tinycc/lib/bcheck.c
herman ten brugge 853a498f2c Fix boundschecking for signal/sigaction/fork
The BOUNDS_CHECKING_ON/BOUNDS_CHECKING_OFF is not working for
signal/sigaction/fork. The reason is that the code stops bound checking
for the whole application. This result in wrong handling of
__bound_local_new/__bound_local_delete and malloc/calloc/realloc/free.
Consider the following code:

void tst(int n) {
  int i, arr[n];
  for (i = 0; i < n; i++) arr[i] = 0;
}

void *some_thread(void *dummy) {
  while (running) { tst(10); tst(20); }
}

void signal_handler(int sig) { ... }

When the signal handler is called the some_thread code can be interrupted when
is just registered the arr[10] data. When the signal handler is leaved the
arr[10] is still registered and did not see the call to deregister arr[10] and
then register arr[20]. The code resumes when tst(20) is running. This results
in a bound checking error when i >= 10.

To solve the above problem I changed the bound checking code to use
tls (thread local storage) for the no_checking variable.
This also makes it now possible to redirect signal/sigaction/fork code
through the bound checking library and disable checking when a signal is
running and to correct the bounds_sem for the fork child process.
The BOUNDS_CHECKING_ON/BOUNDS_CHECKING_OFF is not needed any more for
signal/sigaction/fork. In fact I could remove them from all my applications.

The use of the tls function code slows down the code by about 10%.
So if the slowdown due to bound checking was 5. It is now 5.5 times slower.

For x86_64/i386 I also allowed to use __thread variable in bcheck.c when
compiled with gcc with:
make x86_64-libtcc1-usegcc=yes
make i386-libtcc1-usegcc=yes
This makes code run faster due to use of gcc and __thread variable.
With the __thread variable there is no 10% slowdown.
For other targets this does not work because stabs is not supported.

Changes:

lib/bcheck.c:
- Add TRY_SEM
- Add HAVE_SIGNAL/HAVE_SIGACTION/HAVE_FORK/HAVE_TLS_FUNC/HAVE_TLS_VAR
  - HAVE_SIGNAL: redirect signal() call if set.
  - HAVE_SIGACTION: redirect sigaction() call if set.
  - HAVE_FORK: redirect fork() call if set.
  - HAVE_TLS_FUNC: If target has tls function calls.
  - HAVE_TLS_VAR: If target has __thread tls support.
- Replace all no_checking refecrences to NO_CHECKING_SET/NO_CHECKING_GET macros

tcc-doc.texi:
- Remove examples for signal/sigaction/fork code.
- Add some explanation for signal/sigaction/fork code.
- Add documentaion for __bounds_checking().

tccelf.c:
- Add support for SHF_TLS

tests/tests2/114_bound_signal.c:
- Remove BOUNDS_CHECKING_ON/BOUNDS_CHECKING_OFF
- Add code to trigger failure when tls is not working.

x86_64-link.c:
- Add support for R_X86_64_TLSGD/R_X86_64_TLSLD/R_X86_64_DTPOFF32/R_X86_64_TPOFF32

i386-link.c:
- Add support for R_386_TLS_GD/R_386_TLS_LDM/R_386_TLS_LDO_32/R_386_TLS_LE
2020-09-08 14:31:58 +02:00

2150 lines
70 KiB
C

/*
* Tiny C Memory and bounds checker
*
* Copyright (c) 2002 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <setjmp.h>
#if !defined(__FreeBSD__) \
&& !defined(__FreeBSD_kernel__) \
&& !defined(__DragonFly__) \
&& !defined(__OpenBSD__) \
&& !defined(__APPLE__) \
&& !defined(__NetBSD__)
#include <malloc.h>
#endif
#if !defined(_WIN32)
#include <unistd.h>
#include <sys/syscall.h>
#endif
#define BOUND_DEBUG (1)
#define BOUND_STATISTIC (1)
#if BOUND_DEBUG
#define dprintf(a...) if (print_calls) fprintf(a)
#else
#define dprintf(a...)
#endif
#ifdef __attribute__
/* an __attribute__ macro is defined in the system headers */
#undef __attribute__
#endif
#define FASTCALL __attribute__((regparm(3)))
#ifdef _WIN32
# define DLL_EXPORT __declspec(dllexport)
#else
# define DLL_EXPORT
#endif
#if defined(__FreeBSD__) \
|| defined(__FreeBSD_kernel__) \
|| defined(__DragonFly__) \
|| defined(__OpenBSD__) \
|| defined(__NetBSD__) \
|| defined(__dietlibc__)
#define INIT_SEM()
#define EXIT_SEM()
#define WAIT_SEM()
#define POST_SEM()
#define TRY_SEM()
#define HAVE_MEMALIGN (0)
#define MALLOC_REDIR (0)
#define HAVE_PTHREAD_CREATE (0)
#define HAVE_CTYPE (0)
#define HAVE_ERRNO (0)
#define HAVE_SIGNAL (0)
#define HAVE_SIGACTION (0)
#define HAVE_FORK (0)
#define HAVE_TLS_FUNC (0)
#define HAVE_TLS_VAR (0)
#elif defined(_WIN32)
#include <windows.h>
#include <signal.h>
static CRITICAL_SECTION bounds_sem;
#define INIT_SEM() InitializeCriticalSection(&bounds_sem)
#define EXIT_SEM() DeleteCriticalSection(&bounds_sem)
#define WAIT_SEM() EnterCriticalSection(&bounds_sem)
#define POST_SEM() LeaveCriticalSection(&bounds_sem)
#define TRY_SEM() TryEnterCriticalSection(&bounds_sem)
#define HAVE_MEMALIGN (0)
#define MALLOC_REDIR (0)
#define HAVE_PTHREAD_CREATE (0)
#define HAVE_CTYPE (0)
#define HAVE_ERRNO (0)
#define HAVE_SIGNAL (1)
#define HAVE_SIGACTION (0)
#define HAVE_FORK (0)
#define HAVE_TLS_FUNC (1)
#define HAVE_TLS_VAR (0)
#else
#define __USE_GNU /* get RTLD_NEXT */
#include <sys/mman.h>
#include <ctype.h>
#include <pthread.h>
#include <dlfcn.h>
#include <errno.h>
#include <signal.h>
#ifdef __APPLE__
#include <dispatch/dispatch.h>
static dispatch_semaphore_t bounds_sem;
#define INIT_SEM() bounds_sem = dispatch_semaphore_create(1)
#define EXIT_SEM() dispatch_release(*(dispatch_object_t*)&bounds_sem)
#define WAIT_SEM() if (use_sem) dispatch_semaphore_wait(bounds_sem, DISPATCH_TIME_FOREVER)
#define POST_SEM() if (use_sem) dispatch_semaphore_signal(bounds_sem)
#define TRY_SEM() if (use_sem) dispatch_semaphore_wait(bounds_sem, DISPATCH_TIME_NOW)
#elif 0
#include <semaphore.h>
static sem_t bounds_sem;
#define INIT_SEM() sem_init (&bounds_sem, 0, 1)
#define EXIT_SEM() sem_destroy (&bounds_sem)
#define WAIT_SEM() if (use_sem) while (sem_wait (&bounds_sem) < 0 \
&& errno == EINTR)
#define POST_SEM() if (use_sem) sem_post (&bounds_sem)
#define TRY_SEM() if (use_sem) while (sem_trywait (&bounds_sem) < 0 \
&& errno == EINTR)
#elif 0
static pthread_mutex_t bounds_mtx;
#define INIT_SEM() pthread_mutex_init (&bounds_mtx, NULL)
#define EXIT_SEM() pthread_mutex_destroy (&bounds_mtx)
#define WAIT_SEM() if (use_sem) pthread_mutex_lock (&bounds_mtx)
#define POST_SEM() if (use_sem) pthread_mutex_unlock (&bounds_mtx)
#define TRY_SEM() if (use_sem) pthread_mutex_trylock (&bounds_mtx)
#else
static pthread_spinlock_t bounds_spin;
/* about 25% faster then semaphore. */
#define INIT_SEM() pthread_spin_init (&bounds_spin, 0)
#define EXIT_SEM() pthread_spin_destroy (&bounds_spin)
#define WAIT_SEM() if (use_sem) pthread_spin_lock (&bounds_spin)
#define POST_SEM() if (use_sem) pthread_spin_unlock (&bounds_spin)
#define TRY_SEM() if (use_sem) pthread_spin_trylock (&bounds_spin)
#endif
#define HAVE_MEMALIGN (1)
#define MALLOC_REDIR (1)
#define HAVE_PTHREAD_CREATE (1)
#define HAVE_CTYPE (1)
#define HAVE_ERRNO (1)
#define HAVE_SIGNAL (1)
#define HAVE_SIGACTION (1)
#define HAVE_FORK (1)
#if !defined(__APPLE__) && defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
#define HAVE_TLS_FUNC (0)
#define HAVE_TLS_VAR (1)
#else
#define HAVE_TLS_FUNC (1)
#define HAVE_TLS_VAR (0)
#endif
#endif
#if MALLOC_REDIR
static void *(*malloc_redir) (size_t);
static void *(*calloc_redir) (size_t, size_t);
static void (*free_redir) (void *);
static void *(*realloc_redir) (void *, size_t);
static unsigned int pool_index;
static unsigned char __attribute__((aligned(16))) initial_pool[256];
static unsigned char use_sem;
#endif
#if HAVE_MEMALIGN
static void *(*memalign_redir) (size_t, size_t);
#endif
#if HAVE_PTHREAD_CREATE
static int (*pthread_create_redir) (pthread_t *thread,
const pthread_attr_t *attr,
void *(*start_routine)(void *), void *arg);
#endif
#if HAVE_SIGNAL
typedef void (*bound_sig)(int);
static bound_sig (*signal_redir) (int signum, bound_sig handler);
#endif
#if HAVE_SIGACTION
static int (*sigaction_redir) (int signum, const struct sigaction *act,
struct sigaction *oldact);
#endif
#if HAVE_FORK
static int (*fork_redir) (void);
#endif
#define TCC_TYPE_NONE (0)
#define TCC_TYPE_MALLOC (1)
#define TCC_TYPE_CALLOC (2)
#define TCC_TYPE_REALLOC (3)
#define TCC_TYPE_MEMALIGN (4)
#define TCC_TYPE_STRDUP (5)
/* this pointer is generated when bound check is incorrect */
#define INVALID_POINTER ((void *)(-2))
typedef struct tree_node Tree;
struct tree_node {
Tree * left, * right;
size_t start;
size_t size;
unsigned char type;
unsigned char is_invalid; /* true if pointers outside region are invalid */
};
typedef struct alloca_list_struct {
size_t fp;
void *p;
struct alloca_list_struct *next;
} alloca_list_type;
#if defined(_WIN32)
#define BOUND_TID_TYPE DWORD
#define BOUND_GET_TID GetCurrentThreadId()
#elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) || defined(__aarch64__) || defined(__riscv)
#define BOUND_TID_TYPE pid_t
#define BOUND_GET_TID syscall (SYS_gettid)
#else
#define BOUND_TID_TYPE int
#define BOUND_GET_TID 0
#endif
typedef struct jmp_list_struct {
void *penv;
size_t fp;
size_t end_fp;
BOUND_TID_TYPE tid;
struct jmp_list_struct *next;
} jmp_list_type;
#define BOUND_STATISTIC_SPLAY (0)
static Tree * splay (size_t addr, Tree *t);
static Tree * splay_end (size_t addr, Tree *t);
static Tree * splay_insert(size_t addr, size_t size, Tree * t);
static Tree * splay_delete(size_t addr, Tree *t);
void splay_printtree(Tree * t, int d);
/* external interface */
void __bounds_checking (int no_check);
void __bound_never_fatal (int no_check);
DLL_EXPORT void * __bound_ptr_add(void *p, size_t offset);
DLL_EXPORT void * __bound_ptr_indir1(void *p, size_t offset);
DLL_EXPORT void * __bound_ptr_indir2(void *p, size_t offset);
DLL_EXPORT void * __bound_ptr_indir4(void *p, size_t offset);
DLL_EXPORT void * __bound_ptr_indir8(void *p, size_t offset);
DLL_EXPORT void * __bound_ptr_indir12(void *p, size_t offset);
DLL_EXPORT void * __bound_ptr_indir16(void *p, size_t offset);
DLL_EXPORT void FASTCALL __bound_local_new(void *p1);
DLL_EXPORT void FASTCALL __bound_local_delete(void *p1);
void __bound_init(size_t *, int);
void __bound_main_arg(int argc, char **argv, char **envp);
void __bound_exit(void);
#if !defined(_WIN32)
void *__bound_mmap (void *start, size_t size, int prot, int flags, int fd,
off_t offset);
int __bound_munmap (void *start, size_t size);
DLL_EXPORT void __bound_siglongjmp(jmp_buf env, int val);
#endif
DLL_EXPORT void __bound_new_region(void *p, size_t size);
DLL_EXPORT void __bound_setjmp(jmp_buf env);
DLL_EXPORT void __bound_longjmp(jmp_buf env, int val);
DLL_EXPORT void *__bound_memcpy(void *dst, const void *src, size_t size);
DLL_EXPORT int __bound_memcmp(const void *s1, const void *s2, size_t size);
DLL_EXPORT void *__bound_memmove(void *dst, const void *src, size_t size);
DLL_EXPORT void *__bound_memset(void *dst, int c, size_t size);
DLL_EXPORT int __bound_strlen(const char *s);
DLL_EXPORT char *__bound_strcpy(char *dst, const char *src);
DLL_EXPORT char *__bound_strncpy(char *dst, const char *src, size_t n);
DLL_EXPORT int __bound_strcmp(const char *s1, const char *s2);
DLL_EXPORT int __bound_strncmp(const char *s1, const char *s2, size_t n);
DLL_EXPORT char *__bound_strcat(char *dest, const char *src);
DLL_EXPORT char *__bound_strchr(const char *string, int ch);
DLL_EXPORT char *__bound_strdup(const char *s);
#if defined(__arm__)
DLL_EXPORT void *__bound___aeabi_memcpy(void *dst, const void *src, size_t size);
DLL_EXPORT void *__bound___aeabi_memmove(void *dst, const void *src, size_t size);
DLL_EXPORT void *__bound___aeabi_memmove4(void *dst, const void *src, size_t size);
DLL_EXPORT void *__bound___aeabi_memmove8(void *dst, const void *src, size_t size);
DLL_EXPORT void *__bound___aeabi_memset(void *dst, int c, size_t size);
DLL_EXPORT void *__aeabi_memcpy(void *dst, const void *src, size_t size);
DLL_EXPORT void *__aeabi_memmove(void *dst, const void *src, size_t size);
DLL_EXPORT void *__aeabi_memmove4(void *dst, const void *src, size_t size);
DLL_EXPORT void *__aeabi_memmove8(void *dst, const void *src, size_t size);
DLL_EXPORT void *__aeabi_memset(void *dst, int c, size_t size);
#endif
#if MALLOC_REDIR
#define BOUND_MALLOC(a) malloc_redir(a)
#define BOUND_MEMALIGN(a,b) memalign_redir(a,b)
#define BOUND_FREE(a) free_redir(a)
#define BOUND_REALLOC(a,b) realloc_redir(a,b)
#define BOUND_CALLOC(a,b) calloc_redir(a,b)
#else
#define BOUND_MALLOC(a) malloc(a)
#define BOUND_MEMALIGN(a,b) memalign(a,b)
#define BOUND_FREE(a) free(a)
#define BOUND_REALLOC(a,b) realloc(a,b)
#define BOUND_CALLOC(a,b) calloc(a,b)
DLL_EXPORT void *__bound_malloc(size_t size, const void *caller);
DLL_EXPORT void *__bound_memalign(size_t size, size_t align, const void *caller);
DLL_EXPORT void __bound_free(void *ptr, const void *caller);
DLL_EXPORT void *__bound_realloc(void *ptr, size_t size, const void *caller);
DLL_EXPORT void *__bound_calloc(size_t nmemb, size_t size);
#endif
#define FREE_REUSE_SIZE (100)
static unsigned int free_reuse_index;
static void *free_reuse_list[FREE_REUSE_SIZE];
static Tree *tree = NULL;
#define TREE_REUSE (1)
#if TREE_REUSE
static Tree *tree_free_list;
#endif
static alloca_list_type *alloca_list;
static jmp_list_type *jmp_list;
static unsigned char inited;
static unsigned char print_warn_ptr_add;
static unsigned char print_calls;
static unsigned char print_heap;
static unsigned char print_statistic;
static unsigned char no_strdup;
static int never_fatal;
#if HAVE_TLS_FUNC
#if defined(_WIN32)
static int no_checking = 0;
static DWORD no_checking_key;
#define NO_CHECKING_CHECK() if (!p) { \
p = (int *) LocalAlloc(LPTR, sizeof(int)); \
if (!p) bound_alloc_error("tls malloc"); \
*p = 0; \
TlsSetValue(no_checking_key, p); \
}
#define NO_CHECKING_GET() ({ int *p = TlsGetValue(no_checking_key); \
NO_CHECKING_CHECK(); \
*p; \
})
#define NO_CHECKING_SET(v) { int *p = TlsGetValue(no_checking_key); \
NO_CHECKING_CHECK(); \
*p = v; \
}
#else
static int no_checking = 0;
static pthread_key_t no_checking_key;
#define NO_CHECKING_CHECK() if (!p) { \
p = (int *) BOUND_MALLOC(sizeof(int)); \
if (!p) bound_alloc_error("tls malloc"); \
*p = 0; \
pthread_setspecific(no_checking_key, p); \
}
#define NO_CHECKING_GET() ({ int *p = pthread_getspecific(no_checking_key); \
NO_CHECKING_CHECK(); \
*p; \
})
#define NO_CHECKING_SET(v) { int *p = pthread_getspecific(no_checking_key); \
NO_CHECKING_CHECK(); \
*p = v; \
}
#endif
#elif HAVE_TLS_VAR
static __thread int no_checking = 0;
#define NO_CHECKING_GET() no_checking
#define NO_CHECKING_SET(v) no_checking = v
#else
static int no_checking = 0;
#define NO_CHECKING_GET() no_checking
#define NO_CHECKING_SET(v) no_checking = v
#endif
static char exec[100];
#if BOUND_STATISTIC
static unsigned long long bound_ptr_add_count;
static unsigned long long bound_ptr_indir1_count;
static unsigned long long bound_ptr_indir2_count;
static unsigned long long bound_ptr_indir4_count;
static unsigned long long bound_ptr_indir8_count;
static unsigned long long bound_ptr_indir12_count;
static unsigned long long bound_ptr_indir16_count;
static unsigned long long bound_local_new_count;
static unsigned long long bound_local_delete_count;
static unsigned long long bound_malloc_count;
static unsigned long long bound_calloc_count;
static unsigned long long bound_realloc_count;
static unsigned long long bound_free_count;
static unsigned long long bound_memalign_count;
static unsigned long long bound_mmap_count;
static unsigned long long bound_munmap_count;
static unsigned long long bound_alloca_count;
static unsigned long long bound_setjmp_count;
static unsigned long long bound_longjmp_count;
static unsigned long long bound_mempcy_count;
static unsigned long long bound_memcmp_count;
static unsigned long long bound_memmove_count;
static unsigned long long bound_memset_count;
static unsigned long long bound_strlen_count;
static unsigned long long bound_strcpy_count;
static unsigned long long bound_strncpy_count;
static unsigned long long bound_strcmp_count;
static unsigned long long bound_strncmp_count;
static unsigned long long bound_strcat_count;
static unsigned long long bound_strchr_count;
static unsigned long long bound_strdup_count;
static unsigned long long bound_not_found;
#define INCR_COUNT(x) ++x
#else
#define INCR_COUNT(x)
#endif
#if BOUND_STATISTIC_SPLAY
static unsigned long long bound_splay;
static unsigned long long bound_splay_end;
static unsigned long long bound_splay_insert;
static unsigned long long bound_splay_delete;
#define INCR_COUNT_SPLAY(x) ++x
#else
#define INCR_COUNT_SPLAY(x)
#endif
int tcc_backtrace(const char *fmt, ...);
/* print a bound error message */
#define bound_warning(...) \
tcc_backtrace("^bcheck.c^BCHECK: " __VA_ARGS__)
#define bound_error(...) \
do { \
bound_warning(__VA_ARGS__); \
if (never_fatal == 0) \
exit(255); \
} while (0)
static void bound_alloc_error(const char *s)
{
fprintf(stderr,"FATAL: %s\n",s);
exit (1);
}
static void bound_not_found_warning(const char *file, const char *function,
void *ptr)
{
dprintf(stderr, "%s%s, %s(): Not found %p\n", exec, file, function, ptr);
}
static void fetch_and_add(int* variable, int value)
{
#if defined __i386__ || defined __x86_64__
__asm__ volatile("lock; addl %0, %1"
: "+r" (value), "+m" (*variable) // input+output
: // No input-only
: "memory"
);
#elif defined __arm__
extern void fetch_and_add_arm(int* variable, int value);
fetch_and_add_arm(variable, value);
#elif defined __aarch64__
extern void fetch_and_add_arm64(int* variable, int value);
fetch_and_add_arm64(variable, value);
#elif defined __riscv
extern void fetch_and_add_riscv64(int* variable, int value);
fetch_and_add_riscv64(variable, value);
#else
*variable += value;
#endif
}
/* enable/disable checking. This can be used in signal handlers. */
void __bounds_checking (int no_check)
{
#if HAVE_TLS_FUNC || HAVE_TLS_VAR
NO_CHECKING_SET(NO_CHECKING_GET() + no_check);
#else
fetch_and_add (&no_checking, no_check);
#endif
}
/* enable/disable checking. This can be used in signal handlers. */
void __bound_never_fatal (int neverfatal)
{
fetch_and_add (&never_fatal, neverfatal);
}
/* return '(p + offset)' for pointer arithmetic (a pointer can reach
the end of a region in this case */
void * __bound_ptr_add(void *p, size_t offset)
{
size_t addr = (size_t)p;
if (NO_CHECKING_GET())
return p + offset;
dprintf(stderr, "%s, %s(): %p 0x%lx\n",
__FILE__, __FUNCTION__, p, (unsigned long)offset);
WAIT_SEM ();
INCR_COUNT(bound_ptr_add_count);
if (tree) {
addr -= tree->start;
if (addr >= tree->size) {
addr = (size_t)p;
tree = splay (addr, tree);
addr -= tree->start;
}
if (addr >= tree->size) {
addr = (size_t)p;
tree = splay_end (addr, tree);
addr -= tree->start;
}
if (addr <= tree->size) {
if (tree->is_invalid || addr + offset > tree->size) {
POST_SEM ();
if (print_warn_ptr_add)
bound_warning("%p is outside of the region", p + offset);
if (never_fatal <= 0)
return INVALID_POINTER; /* return an invalid pointer */
return p + offset;
}
}
else if (p) { /* Allow NULL + offset. offsetoff is using it. */
INCR_COUNT(bound_not_found);
POST_SEM ();
bound_not_found_warning (__FILE__, __FUNCTION__, p);
return p + offset;
}
}
POST_SEM ();
return p + offset;
}
/* return '(p + offset)' for pointer indirection (the resulting must
be strictly inside the region */
#define BOUND_PTR_INDIR(dsize) \
void * __bound_ptr_indir ## dsize (void *p, size_t offset) \
{ \
size_t addr = (size_t)p; \
\
if (NO_CHECKING_GET()) \
return p + offset; \
\
dprintf(stderr, "%s, %s(): %p 0x%lx\n", \
__FILE__, __FUNCTION__, p, (unsigned long)offset); \
WAIT_SEM (); \
INCR_COUNT(bound_ptr_indir ## dsize ## _count); \
if (tree) { \
addr -= tree->start; \
if (addr >= tree->size) { \
addr = (size_t)p; \
tree = splay (addr, tree); \
addr -= tree->start; \
} \
if (addr >= tree->size) { \
addr = (size_t)p; \
tree = splay_end (addr, tree); \
addr -= tree->start; \
} \
if (addr <= tree->size) { \
if (tree->is_invalid || addr + offset + dsize > tree->size) { \
POST_SEM (); \
bound_warning("%p is outside of the region", p + offset); \
if (never_fatal <= 0) \
return INVALID_POINTER; /* return an invalid pointer */ \
return p + offset; \
} \
} \
else { \
INCR_COUNT(bound_not_found); \
POST_SEM (); \
bound_not_found_warning (__FILE__, __FUNCTION__, p); \
return p + offset; \
} \
} \
POST_SEM (); \
return p + offset; \
}
BOUND_PTR_INDIR(1)
BOUND_PTR_INDIR(2)
BOUND_PTR_INDIR(4)
BOUND_PTR_INDIR(8)
BOUND_PTR_INDIR(12)
BOUND_PTR_INDIR(16)
#if defined(__GNUC__) && (__GNUC__ >= 6)
/*
* At least gcc 6.2 complains when __builtin_frame_address is used with
* nonzero argument.
*/
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wframe-address"
#endif
/* return the frame pointer of the caller */
#define GET_CALLER_FP(fp)\
{\
fp = (size_t)__builtin_frame_address(1);\
}
/* called when entering a function to add all the local regions */
void FASTCALL __bound_local_new(void *p1)
{
size_t addr, fp, *p = p1;
if (NO_CHECKING_GET())
return;
GET_CALLER_FP(fp);
dprintf(stderr, "%s, %s(): p1=%p fp=%p\n",
__FILE__, __FUNCTION__, p, (void *)fp);
WAIT_SEM ();
while ((addr = p[0])) {
INCR_COUNT(bound_local_new_count);
tree = splay_insert(addr + fp, p[1], tree);
p += 2;
}
POST_SEM ();
#if BOUND_DEBUG
if (print_calls) {
p = p1;
while ((addr = p[0])) {
dprintf(stderr, "%s, %s(): %p 0x%lx\n",
__FILE__, __FUNCTION__,
(void *) (addr + fp), (unsigned long) p[1]);
p += 2;
}
}
#endif
}
/* called when leaving a function to delete all the local regions */
void FASTCALL __bound_local_delete(void *p1)
{
size_t addr, fp, *p = p1;
if (NO_CHECKING_GET())
return;
GET_CALLER_FP(fp);
dprintf(stderr, "%s, %s(): p1=%p fp=%p\n",
__FILE__, __FUNCTION__, p, (void *)fp);
WAIT_SEM ();
while ((addr = p[0])) {
INCR_COUNT(bound_local_delete_count);
tree = splay_delete(addr + fp, tree);
p += 2;
}
if (alloca_list) {
alloca_list_type *last = NULL;
alloca_list_type *cur = alloca_list;
do {
if (cur->fp == fp) {
if (last)
last->next = cur->next;
else
alloca_list = cur->next;
tree = splay_delete ((size_t) cur->p, tree);
dprintf(stderr, "%s, %s(): remove alloca/vla %p\n",
__FILE__, __FUNCTION__, cur->p);
BOUND_FREE (cur);
cur = last ? last->next : alloca_list;
}
else {
last = cur;
cur = cur->next;
}
} while (cur);
}
if (jmp_list) {
jmp_list_type *last = NULL;
jmp_list_type *cur = jmp_list;
do {
if (cur->fp == fp) {
if (last)
last->next = cur->next;
else
jmp_list = cur->next;
dprintf(stderr, "%s, %s(): remove setjmp %p\n",
__FILE__, __FUNCTION__, cur->penv);
BOUND_FREE (cur);
cur = last ? last->next : jmp_list;
}
else {
last = cur;
cur = cur->next;
}
} while (cur);
}
POST_SEM ();
#if BOUND_DEBUG
if (print_calls) {
p = p1;
while ((addr = p[0])) {
if (addr != 1) {
dprintf(stderr, "%s, %s(): %p 0x%lx\n",
__FILE__, __FUNCTION__,
(void *) (addr + fp), (unsigned long) p[1]);
}
p+= 2;
}
}
#endif
}
/* used by alloca */
void __bound_new_region(void *p, size_t size)
{
size_t fp;
alloca_list_type *last;
alloca_list_type *cur;
alloca_list_type *new;
if (NO_CHECKING_GET())
return;
dprintf(stderr, "%s, %s(): %p, 0x%lx\n",
__FILE__, __FUNCTION__, p, (unsigned long)size);
GET_CALLER_FP (fp);
new = BOUND_MALLOC (sizeof (alloca_list_type));
WAIT_SEM ();
INCR_COUNT(bound_alloca_count);
last = NULL;
cur = alloca_list;
while (cur) {
if (cur->fp == fp && cur->p == p) {
if (last)
last->next = cur->next;
else
alloca_list = cur->next;
tree = splay_delete((size_t)p, tree);
break;
}
last = cur;
cur = cur->next;
}
tree = splay_insert((size_t)p, size, tree);
if (new) {
new->fp = fp;
new->p = p;
new->next = alloca_list;
alloca_list = new;
}
POST_SEM ();
if (cur) {
dprintf(stderr, "%s, %s(): remove alloca/vla %p\n",
__FILE__, __FUNCTION__, cur->p);
BOUND_FREE (cur);
}
}
void __bound_setjmp(jmp_buf env)
{
jmp_list_type *jl;
void *e = (void *) env;
if (NO_CHECKING_GET() == 0) {
dprintf(stderr, "%s, %s(): %p\n", __FILE__, __FUNCTION__, e);
WAIT_SEM ();
INCR_COUNT(bound_setjmp_count);
jl = jmp_list;
while (jl) {
if (jl->penv == e)
break;
jl = jl->next;
}
if (jl == NULL) {
jl = BOUND_MALLOC (sizeof (jmp_list_type));
if (jl) {
jl->penv = e;
jl->next = jmp_list;
jmp_list = jl;
}
}
if (jl) {
size_t fp;
GET_CALLER_FP (fp);
jl->fp = fp;
jl->end_fp = (size_t)__builtin_frame_address(0);
jl->tid = BOUND_GET_TID;
}
POST_SEM ();
}
}
static void __bound_long_jump(jmp_buf env, int val, int sig, const char *func)
{
jmp_list_type *jl;
void *e;
BOUND_TID_TYPE tid;
if (NO_CHECKING_GET() == 0) {
e = (void *)env;
tid = BOUND_GET_TID;
dprintf(stderr, "%s, %s(): %p\n", __FILE__, func, e);
WAIT_SEM();
INCR_COUNT(bound_longjmp_count);
jl = jmp_list;
while (jl) {
if (jl->penv == e && jl->tid == tid) {
size_t start_fp = (size_t)__builtin_frame_address(0);
size_t end_fp = jl->end_fp;
jmp_list_type *cur = jmp_list;
jmp_list_type *last = NULL;
while (cur->penv != e || cur->tid != tid) {
if (cur->tid == tid) {
dprintf(stderr, "%s, %s(): remove setjmp %p\n",
__FILE__, func, cur->penv);
if (last)
last->next = cur->next;
else
jmp_list = cur->next;
BOUND_FREE (cur);
cur = last ? last->next : jmp_list;
}
else {
last = cur;
cur = cur->next;
}
}
for (;;) {
Tree *t = tree;
alloca_list_type *last;
alloca_list_type *cur;
while (t && (t->start < start_fp || t->start > end_fp))
if (t->start < start_fp)
t = t->right;
else
t = t->left;
if (t == NULL)
break;
last = NULL;
cur = alloca_list;
while (cur) {
if ((size_t) cur->p == t->start) {
dprintf(stderr, "%s, %s(): remove alloca/vla %p\n",
__FILE__, func, cur->p);
if (last)
last->next = cur->next;
else
alloca_list = cur->next;
BOUND_FREE (cur);
break;
}
last = cur;
cur = cur->next;
}
dprintf(stderr, "%s, %s(): delete %p\n",
__FILE__, func, (void *) t->start);
tree = splay_delete(t->start, tree);
}
break;
}
jl = jl->next;
}
POST_SEM();
}
#if !defined(_WIN32)
sig ? siglongjmp(env, val) :
#endif
longjmp (env, val);
}
void __bound_longjmp(jmp_buf env, int val)
{
__bound_long_jump(env,val, 0, __FUNCTION__);
}
#if !defined(_WIN32)
void __bound_siglongjmp(jmp_buf env, int val)
{
__bound_long_jump(env,val, 1, __FUNCTION__);
}
#endif
#if defined(__GNUC__) && (__GNUC__ >= 6)
#pragma GCC diagnostic pop
#endif
void __bound_init(size_t *p, int mode)
{
dprintf(stderr, "%s, %s(): start %s\n", __FILE__, __FUNCTION__,
mode < 0 ? "lazy" : mode == 0 ? "normal use" : "for -run");
if (inited) {
WAIT_SEM();
goto add_bounds;
}
inited = 1;
#if HAVE_TLS_FUNC
#if defined(_WIN32)
no_checking_key = TlsAlloc();
TlsSetValue(no_checking_key, &no_checking);
#else
pthread_key_create(&no_checking_key, NULL);
pthread_setspecific(no_checking_key, &no_checking);
#endif
#endif
NO_CHECKING_SET(1);
print_warn_ptr_add = getenv ("TCC_BOUNDS_WARN_POINTER_ADD") != NULL;
print_calls = getenv ("TCC_BOUNDS_PRINT_CALLS") != NULL;
print_heap = getenv ("TCC_BOUNDS_PRINT_HEAP") != NULL;
print_statistic = getenv ("TCC_BOUNDS_PRINT_STATISTIC") != NULL;
never_fatal = getenv ("TCC_BOUNDS_NEVER_FATAL") != NULL;
INIT_SEM ();
#if MALLOC_REDIR
{
void *addr = mode > 0 ? RTLD_DEFAULT : RTLD_NEXT;
/* tcc -run required RTLD_DEFAULT. Normal usage requires RTLD_NEXT,
but using RTLD_NEXT with -run segfaults on MacOS in dyld as the
generated code segment isn't registered with dyld and hence the
caller image of dlsym isn't known to it */
*(void **) (&malloc_redir) = dlsym (addr, "malloc");
if (malloc_redir == NULL) {
dprintf(stderr, "%s, %s(): use RTLD_DEFAULT\n",
__FILE__, __FUNCTION__);
addr = RTLD_DEFAULT;
*(void **) (&malloc_redir) = dlsym (addr, "malloc");
}
*(void **) (&calloc_redir) = dlsym (addr, "calloc");
*(void **) (&free_redir) = dlsym (addr, "free");
*(void **) (&realloc_redir) = dlsym (addr, "realloc");
*(void **) (&memalign_redir) = dlsym (addr, "memalign");
dprintf(stderr, "%s, %s(): malloc_redir %p\n",
__FILE__, __FUNCTION__, malloc_redir);
dprintf(stderr, "%s, %s(): free_redir %p\n",
__FILE__, __FUNCTION__, free_redir);
dprintf(stderr, "%s, %s(): realloc_redir %p\n",
__FILE__, __FUNCTION__, realloc_redir);
dprintf(stderr, "%s, %s(): memalign_redir %p\n",
__FILE__, __FUNCTION__, memalign_redir);
if (malloc_redir == NULL || free_redir == NULL)
bound_alloc_error ("Cannot redirect malloc/free");
#if HAVE_PTHREAD_CREATE
*(void **) (&pthread_create_redir) = dlsym (addr, "pthread_create");
dprintf(stderr, "%s, %s(): pthread_create_redir %p\n",
__FILE__, __FUNCTION__, pthread_create_redir);
if (pthread_create_redir == NULL)
bound_alloc_error ("Cannot redirect pthread_create");
#endif
#if HAVE_SIGNAL
*(void **) (&signal_redir) = dlsym (addr, "signal");
dprintf(stderr, "%s, %s(): signal_redir %p\n",
__FILE__, __FUNCTION__, signal_redir);
if (signal_redir == NULL)
bound_alloc_error ("Cannot redirect signal");
#endif
#if HAVE_SIGACTION
*(void **) (&sigaction_redir) = dlsym (addr, "sigaction");
dprintf(stderr, "%s, %s(): sigaction_redir %p\n",
__FILE__, __FUNCTION__, sigaction_redir);
if (sigaction_redir == NULL)
bound_alloc_error ("Cannot sigaction signal");
#endif
#if HAVE_FORK
*(void **) (&fork_redir) = dlsym (addr, "fork");
dprintf(stderr, "%s, %s(): fork_redir %p\n",
__FILE__, __FUNCTION__, fork_redir);
if (fork_redir == NULL)
bound_alloc_error ("Cannot sigaction fork");
#endif
}
#endif
#ifdef __linux__
{
FILE *fp;
unsigned char found;
unsigned long start;
unsigned long end;
unsigned long ad =
(unsigned long) __builtin_return_address(0);
char line[1000];
/* Display exec name. Usefull when a lot of code is compiled with tcc */
fp = fopen ("/proc/self/comm", "r");
if (fp) {
memset (exec, 0, sizeof(exec));
fread (exec, 1, sizeof(exec) - 2, fp);
if (strchr(exec,'\n'))
*strchr(exec,'\n') = '\0';
strcat (exec, ":");
fclose (fp);
}
/* check if dlopen is used (is threre a better way?) */
found = 0;
fp = fopen ("/proc/self/maps", "r");
if (fp) {
while (fgets (line, sizeof(line), fp)) {
if (sscanf (line, "%lx-%lx", &start, &end) == 2 &&
ad >= start && ad < end) {
found = 1;
break;
}
if (strstr (line,"[heap]"))
break;
}
fclose (fp);
}
if (found == 0) {
use_sem = 1;
no_strdup = 1;
}
}
#endif
WAIT_SEM ();
#if HAVE_CTYPE
#ifdef __APPLE__
tree = splay_insert((size_t) &_DefaultRuneLocale,
sizeof (_DefaultRuneLocale), tree);
#else
/* XXX: Does not work if locale is changed */
tree = splay_insert((size_t) __ctype_b_loc(),
sizeof (unsigned short *), tree);
tree = splay_insert((size_t) (*__ctype_b_loc() - 128),
384 * sizeof (unsigned short), tree);
tree = splay_insert((size_t) __ctype_tolower_loc(),
sizeof (__int32_t *), tree);
tree = splay_insert((size_t) (*__ctype_tolower_loc() - 128),
384 * sizeof (__int32_t), tree);
tree = splay_insert((size_t) __ctype_toupper_loc(),
sizeof (__int32_t *), tree);
tree = splay_insert((size_t) (*__ctype_toupper_loc() - 128),
384 * sizeof (__int32_t), tree);
#endif
#endif
#if HAVE_ERRNO
tree = splay_insert((size_t) (&errno), sizeof (int), tree);
#endif
add_bounds:
if (!p)
goto no_bounds;
/* add all static bound check values */
while (p[0] != 0) {
tree = splay_insert(p[0], p[1], tree);
#if BOUND_DEBUG
if (print_calls) {
dprintf(stderr, "%s, %s(): static var %p 0x%lx\n",
__FILE__, __FUNCTION__,
(void *) p[0], (unsigned long) p[1]);
}
#endif
p += 2;
}
no_bounds:
POST_SEM ();
NO_CHECKING_SET(0);
dprintf(stderr, "%s, %s(): end\n\n", __FILE__, __FUNCTION__);
}
void
#if (defined(__GLIBC__) && (__GLIBC_MINOR__ >= 4)) || defined(_WIN32)
__attribute__((constructor))
#endif
__bound_main_arg(int argc, char **argv, char **envp)
{
__bound_init (0, -1);
if (argc && argv) {
int i;
WAIT_SEM ();
for (i = 0; i < argc; i++)
tree = splay_insert((size_t) argv[i], strlen (argv[i]) + 1, tree);
tree = splay_insert((size_t) argv, (argc + 1) * sizeof(char *), tree);
POST_SEM ();
#if BOUND_DEBUG
if (print_calls) {
for (i = 0; i < argc; i++)
dprintf(stderr, "%s, %s(): arg %p 0x%lx\n",
__FILE__, __FUNCTION__,
argv[i], (unsigned long)(strlen (argv[i]) + 1));
dprintf(stderr, "%s, %s(): argv %p %d\n",
__FILE__, __FUNCTION__, argv,
(int)((argc + 1) * sizeof(char *)));
}
#endif
}
if (envp && *envp) {
char **p = envp;
WAIT_SEM ();
while (*p) {
tree = splay_insert((size_t) *p, strlen (*p) + 1, tree);
++p;
}
tree = splay_insert((size_t) envp, (++p - envp) * sizeof(char *), tree);
POST_SEM ();
#if BOUND_DEBUG
if (print_calls) {
p = envp;
while (*p) {
dprintf(stderr, "%s, %s(): env %p 0x%lx\n",
__FILE__, __FUNCTION__,
*p, (unsigned long)(strlen (*p) + 1));
++p;
}
dprintf(stderr, "%s, %s(): environ %p %d\n",
__FILE__, __FUNCTION__, envp,
(int)((++p - envp) * sizeof(char *)));
}
#endif
}
}
void __attribute__((destructor)) __bound_exit(void)
{
int i;
static const char * const alloc_type[] = {
"", "malloc", "calloc", "realloc", "memalign", "strdup"
};
dprintf(stderr, "%s, %s():\n", __FILE__, __FUNCTION__);
if (inited) {
#if !defined(_WIN32) && !defined(__APPLE__)
if (print_heap) {
extern void __libc_freeres (void);
__libc_freeres ();
}
#endif
NO_CHECKING_SET(1);
TRY_SEM ();
while (alloca_list) {
alloca_list_type *next = alloca_list->next;
tree = splay_delete ((size_t) alloca_list->p, tree);
BOUND_FREE (alloca_list);
alloca_list = next;
}
while (jmp_list) {
jmp_list_type *next = jmp_list->next;
BOUND_FREE (jmp_list);
jmp_list = next;
}
for (i = 0; i < FREE_REUSE_SIZE; i++) {
if (free_reuse_list[i]) {
tree = splay_delete ((size_t) free_reuse_list[i], tree);
BOUND_FREE (free_reuse_list[i]);
}
}
while (tree) {
if (print_heap && tree->type != 0)
fprintf (stderr, "%s, %s(): %s found size %lu\n",
__FILE__, __FUNCTION__, alloc_type[tree->type],
(unsigned long) tree->size);
tree = splay_delete (tree->start, tree);
}
#if TREE_REUSE
while (tree_free_list) {
Tree *next = tree_free_list->left;
BOUND_FREE (tree_free_list);
tree_free_list = next;
}
#endif
POST_SEM ();
EXIT_SEM ();
#if HAVE_TLS_FUNC
#if defined(_WIN32)
TlsFree(no_checking_key);
#else
pthread_key_delete(no_checking_key);
#endif
#endif
inited = 0;
if (print_statistic) {
#if BOUND_STATISTIC
fprintf (stderr, "bound_ptr_add_count %llu\n", bound_ptr_add_count);
fprintf (stderr, "bound_ptr_indir1_count %llu\n", bound_ptr_indir1_count);
fprintf (stderr, "bound_ptr_indir2_count %llu\n", bound_ptr_indir2_count);
fprintf (stderr, "bound_ptr_indir4_count %llu\n", bound_ptr_indir4_count);
fprintf (stderr, "bound_ptr_indir8_count %llu\n", bound_ptr_indir8_count);
fprintf (stderr, "bound_ptr_indir12_count %llu\n", bound_ptr_indir12_count);
fprintf (stderr, "bound_ptr_indir16_count %llu\n", bound_ptr_indir16_count);
fprintf (stderr, "bound_local_new_count %llu\n", bound_local_new_count);
fprintf (stderr, "bound_local_delete_count %llu\n", bound_local_delete_count);
fprintf (stderr, "bound_malloc_count %llu\n", bound_malloc_count);
fprintf (stderr, "bound_calloc_count %llu\n", bound_calloc_count);
fprintf (stderr, "bound_realloc_count %llu\n", bound_realloc_count);
fprintf (stderr, "bound_free_count %llu\n", bound_free_count);
fprintf (stderr, "bound_memalign_count %llu\n", bound_memalign_count);
fprintf (stderr, "bound_mmap_count %llu\n", bound_mmap_count);
fprintf (stderr, "bound_munmap_count %llu\n", bound_munmap_count);
fprintf (stderr, "bound_alloca_count %llu\n", bound_alloca_count);
fprintf (stderr, "bound_setjmp_count %llu\n", bound_setjmp_count);
fprintf (stderr, "bound_longjmp_count %llu\n", bound_longjmp_count);
fprintf (stderr, "bound_mempcy_count %llu\n", bound_mempcy_count);
fprintf (stderr, "bound_memcmp_count %llu\n", bound_memcmp_count);
fprintf (stderr, "bound_memmove_count %llu\n", bound_memmove_count);
fprintf (stderr, "bound_memset_count %llu\n", bound_memset_count);
fprintf (stderr, "bound_strlen_count %llu\n", bound_strlen_count);
fprintf (stderr, "bound_strcpy_count %llu\n", bound_strcpy_count);
fprintf (stderr, "bound_strncpy_count %llu\n", bound_strncpy_count);
fprintf (stderr, "bound_strcmp_count %llu\n", bound_strcmp_count);
fprintf (stderr, "bound_strncmp_count %llu\n", bound_strncmp_count);
fprintf (stderr, "bound_strcat_count %llu\n", bound_strcat_count);
fprintf (stderr, "bound_strchr_count %llu\n", bound_strchr_count);
fprintf (stderr, "bound_strdup_count %llu\n", bound_strdup_count);
fprintf (stderr, "bound_not_found %llu\n", bound_not_found);
#endif
#if BOUND_STATISTIC_SPLAY
fprintf (stderr, "bound_splay %llu\n", bound_splay);
fprintf (stderr, "bound_splay_end %llu\n", bound_splay_end);
fprintf (stderr, "bound_splay_insert %llu\n", bound_splay_insert);
fprintf (stderr, "bound_splay_delete %llu\n", bound_splay_delete);
#endif
}
}
}
#if HAVE_PTHREAD_CREATE
#if HAVE_TLS_FUNC
typedef struct {
void *(*start_routine) (void *);
void *arg;
} bound_thread_create_type;
static void *bound_thread_create(void *bdata)
{
bound_thread_create_type *data = (bound_thread_create_type *) bdata;
void *retval;
int *p = (int *) BOUND_MALLOC(sizeof(int));
if (!p) bound_alloc_error("bound_thread_create malloc");
*p = 0;
pthread_setspecific(no_checking_key, p);
retval = data->start_routine(data->arg);
pthread_setspecific(no_checking_key, NULL);
BOUND_FREE (p);
BOUND_FREE (data);
return retval;
}
#endif
int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine) (void *), void *arg)
{
use_sem = 1;
dprintf (stderr, "%s, %s()\n", __FILE__, __FUNCTION__);
#if HAVE_TLS_FUNC
{
bound_thread_create_type *data;
data = (bound_thread_create_type *) BOUND_MALLOC(sizeof(bound_thread_create_type));
data->start_routine = start_routine;
data->arg = arg;
return pthread_create_redir(thread, attr, bound_thread_create, data);
}
#else
return pthread_create_redir(thread, attr, start_routine, arg);
#endif
}
#endif
#if HAVE_SIGNAL || HAVE_SIGACTION
typedef union {
#if HAVE_SIGNAL
bound_sig signal_handler;
#endif
#if HAVE_SIGACTION
void (*sig_handler)(int);
void (*sig_sigaction)(int, siginfo_t *, void *);
#endif
} bound_sig_type;
static unsigned char bound_sig_used[NSIG];
static bound_sig_type bound_sig_data[NSIG];
#endif
#if HAVE_SIGNAL
static void signal_handler(int sig)
{
__bounds_checking(1);
bound_sig_data[sig].signal_handler(sig);
__bounds_checking(-1);
}
bound_sig signal(int signum, bound_sig handler)
{
bound_sig retval;
dprintf (stderr, "%s, %s() %d %p\n", __FILE__, __FUNCTION__,
signum, handler);
retval = signal_redir(signum, handler ? signal_handler : handler);
if (retval != SIG_ERR) {
if (bound_sig_used[signum])
retval = bound_sig_data[signum].signal_handler;
if (handler) {
bound_sig_used[signum] = 1;
bound_sig_data[signum].signal_handler = handler;
}
}
return retval;
}
#endif
#if HAVE_SIGACTION
static void sig_handler(int sig)
{
__bounds_checking(1);
bound_sig_data[sig].sig_handler(sig);
__bounds_checking(-1);
}
static void sig_sigaction(int sig, siginfo_t *info, void *ucontext)
{
__bounds_checking(1);
bound_sig_data[sig].sig_sigaction(sig, info, ucontext);
__bounds_checking(-1);
}
int sigaction(int signum, const struct sigaction *act, struct sigaction *oldact)
{
int retval;
struct sigaction nact, oact;
dprintf (stderr, "%s, %s() %d %p %p\n", __FILE__, __FUNCTION__,
signum, act, oldact);
if (act) {
nact = *act;
if (nact.sa_flags & SA_SIGINFO)
nact.sa_sigaction = sig_sigaction;
else
nact.sa_handler = sig_handler;
retval = sigaction_redir(signum, &nact, &oact);
}
else
retval = sigaction_redir(signum, act, &oact);
if (retval >= 0) {
if (bound_sig_used[signum]) {
if (oact.sa_flags & SA_SIGINFO)
oact.sa_sigaction = bound_sig_data[signum].sig_sigaction;
else
oact.sa_handler = bound_sig_data[signum].sig_handler;
}
if (oldact) {
*oldact = oact;
}
if (act) {
bound_sig_used[signum] = 1;
if (act->sa_flags & SA_SIGINFO)
bound_sig_data[signum].sig_sigaction = act->sa_sigaction;
else
bound_sig_data[signum].sig_handler = act->sa_handler;
}
}
return retval;
}
#endif
#if HAVE_FORK
pid_t fork(void)
{
pid_t retval = (*fork_redir)();
if (retval == 0) {
TRY_SEM();
POST_SEM();
}
return retval;
}
#endif
#if MALLOC_REDIR
void *malloc(size_t size)
#else
void *__bound_malloc(size_t size, const void *caller)
#endif
{
void *ptr;
#if MALLOC_REDIR
/* This will catch the first dlsym call from __bound_init */
if (malloc_redir == NULL) {
__bound_init (0, -1);
if (malloc_redir == NULL) {
ptr = &initial_pool[pool_index];
pool_index = (pool_index + size + 15) & ~15;
if (pool_index >= sizeof (initial_pool))
bound_alloc_error ("initial memory pool too small");
dprintf (stderr, "%s, %s(): initial %p, 0x%lx\n",
__FILE__, __FUNCTION__, ptr, (unsigned long)size);
return ptr;
}
}
#endif
/* we allocate one more byte to ensure the regions will be
separated by at least one byte. With the glibc malloc, it may
be in fact not necessary */
ptr = BOUND_MALLOC (size + 1);
dprintf(stderr, "%s, %s(): %p, 0x%lx\n",
__FILE__, __FUNCTION__, ptr, (unsigned long)size);
if (NO_CHECKING_GET() == 0) {
WAIT_SEM ();
INCR_COUNT(bound_malloc_count);
if (ptr) {
tree = splay_insert ((size_t) ptr, size ? size : size + 1, tree);
if (tree && tree->start == (size_t) ptr)
tree->type = TCC_TYPE_MALLOC;
}
POST_SEM ();
}
return ptr;
}
#if MALLOC_REDIR
void *memalign(size_t size, size_t align)
#else
void *__bound_memalign(size_t size, size_t align, const void *caller)
#endif
{
void *ptr;
#if HAVE_MEMALIGN
/* we allocate one more byte to ensure the regions will be
separated by at least one byte. With the glibc malloc, it may
be in fact not necessary */
ptr = BOUND_MEMALIGN(size + 1, align);
#else
if (align > 4) {
/* XXX: handle it ? */
ptr = NULL;
} else {
/* we suppose that malloc aligns to at least four bytes */
ptr = BOUND_MALLOC(size + 1);
}
#endif
dprintf(stderr, "%s, %s(): %p, 0x%lx\n",
__FILE__, __FUNCTION__, ptr, (unsigned long)size);
if (NO_CHECKING_GET() == 0) {
WAIT_SEM ();
INCR_COUNT(bound_memalign_count);
if (ptr) {
tree = splay_insert((size_t) ptr, size ? size : size + 1, tree);
if (tree && tree->start == (size_t) ptr)
tree->type = TCC_TYPE_MEMALIGN;
}
POST_SEM ();
}
return ptr;
}
#if MALLOC_REDIR
void free(void *ptr)
#else
void __bound_free(void *ptr, const void *caller)
#endif
{
size_t addr = (size_t) ptr;
void *p;
if (ptr == NULL || tree == NULL
#if MALLOC_REDIR
|| ((unsigned char *) ptr >= &initial_pool[0] &&
(unsigned char *) ptr < &initial_pool[sizeof(initial_pool)])
#endif
)
return;
dprintf(stderr, "%s, %s(): %p\n", __FILE__, __FUNCTION__, ptr);
if (NO_CHECKING_GET() == 0) {
WAIT_SEM ();
INCR_COUNT(bound_free_count);
tree = splay (addr, tree);
if (tree->start == addr) {
if (tree->is_invalid) {
POST_SEM ();
bound_error("freeing invalid region");
return;
}
tree->is_invalid = 1;
memset (ptr, 0x5a, tree->size);
p = free_reuse_list[free_reuse_index];
free_reuse_list[free_reuse_index] = ptr;
free_reuse_index = (free_reuse_index + 1) % FREE_REUSE_SIZE;
if (p)
tree = splay_delete((size_t)p, tree);
ptr = p;
}
POST_SEM ();
}
BOUND_FREE (ptr);
}
#if MALLOC_REDIR
void *realloc(void *ptr, size_t size)
#else
void *__bound_realloc(void *ptr, size_t size, const void *caller)
#endif
{
void *new_ptr;
if (size == 0) {
#if MALLOC_REDIR
free(ptr);
#else
__bound_free(ptr, caller);
#endif
return NULL;
}
new_ptr = BOUND_REALLOC (ptr, size + 1);
dprintf(stderr, "%s, %s(): %p, 0x%lx\n",
__FILE__, __FUNCTION__, new_ptr, (unsigned long)size);
if (NO_CHECKING_GET() == 0) {
WAIT_SEM ();
INCR_COUNT(bound_realloc_count);
if (ptr)
tree = splay_delete ((size_t) ptr, tree);
if (new_ptr) {
tree = splay_insert ((size_t) new_ptr, size ? size : size + 1, tree);
if (tree && tree->start == (size_t) new_ptr)
tree->type = TCC_TYPE_REALLOC;
}
POST_SEM ();
}
return new_ptr;
}
#if MALLOC_REDIR
void *calloc(size_t nmemb, size_t size)
#else
void *__bound_calloc(size_t nmemb, size_t size)
#endif
{
void *ptr;
size *= nmemb;
#if MALLOC_REDIR
/* This will catch the first dlsym call from __bound_init */
if (malloc_redir == NULL) {
__bound_init (0, -1);
if (malloc_redir == NULL) {
ptr = &initial_pool[pool_index];
pool_index = (pool_index + size + 15) & ~15;
if (pool_index >= sizeof (initial_pool))
bound_alloc_error ("initial memory pool too small");
dprintf (stderr, "%s, %s(): initial %p, 0x%lx\n",
__FILE__, __FUNCTION__, ptr, (unsigned long)size);
memset (ptr, 0, size);
return ptr;
}
}
#endif
ptr = BOUND_MALLOC(size + 1);
dprintf (stderr, "%s, %s(): %p, 0x%lx\n",
__FILE__, __FUNCTION__, ptr, (unsigned long)size);
if (ptr) {
memset (ptr, 0, size);
if (NO_CHECKING_GET() == 0) {
WAIT_SEM ();
INCR_COUNT(bound_calloc_count);
tree = splay_insert ((size_t) ptr, size ? size : size + 1, tree);
if (tree && tree->start == (size_t) ptr)
tree->type = TCC_TYPE_CALLOC;
POST_SEM ();
}
}
return ptr;
}
#if !defined(_WIN32)
void *__bound_mmap (void *start, size_t size, int prot,
int flags, int fd, off_t offset)
{
void *result;
dprintf(stderr, "%s, %s(): %p, 0x%lx\n",
__FILE__, __FUNCTION__, start, (unsigned long)size);
result = mmap (start, size, prot, flags, fd, offset);
if (result && NO_CHECKING_GET() == 0) {
WAIT_SEM ();
INCR_COUNT(bound_mmap_count);
tree = splay_insert((size_t)result, size, tree);
POST_SEM ();
}
return result;
}
int __bound_munmap (void *start, size_t size)
{
int result;
dprintf(stderr, "%s, %s(): %p, 0x%lx\n",
__FILE__, __FUNCTION__, start, (unsigned long)size);
if (start && NO_CHECKING_GET() == 0) {
WAIT_SEM ();
INCR_COUNT(bound_munmap_count);
tree = splay_delete ((size_t) start, tree);
POST_SEM ();
}
result = munmap (start, size);
return result;
}
#endif
/* some useful checked functions */
/* check that (p ... p + size - 1) lies inside 'p' region, if any */
static void __bound_check(const void *p, size_t size, const char *function)
{
if (size != 0 && __bound_ptr_add((void *)p, size) == INVALID_POINTER) {
bound_error("invalid pointer %p, size 0x%lx in %s",
p, (unsigned long)size, function);
}
}
static int check_overlap (const void *p1, size_t n1,
const void *p2, size_t n2,
const char *function)
{
const void *p1e = (const void *) ((const char *) p1 + n1);
const void *p2e = (const void *) ((const char *) p2 + n2);
if (NO_CHECKING_GET() == 0 && n1 != 0 && n2 !=0 &&
((p1 <= p2 && p1e > p2) || /* p1----p2====p1e----p2e */
(p2 <= p1 && p2e > p1))) { /* p2----p1====p2e----p1e */
bound_error("overlapping regions %p(0x%lx), %p(0x%lx) in %s",
p1, (unsigned long)n1, p2, (unsigned long)n2, function);
return never_fatal < 0;
}
return 0;
}
void *__bound_memcpy(void *dest, const void *src, size_t n)
{
dprintf(stderr, "%s, %s(): %p, %p, 0x%lx\n",
__FILE__, __FUNCTION__, dest, src, (unsigned long)n);
INCR_COUNT(bound_mempcy_count);
__bound_check(dest, n, "memcpy dest");
__bound_check(src, n, "memcpy src");
if (check_overlap(dest, n, src, n, "memcpy"))
return dest;
return memcpy(dest, src, n);
}
int __bound_memcmp(const void *s1, const void *s2, size_t n)
{
const unsigned char *u1 = (const unsigned char *) s1;
const unsigned char *u2 = (const unsigned char *) s2;
int retval = 0;
dprintf(stderr, "%s, %s(): %p, %p, 0x%lx\n",
__FILE__, __FUNCTION__, s1, s2, (unsigned long)n);
INCR_COUNT(bound_memcmp_count);
for (;;) {
if ((ssize_t) --n == -1)
break;
else if (*u1 != *u2) {
retval = *u1++ - *u2++;
break;
}
++u1;
++u2;
}
__bound_check(s1, (const void *)u1 - s1, "memcmp s1");
__bound_check(s2, (const void *)u2 - s2, "memcmp s2");
return retval;
}
void *__bound_memmove(void *dest, const void *src, size_t n)
{
dprintf(stderr, "%s, %s(): %p, %p, 0x%lx\n",
__FILE__, __FUNCTION__, dest, src, (unsigned long)n);
INCR_COUNT(bound_memmove_count);
__bound_check(dest, n, "memmove dest");
__bound_check(src, n, "memmove src");
return memmove(dest, src, n);
}
void *__bound_memset(void *s, int c, size_t n)
{
dprintf(stderr, "%s, %s(): %p, %d, 0x%lx\n",
__FILE__, __FUNCTION__, s, c, (unsigned long)n);
INCR_COUNT(bound_memset_count);
__bound_check(s, n, "memset");
return memset(s, c, n);
}
#if defined(__arm__)
void *__bound___aeabi_memcpy(void *dest, const void *src, size_t n)
{
dprintf(stderr, "%s, %s(): %p, %p, 0x%lx\n",
__FILE__, __FUNCTION__, dest, src, (unsigned long)n);
INCR_COUNT(bound_mempcy_count);
__bound_check(dest, n, "memcpy dest");
__bound_check(src, n, "memcpy src");
if (check_overlap(dest, n, src, n, "memcpy"))
return dest;
return __aeabi_memcpy(dest, src, n);
}
void *__bound___aeabi_memmove(void *dest, const void *src, size_t n)
{
dprintf(stderr, "%s, %s(): %p, %p, 0x%lx\n",
__FILE__, __FUNCTION__, dest, src, (unsigned long)n);
INCR_COUNT(bound_memmove_count);
__bound_check(dest, n, "memmove dest");
__bound_check(src, n, "memmove src");
return __aeabi_memmove(dest, src, n);
}
void *__bound___aeabi_memmove4(void *dest, const void *src, size_t n)
{
dprintf(stderr, "%s, %s(): %p, %p, 0x%lx\n",
__FILE__, __FUNCTION__, dest, src, (unsigned long)n);
INCR_COUNT(bound_memmove_count);
__bound_check(dest, n, "memmove dest");
__bound_check(src, n, "memmove src");
return __aeabi_memmove4(dest, src, n);
}
void *__bound___aeabi_memmove8(void *dest, const void *src, size_t n)
{
dprintf(stderr, "%s, %s(): %p, %p, 0x%lx\n",
__FILE__, __FUNCTION__, dest, src, (unsigned long)n);
INCR_COUNT(bound_memmove_count);
__bound_check(dest, n, "memmove dest");
__bound_check(src, n, "memmove src");
return __aeabi_memmove8(dest, src, n);
}
void *__bound___aeabi_memset(void *s, int c, size_t n)
{
dprintf(stderr, "%s, %s(): %p, %d, 0x%lx\n",
__FILE__, __FUNCTION__, s, c, (unsigned long)n);
INCR_COUNT(bound_memset_count);
__bound_check(s, n, "memset");
return __aeabi_memset(s, c, n);
}
#endif
int __bound_strlen(const char *s)
{
const char *p = s;
dprintf(stderr, "%s, %s(): %p\n",
__FILE__, __FUNCTION__, s);
INCR_COUNT(bound_strlen_count);
while (*p++);
__bound_check(s, p - s, "strlen");
return (p - s) - 1;
}
char *__bound_strcpy(char *dest, const char *src)
{
size_t len;
const char *p = src;
dprintf(stderr, "%s, %s(): %p, %p\n",
__FILE__, __FUNCTION__, dest, src);
INCR_COUNT(bound_strcpy_count);
while (*p++);
len = p - src;
__bound_check(dest, len, "strcpy dest");
__bound_check(src, len, "strcpy src");
if (check_overlap(dest, len, src, len, "strcpy"))
return dest;
return strcpy (dest, src);
}
char *__bound_strncpy(char *dest, const char *src, size_t n)
{
size_t len = n;
const char *p = src;
dprintf(stderr, "%s, %s(): %p, %p, 0x%lx\n",
__FILE__, __FUNCTION__, dest, src, (unsigned long)n);
INCR_COUNT(bound_strncpy_count);
while (len-- && *p++);
len = p - src;
__bound_check(dest, len, "strncpy dest");
__bound_check(src, len, "strncpy src");
if (check_overlap(dest, len, src, len, "strncpy"))
return dest;
return strncpy(dest, src, n);
}
int __bound_strcmp(const char *s1, const char *s2)
{
const unsigned char *u1 = (const unsigned char *) s1;
const unsigned char *u2 = (const unsigned char *) s2;
dprintf(stderr, "%s, %s(): %p, %p\n",
__FILE__, __FUNCTION__, s1, s2);
INCR_COUNT(bound_strcmp_count);
while (*u1 && *u1 == *u2) {
++u1;
++u2;
}
__bound_check(s1, ((const char *)u1 - s1) + 1, "strcmp s1");
__bound_check(s2, ((const char *)u2 - s2) + 1, "strcmp s2");
return *u1 - *u2;
}
int __bound_strncmp(const char *s1, const char *s2, size_t n)
{
const unsigned char *u1 = (const unsigned char *) s1;
const unsigned char *u2 = (const unsigned char *) s2;
int retval = 0;
dprintf(stderr, "%s, %s(): %p, %p, 0x%lx\n",
__FILE__, __FUNCTION__, s1, s2, (unsigned long)n);
INCR_COUNT(bound_strncmp_count);
do {
if ((ssize_t) --n == -1)
break;
else if (*u1 != *u2) {
retval = *u1++ - *u2++;
break;
}
++u2;
} while (*u1++);
__bound_check(s1, (const char *)u1 - s1, "strncmp s1");
__bound_check(s2, (const char *)u2 - s2, "strncmp s2");
return retval;
}
char *__bound_strcat(char *dest, const char *src)
{
char *r = dest;
const char *s = src;
dprintf(stderr, "%s, %s(): %p, %p\n",
__FILE__, __FUNCTION__, dest, src);
INCR_COUNT(bound_strcat_count);
while (*dest++);
while (*src++);
__bound_check(r, (dest - r) + (src - s) - 1, "strcat dest");
__bound_check(s, src - s, "strcat src");
if (check_overlap(r, (dest - r) + (src - s) - 1, s, src - s, "strcat"))
return dest;
return strcat(r, s);
}
char *__bound_strchr(const char *s, int c)
{
const unsigned char *str = (const unsigned char *) s;
unsigned char ch = c;
dprintf(stderr, "%s, %s(): %p, %d\n",
__FILE__, __FUNCTION__, s, ch);
INCR_COUNT(bound_strchr_count);
while (*str) {
if (*str == ch)
break;
++str;
}
__bound_check(s, ((const char *)str - s) + 1, "strchr");
return *str == ch ? (char *) str : NULL;
}
char *__bound_strdup(const char *s)
{
const char *p = s;
char *new;
INCR_COUNT(bound_strdup_count);
while (*p++);
__bound_check(s, p - s, "strdup");
new = BOUND_MALLOC ((p - s) + 1);
dprintf(stderr, "%s, %s(): %p, 0x%lx\n",
__FILE__, __FUNCTION__, new, (unsigned long)(p -s));
if (new) {
if (NO_CHECKING_GET() == 0 && no_strdup == 0) {
WAIT_SEM ();
tree = splay_insert((size_t)new, p - s, tree);
if (tree && tree->start == (size_t) new)
tree->type = TCC_TYPE_STRDUP;
POST_SEM ();
}
memcpy (new, s, p - s);
}
return new;
}
/*
An implementation of top-down splaying with sizes
D. Sleator <sleator@cs.cmu.edu>, January 1994.
This extends top-down-splay.c to maintain a size field in each node.
This is the number of nodes in the subtree rooted there. This makes
it possible to efficiently compute the rank of a key. (The rank is
the number of nodes to the left of the given key.) It it also
possible to quickly find the node of a given rank. Both of these
operations are illustrated in the code below. The remainder of this
introduction is taken from top-down-splay.c.
"Splay trees", or "self-adjusting search trees" are a simple and
efficient data structure for storing an ordered set. The data
structure consists of a binary tree, with no additional fields. It
allows searching, insertion, deletion, deletemin, deletemax,
splitting, joining, and many other operations, all with amortized
logarithmic performance. Since the trees adapt to the sequence of
requests, their performance on real access patterns is typically even
better. Splay trees are described in a number of texts and papers
[1,2,3,4].
The code here is adapted from simple top-down splay, at the bottom of
page 669 of [2]. It can be obtained via anonymous ftp from
spade.pc.cs.cmu.edu in directory /usr/sleator/public.
The chief modification here is that the splay operation works even if the
item being splayed is not in the tree, and even if the tree root of the
tree is NULL. So the line:
t = splay(i, t);
causes it to search for item with key i in the tree rooted at t. If it's
there, it is splayed to the root. If it isn't there, then the node put
at the root is the last one before NULL that would have been reached in a
normal binary search for i. (It's a neighbor of i in the tree.) This
allows many other operations to be easily implemented, as shown below.
[1] "Data Structures and Their Algorithms", Lewis and Denenberg,
Harper Collins, 1991, pp 243-251.
[2] "Self-adjusting Binary Search Trees" Sleator and Tarjan,
JACM Volume 32, No 3, July 1985, pp 652-686.
[3] "Data Structure and Algorithm Analysis", Mark Weiss,
Benjamin Cummins, 1992, pp 119-130.
[4] "Data Structures, Algorithms, and Performance", Derick Wood,
Addison-Wesley, 1993, pp 367-375
*/
/* Code adapted for tcc */
#define compare(start,tstart,tsize) (start < tstart ? -1 : \
start >= tstart+tsize ? 1 : 0)
static Tree * splay (size_t addr, Tree *t)
/* Splay using the key start (which may or may not be in the tree.) */
/* The starting root is t, and the tree used is defined by rat */
{
Tree N, *l, *r, *y;
int comp;
INCR_COUNT_SPLAY(bound_splay);
if (t == NULL) return t;
N.left = N.right = NULL;
l = r = &N;
for (;;) {
comp = compare(addr, t->start, t->size);
if (comp < 0) {
y = t->left;
if (y == NULL) break;
if (compare(addr, y->start, y->size) < 0) {
t->left = y->right; /* rotate right */
y->right = t;
t = y;
if (t->left == NULL) break;
}
r->left = t; /* link right */
r = t;
t = t->left;
} else if (comp > 0) {
y = t->right;
if (y == NULL) break;
if (compare(addr, y->start, y->size) > 0) {
t->right = y->left; /* rotate left */
y->left = t;
t = y;
if (t->right == NULL) break;
}
l->right = t; /* link left */
l = t;
t = t->right;
} else {
break;
}
}
l->right = t->left; /* assemble */
r->left = t->right;
t->left = N.right;
t->right = N.left;
return t;
}
#define compare_end(start,tend) (start < tend ? -1 : \
start > tend ? 1 : 0)
static Tree * splay_end (size_t addr, Tree *t)
/* Splay using the key start (which may or may not be in the tree.) */
/* The starting root is t, and the tree used is defined by rat */
{
Tree N, *l, *r, *y;
int comp;
INCR_COUNT_SPLAY(bound_splay_end);
if (t == NULL) return t;
N.left = N.right = NULL;
l = r = &N;
for (;;) {
comp = compare_end(addr, t->start + t->size);
if (comp < 0) {
y = t->left;
if (y == NULL) break;
if (compare_end(addr, y->start + y->size) < 0) {
t->left = y->right; /* rotate right */
y->right = t;
t = y;
if (t->left == NULL) break;
}
r->left = t; /* link right */
r = t;
t = t->left;
} else if (comp > 0) {
y = t->right;
if (y == NULL) break;
if (compare_end(addr, y->start + y->size) > 0) {
t->right = y->left; /* rotate left */
y->left = t;
t = y;
if (t->right == NULL) break;
}
l->right = t; /* link left */
l = t;
t = t->right;
} else {
break;
}
}
l->right = t->left; /* assemble */
r->left = t->right;
t->left = N.right;
t->right = N.left;
return t;
}
static Tree * splay_insert(size_t addr, size_t size, Tree * t)
/* Insert key start into the tree t, if it is not already there. */
/* Return a pointer to the resulting tree. */
{
Tree * new;
INCR_COUNT_SPLAY(bound_splay_insert);
if (t != NULL) {
t = splay(addr,t);
if (compare(addr, t->start, t->size)==0) {
return t; /* it's already there */
}
}
#if TREE_REUSE
if (tree_free_list) {
new = tree_free_list;
tree_free_list = new->left;
}
else
#endif
{
new = (Tree *) BOUND_MALLOC (sizeof (Tree));
}
if (new == NULL) {
bound_alloc_error("not enough memory for bound checking code");
}
else {
if (t == NULL) {
new->left = new->right = NULL;
} else if (compare(addr, t->start, t->size) < 0) {
new->left = t->left;
new->right = t;
t->left = NULL;
} else {
new->right = t->right;
new->left = t;
t->right = NULL;
}
new->start = addr;
new->size = size;
new->type = TCC_TYPE_NONE;
new->is_invalid = 0;
}
return new;
}
#define compare_destroy(start,tstart) (start < tstart ? -1 : \
start > tstart ? 1 : 0)
static Tree * splay_delete(size_t addr, Tree *t)
/* Deletes addr from the tree if it's there. */
/* Return a pointer to the resulting tree. */
{
Tree * x;
INCR_COUNT_SPLAY(bound_splay_delete);
if (t==NULL) return NULL;
t = splay(addr,t);
if (compare_destroy(addr, t->start) == 0) { /* found it */
if (t->left == NULL) {
x = t->right;
} else {
x = splay(addr, t->left);
x->right = t->right;
}
#if TREE_REUSE
t->left = tree_free_list;
tree_free_list = t;
#else
BOUND_FREE(t);
#endif
return x;
} else {
return t; /* It wasn't there */
}
}
void splay_printtree(Tree * t, int d)
{
int i;
if (t == NULL) return;
splay_printtree(t->right, d+1);
for (i=0; i<d; i++) fprintf(stderr," ");
fprintf(stderr,"%p(0x%lx:%u:%u)\n",
(void *) t->start, (unsigned long) t->size,
(unsigned)t->type, (unsigned)t->is_invalid);
splay_printtree(t->left, d+1);
}