) | C_ENCODE_RS1(src) | (((offset >> 6) & 3) << 5) | (((offset >> 3) & 7) << 10));
return;
default:
expect("known instruction");
}
}
/* caller: Add funct4 into opcode */
static void asm_emit_cr(int token, uint16_t opcode, const Operand *rd, const Operand *rs2)
{
if (rd->type != OP_REG) {
tcc_error("'%s': Expected destination operand that is a register", get_tok_str(token, NULL));
return;
}
if (rs2->type != OP_REG) {
tcc_error("'%s': Expected source operand that is a register", get_tok_str(token, NULL));
return;
}
/* CR-type instruction:
15...12 funct4
11..7 rd/rs1
6...2 rs2
1...0 opcode */
gen_le16(opcode | C_ENCODE_RS1(rd->reg) | C_ENCODE_RS2(rs2->reg));
}
/* caller: Add funct3 into opcode */
static void asm_emit_cs(int token, uint16_t opcode, const Operand *rs2, const Operand *rs1, const Operand *imm)
{
uint32_t offset;
uint8_t base, src;
if (rs2->type != OP_REG) {
tcc_error("'%s': Expected destination operand that is a register", get_tok_str(token, NULL));
return;
}
if (rs1->type != OP_REG) {
tcc_error("'%s': Expected source operand that is a register", get_tok_str(token, NULL));
return;
}
if (imm->type != OP_IM12S && imm->type != OP_IM32) {
tcc_error("'%s': Expected source operand that is an immediate value", get_tok_str(token, NULL));
return;
}
base = rs1->reg - 8;
src = rs2->reg - 8;
if (base > 7) {
tcc_error("'%s': Expected destination operand that is a valid C-extension register", get_tok_str(token, NULL));
return;
}
if (src > 7) {
tcc_error("'%s': Expected source operand that is a valid C-extension register", get_tok_str(token, NULL));
return;
}
offset = imm->e.v;
if (offset > 0xff) {
tcc_error("'%s': Expected source operand that is an immediate value between 0 and 0xff", get_tok_str(token, NULL));
return;
}
if (offset & 3) {
tcc_error("'%s': Expected source operand that is an immediate value divisible by 4", get_tok_str(token, NULL));
return;
}
/* CS-type instruction:
15...13 funct3
12...10 imm
9...7 rs1'
6...5 imm
4...2 rs2'
1...0 opcode */
switch (token) {
/* imm variant 1 */
case TOK_ASM_c_fsw:
case TOK_ASM_c_sw:
gen_le16(opcode | C_ENCODE_RS2(base) | C_ENCODE_RS1(src) | (NTH_BIT(offset, 6) << 5) | (NTH_BIT(offset, 2) << 6) | (((offset >> 3) & 7) << 10));
return;
/* imm variant 2 */
case TOK_ASM_c_fsd:
case TOK_ASM_c_sd:
gen_le16(opcode | C_ENCODE_RS2(base) | C_ENCODE_RS1(src) | (((offset >> 6) & 3) << 5) | (((offset >> 3) & 7) << 10));
return;
default:
expect("known instruction");
}
}
/* caller: Add funct3 into opcode */
static void asm_emit_css(int token, uint16_t opcode, const Operand *rs2, const Operand *imm)
{
uint32_t offset;
if (rs2->type != OP_REG) {
tcc_error("'%s': Expected destination operand that is a register", get_tok_str(token, NULL));
return;
}
if (imm->type != OP_IM12S && imm->type != OP_IM32) {
tcc_error("'%s': Expected source operand that is an immediate value", get_tok_str(token, NULL));
return;
}
offset = imm->e.v;
if (offset > 0xff) {
tcc_error("'%s': Expected source operand that is an immediate value between 0 and 0xff", get_tok_str(token, NULL));
return;
}
if (offset & 3) {
tcc_error("'%s': Expected source operand that is an immediate value divisible by 4", get_tok_str(token, NULL));
return;
}
/* CSS-type instruction:
15...13 funct3
12...7 imm
6...2 rs2
1...0 opcode */
switch (token) {
/* imm variant 1 */
case TOK_ASM_c_fswsp:
case TOK_ASM_c_swsp:
gen_le16(opcode | ENCODE_RS2(rs2->reg) | (((offset >> 6) & 3) << 7) | (((offset >> 2) & 0xf) << 9));
return;
/* imm variant 2 */
case TOK_ASM_c_fsdsp:
case TOK_ASM_c_sdsp:
gen_le16(opcode | ENCODE_RS2(rs2->reg) | (((offset >> 6) & 7) << 7) | (((offset >> 3) & 7) << 10));
return;
default:
expect("known instruction");
}
}
/*************************************************************/
#endif /* ndef TARGET_DEFS_ONLY */