mirror of
https://github.com/mirror/tinycc.git
synced 2025-01-25 06:00:11 +08:00
cdf715a0b5
With -b, this produces garbage. Code to call __bound_local_new is put at wrong place, overwriting the regparam setup code. Fix copied from x86_64-gen.c. void __attribute__((regparm(3))) fun(int unused) { char local[1]; }
2279 lines
65 KiB
C
2279 lines
65 KiB
C
/*
|
|
* x86-64 code generator for TCC
|
|
*
|
|
* Copyright (c) 2008 Shinichiro Hamaji
|
|
*
|
|
* Based on i386-gen.c by Fabrice Bellard
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
#ifdef TARGET_DEFS_ONLY
|
|
|
|
/* number of available registers */
|
|
#define NB_REGS 25
|
|
#define NB_ASM_REGS 8
|
|
|
|
/* a register can belong to several classes. The classes must be
|
|
sorted from more general to more precise (see gv2() code which does
|
|
assumptions on it). */
|
|
#define RC_INT 0x0001 /* generic integer register */
|
|
#define RC_FLOAT 0x0002 /* generic float register */
|
|
#define RC_RAX 0x0004
|
|
#define RC_RCX 0x0008
|
|
#define RC_RDX 0x0010
|
|
#define RC_ST0 0x0080 /* only for long double */
|
|
#define RC_R8 0x0100
|
|
#define RC_R9 0x0200
|
|
#define RC_R10 0x0400
|
|
#define RC_R11 0x0800
|
|
#define RC_XMM0 0x1000
|
|
#define RC_XMM1 0x2000
|
|
#define RC_XMM2 0x4000
|
|
#define RC_XMM3 0x8000
|
|
#define RC_XMM4 0x10000
|
|
#define RC_XMM5 0x20000
|
|
#define RC_XMM6 0x40000
|
|
#define RC_XMM7 0x80000
|
|
#define RC_IRET RC_RAX /* function return: integer register */
|
|
#define RC_LRET RC_RDX /* function return: second integer register */
|
|
#define RC_FRET RC_XMM0 /* function return: float register */
|
|
#define RC_QRET RC_XMM1 /* function return: second float register */
|
|
|
|
/* pretty names for the registers */
|
|
enum {
|
|
TREG_RAX = 0,
|
|
TREG_RCX = 1,
|
|
TREG_RDX = 2,
|
|
TREG_RSP = 4,
|
|
TREG_RSI = 6,
|
|
TREG_RDI = 7,
|
|
|
|
TREG_R8 = 8,
|
|
TREG_R9 = 9,
|
|
TREG_R10 = 10,
|
|
TREG_R11 = 11,
|
|
|
|
TREG_XMM0 = 16,
|
|
TREG_XMM1 = 17,
|
|
TREG_XMM2 = 18,
|
|
TREG_XMM3 = 19,
|
|
TREG_XMM4 = 20,
|
|
TREG_XMM5 = 21,
|
|
TREG_XMM6 = 22,
|
|
TREG_XMM7 = 23,
|
|
|
|
TREG_ST0 = 24,
|
|
|
|
TREG_MEM = 0x20
|
|
};
|
|
|
|
#define REX_BASE(reg) (((reg) >> 3) & 1)
|
|
#define REG_VALUE(reg) ((reg) & 7)
|
|
|
|
/* return registers for function */
|
|
#define REG_IRET TREG_RAX /* single word int return register */
|
|
#define REG_LRET TREG_RDX /* second word return register (for long long) */
|
|
#define REG_FRET TREG_XMM0 /* float return register */
|
|
#define REG_QRET TREG_XMM1 /* second float return register */
|
|
|
|
/* defined if function parameters must be evaluated in reverse order */
|
|
#define INVERT_FUNC_PARAMS
|
|
|
|
/* pointer size, in bytes */
|
|
#define PTR_SIZE 8
|
|
|
|
/* long double size and alignment, in bytes */
|
|
#define LDOUBLE_SIZE 16
|
|
#define LDOUBLE_ALIGN 16
|
|
/* maximum alignment (for aligned attribute support) */
|
|
#define MAX_ALIGN 16
|
|
|
|
/******************************************************/
|
|
/* ELF defines */
|
|
|
|
#define EM_TCC_TARGET EM_X86_64
|
|
|
|
/* relocation type for 32 bit data relocation */
|
|
#define R_DATA_32 R_X86_64_32
|
|
#define R_DATA_PTR R_X86_64_64
|
|
#define R_JMP_SLOT R_X86_64_JUMP_SLOT
|
|
#define R_COPY R_X86_64_COPY
|
|
|
|
#define ELF_START_ADDR 0x400000
|
|
#define ELF_PAGE_SIZE 0x200000
|
|
|
|
/******************************************************/
|
|
#else /* ! TARGET_DEFS_ONLY */
|
|
/******************************************************/
|
|
#include "tcc.h"
|
|
#include <assert.h>
|
|
|
|
ST_DATA const int reg_classes[NB_REGS] = {
|
|
/* eax */ RC_INT | RC_RAX,
|
|
/* ecx */ RC_INT | RC_RCX,
|
|
/* edx */ RC_INT | RC_RDX,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
RC_R8,
|
|
RC_R9,
|
|
RC_R10,
|
|
RC_R11,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
/* xmm0 */ RC_FLOAT | RC_XMM0,
|
|
/* xmm1 */ RC_FLOAT | RC_XMM1,
|
|
/* xmm2 */ RC_FLOAT | RC_XMM2,
|
|
/* xmm3 */ RC_FLOAT | RC_XMM3,
|
|
/* xmm4 */ RC_FLOAT | RC_XMM4,
|
|
/* xmm5 */ RC_FLOAT | RC_XMM5,
|
|
/* xmm6 an xmm7 are included so gv() can be used on them,
|
|
but they are not tagged with RC_FLOAT because they are
|
|
callee saved on Windows */
|
|
RC_XMM6,
|
|
RC_XMM7,
|
|
/* st0 */ RC_ST0
|
|
};
|
|
|
|
static unsigned long func_sub_sp_offset;
|
|
static int func_ret_sub;
|
|
|
|
/* XXX: make it faster ? */
|
|
ST_FUNC void g(int c)
|
|
{
|
|
int ind1;
|
|
ind1 = ind + 1;
|
|
if (ind1 > cur_text_section->data_allocated)
|
|
section_realloc(cur_text_section, ind1);
|
|
cur_text_section->data[ind] = c;
|
|
ind = ind1;
|
|
}
|
|
|
|
ST_FUNC void o(unsigned int c)
|
|
{
|
|
while (c) {
|
|
g(c);
|
|
c = c >> 8;
|
|
}
|
|
}
|
|
|
|
ST_FUNC void gen_le16(int v)
|
|
{
|
|
g(v);
|
|
g(v >> 8);
|
|
}
|
|
|
|
ST_FUNC void gen_le32(int c)
|
|
{
|
|
g(c);
|
|
g(c >> 8);
|
|
g(c >> 16);
|
|
g(c >> 24);
|
|
}
|
|
|
|
ST_FUNC void gen_le64(int64_t c)
|
|
{
|
|
g(c);
|
|
g(c >> 8);
|
|
g(c >> 16);
|
|
g(c >> 24);
|
|
g(c >> 32);
|
|
g(c >> 40);
|
|
g(c >> 48);
|
|
g(c >> 56);
|
|
}
|
|
|
|
static void orex(int ll, int r, int r2, int b)
|
|
{
|
|
if ((r & VT_VALMASK) >= VT_CONST)
|
|
r = 0;
|
|
if ((r2 & VT_VALMASK) >= VT_CONST)
|
|
r2 = 0;
|
|
if (ll || REX_BASE(r) || REX_BASE(r2))
|
|
o(0x40 | REX_BASE(r) | (REX_BASE(r2) << 2) | (ll << 3));
|
|
o(b);
|
|
}
|
|
|
|
/* output a symbol and patch all calls to it */
|
|
ST_FUNC void gsym_addr(int t, int a)
|
|
{
|
|
while (t) {
|
|
unsigned char *ptr = cur_text_section->data + t;
|
|
uint32_t n = read32le(ptr); /* next value */
|
|
write32le(ptr, a - t - 4);
|
|
t = n;
|
|
}
|
|
}
|
|
|
|
void gsym(int t)
|
|
{
|
|
gsym_addr(t, ind);
|
|
}
|
|
|
|
/* psym is used to put an instruction with a data field which is a
|
|
reference to a symbol. It is in fact the same as oad ! */
|
|
#define psym oad
|
|
|
|
static int is64_type(int t)
|
|
{
|
|
return ((t & VT_BTYPE) == VT_PTR ||
|
|
(t & VT_BTYPE) == VT_FUNC ||
|
|
(t & VT_BTYPE) == VT_LLONG);
|
|
}
|
|
|
|
/* instruction + 4 bytes data. Return the address of the data */
|
|
ST_FUNC int oad(int c, int s)
|
|
{
|
|
int ind1;
|
|
|
|
o(c);
|
|
ind1 = ind + 4;
|
|
if (ind1 > cur_text_section->data_allocated)
|
|
section_realloc(cur_text_section, ind1);
|
|
write32le(cur_text_section->data + ind, s);
|
|
s = ind;
|
|
ind = ind1;
|
|
return s;
|
|
}
|
|
|
|
ST_FUNC void gen_addr32(int r, Sym *sym, int c)
|
|
{
|
|
if (r & VT_SYM)
|
|
greloca(cur_text_section, sym, ind, R_X86_64_32, c), c=0;
|
|
gen_le32(c);
|
|
}
|
|
|
|
/* output constant with relocation if 'r & VT_SYM' is true */
|
|
ST_FUNC void gen_addr64(int r, Sym *sym, int64_t c)
|
|
{
|
|
if (r & VT_SYM)
|
|
greloca(cur_text_section, sym, ind, R_X86_64_64, c), c=0;
|
|
gen_le64(c);
|
|
}
|
|
|
|
/* output constant with relocation if 'r & VT_SYM' is true */
|
|
ST_FUNC void gen_addrpc32(int r, Sym *sym, int c)
|
|
{
|
|
if (r & VT_SYM)
|
|
greloca(cur_text_section, sym, ind, R_X86_64_PC32, c-4), c=4;
|
|
gen_le32(c-4);
|
|
}
|
|
|
|
/* output got address with relocation */
|
|
static void gen_gotpcrel(int r, Sym *sym, int c)
|
|
{
|
|
#ifndef TCC_TARGET_PE
|
|
greloca(cur_text_section, sym, ind, R_X86_64_GOTPCREL, -4);
|
|
#else
|
|
tcc_error("internal error: no GOT on PE: %s %x %x | %02x %02x %02x\n",
|
|
get_tok_str(sym->v, NULL), c, r,
|
|
cur_text_section->data[ind-3],
|
|
cur_text_section->data[ind-2],
|
|
cur_text_section->data[ind-1]
|
|
);
|
|
greloc(cur_text_section, sym, ind, R_X86_64_PC32);
|
|
#endif
|
|
gen_le32(0);
|
|
if (c) {
|
|
/* we use add c, %xxx for displacement */
|
|
orex(1, r, 0, 0x81);
|
|
o(0xc0 + REG_VALUE(r));
|
|
gen_le32(c);
|
|
}
|
|
}
|
|
|
|
static void gen_modrm_impl(int op_reg, int r, Sym *sym, int c, int is_got)
|
|
{
|
|
op_reg = REG_VALUE(op_reg) << 3;
|
|
if ((r & VT_VALMASK) == VT_CONST) {
|
|
/* constant memory reference */
|
|
o(0x05 | op_reg);
|
|
if (is_got) {
|
|
gen_gotpcrel(r, sym, c);
|
|
} else {
|
|
gen_addrpc32(r, sym, c);
|
|
}
|
|
} else if ((r & VT_VALMASK) == VT_LOCAL) {
|
|
/* currently, we use only ebp as base */
|
|
if (c == (char)c) {
|
|
/* short reference */
|
|
o(0x45 | op_reg);
|
|
g(c);
|
|
} else {
|
|
oad(0x85 | op_reg, c);
|
|
}
|
|
} else if ((r & VT_VALMASK) >= TREG_MEM) {
|
|
if (c) {
|
|
g(0x80 | op_reg | REG_VALUE(r));
|
|
gen_le32(c);
|
|
} else {
|
|
g(0x00 | op_reg | REG_VALUE(r));
|
|
}
|
|
} else {
|
|
g(0x00 | op_reg | REG_VALUE(r));
|
|
}
|
|
}
|
|
|
|
/* generate a modrm reference. 'op_reg' contains the addtionnal 3
|
|
opcode bits */
|
|
static void gen_modrm(int op_reg, int r, Sym *sym, int c)
|
|
{
|
|
gen_modrm_impl(op_reg, r, sym, c, 0);
|
|
}
|
|
|
|
/* generate a modrm reference. 'op_reg' contains the addtionnal 3
|
|
opcode bits */
|
|
static void gen_modrm64(int opcode, int op_reg, int r, Sym *sym, int c)
|
|
{
|
|
int is_got;
|
|
is_got = (op_reg & TREG_MEM) && !(sym->type.t & VT_STATIC);
|
|
orex(1, r, op_reg, opcode);
|
|
gen_modrm_impl(op_reg, r, sym, c, is_got);
|
|
}
|
|
|
|
|
|
/* load 'r' from value 'sv' */
|
|
void load(int r, SValue *sv)
|
|
{
|
|
int v, t, ft, fc, fr;
|
|
SValue v1;
|
|
|
|
#ifdef TCC_TARGET_PE
|
|
SValue v2;
|
|
sv = pe_getimport(sv, &v2);
|
|
#endif
|
|
|
|
fr = sv->r;
|
|
ft = sv->type.t & ~VT_DEFSIGN;
|
|
fc = sv->c.i;
|
|
|
|
ft &= ~(VT_VOLATILE | VT_CONSTANT);
|
|
|
|
#ifndef TCC_TARGET_PE
|
|
/* we use indirect access via got */
|
|
if ((fr & VT_VALMASK) == VT_CONST && (fr & VT_SYM) &&
|
|
(fr & VT_LVAL) && !(sv->sym->type.t & VT_STATIC)) {
|
|
/* use the result register as a temporal register */
|
|
int tr = r | TREG_MEM;
|
|
if (is_float(ft)) {
|
|
/* we cannot use float registers as a temporal register */
|
|
tr = get_reg(RC_INT) | TREG_MEM;
|
|
}
|
|
gen_modrm64(0x8b, tr, fr, sv->sym, 0);
|
|
|
|
/* load from the temporal register */
|
|
fr = tr | VT_LVAL;
|
|
}
|
|
#endif
|
|
|
|
v = fr & VT_VALMASK;
|
|
if (fr & VT_LVAL) {
|
|
int b, ll;
|
|
if (v == VT_LLOCAL) {
|
|
v1.type.t = VT_PTR;
|
|
v1.r = VT_LOCAL | VT_LVAL;
|
|
v1.c.i = fc;
|
|
fr = r;
|
|
if (!(reg_classes[fr] & (RC_INT|RC_R11)))
|
|
fr = get_reg(RC_INT);
|
|
load(fr, &v1);
|
|
}
|
|
ll = 0;
|
|
if ((ft & VT_BTYPE) == VT_FLOAT) {
|
|
b = 0x6e0f66;
|
|
r = REG_VALUE(r); /* movd */
|
|
} else if ((ft & VT_BTYPE) == VT_DOUBLE) {
|
|
b = 0x7e0ff3; /* movq */
|
|
r = REG_VALUE(r);
|
|
} else if ((ft & VT_BTYPE) == VT_LDOUBLE) {
|
|
b = 0xdb, r = 5; /* fldt */
|
|
} else if ((ft & VT_TYPE) == VT_BYTE || (ft & VT_TYPE) == VT_BOOL) {
|
|
b = 0xbe0f; /* movsbl */
|
|
} else if ((ft & VT_TYPE) == (VT_BYTE | VT_UNSIGNED)) {
|
|
b = 0xb60f; /* movzbl */
|
|
} else if ((ft & VT_TYPE) == VT_SHORT) {
|
|
b = 0xbf0f; /* movswl */
|
|
} else if ((ft & VT_TYPE) == (VT_SHORT | VT_UNSIGNED)) {
|
|
b = 0xb70f; /* movzwl */
|
|
} else {
|
|
assert(((ft & VT_BTYPE) == VT_INT) || ((ft & VT_BTYPE) == VT_LLONG)
|
|
|| ((ft & VT_BTYPE) == VT_PTR) || ((ft & VT_BTYPE) == VT_ENUM)
|
|
|| ((ft & VT_BTYPE) == VT_FUNC));
|
|
ll = is64_type(ft);
|
|
b = 0x8b;
|
|
}
|
|
if (ll) {
|
|
gen_modrm64(b, r, fr, sv->sym, fc);
|
|
} else {
|
|
orex(ll, fr, r, b);
|
|
gen_modrm(r, fr, sv->sym, fc);
|
|
}
|
|
} else {
|
|
if (v == VT_CONST) {
|
|
if (fr & VT_SYM) {
|
|
#ifdef TCC_TARGET_PE
|
|
orex(1,0,r,0x8d);
|
|
o(0x05 + REG_VALUE(r) * 8); /* lea xx(%rip), r */
|
|
gen_addrpc32(fr, sv->sym, fc);
|
|
#else
|
|
if (sv->sym->type.t & VT_STATIC) {
|
|
orex(1,0,r,0x8d);
|
|
o(0x05 + REG_VALUE(r) * 8); /* lea xx(%rip), r */
|
|
gen_addrpc32(fr, sv->sym, fc);
|
|
} else {
|
|
orex(1,0,r,0x8b);
|
|
o(0x05 + REG_VALUE(r) * 8); /* mov xx(%rip), r */
|
|
gen_gotpcrel(r, sv->sym, fc);
|
|
}
|
|
#endif
|
|
} else if (is64_type(ft)) {
|
|
orex(1,r,0, 0xb8 + REG_VALUE(r)); /* mov $xx, r */
|
|
gen_le64(sv->c.i);
|
|
} else {
|
|
orex(0,r,0, 0xb8 + REG_VALUE(r)); /* mov $xx, r */
|
|
gen_le32(fc);
|
|
}
|
|
} else if (v == VT_LOCAL) {
|
|
orex(1,0,r,0x8d); /* lea xxx(%ebp), r */
|
|
gen_modrm(r, VT_LOCAL, sv->sym, fc);
|
|
} else if (v == VT_CMP) {
|
|
orex(0,r,0,0);
|
|
if ((fc & ~0x100) != TOK_NE)
|
|
oad(0xb8 + REG_VALUE(r), 0); /* mov $0, r */
|
|
else
|
|
oad(0xb8 + REG_VALUE(r), 1); /* mov $1, r */
|
|
if (fc & 0x100)
|
|
{
|
|
/* This was a float compare. If the parity bit is
|
|
set the result was unordered, meaning false for everything
|
|
except TOK_NE, and true for TOK_NE. */
|
|
fc &= ~0x100;
|
|
o(0x037a + (REX_BASE(r) << 8));
|
|
}
|
|
orex(0,r,0, 0x0f); /* setxx %br */
|
|
o(fc);
|
|
o(0xc0 + REG_VALUE(r));
|
|
} else if (v == VT_JMP || v == VT_JMPI) {
|
|
t = v & 1;
|
|
orex(0,r,0,0);
|
|
oad(0xb8 + REG_VALUE(r), t); /* mov $1, r */
|
|
o(0x05eb + (REX_BASE(r) << 8)); /* jmp after */
|
|
gsym(fc);
|
|
orex(0,r,0,0);
|
|
oad(0xb8 + REG_VALUE(r), t ^ 1); /* mov $0, r */
|
|
} else if (v != r) {
|
|
if ((r >= TREG_XMM0) && (r <= TREG_XMM7)) {
|
|
if (v == TREG_ST0) {
|
|
/* gen_cvt_ftof(VT_DOUBLE); */
|
|
o(0xf0245cdd); /* fstpl -0x10(%rsp) */
|
|
/* movsd -0x10(%rsp),%xmmN */
|
|
o(0x100ff2);
|
|
o(0x44 + REG_VALUE(r)*8); /* %xmmN */
|
|
o(0xf024);
|
|
} else {
|
|
assert((v >= TREG_XMM0) && (v <= TREG_XMM7));
|
|
if ((ft & VT_BTYPE) == VT_FLOAT) {
|
|
o(0x100ff3);
|
|
} else {
|
|
assert((ft & VT_BTYPE) == VT_DOUBLE);
|
|
o(0x100ff2);
|
|
}
|
|
o(0xc0 + REG_VALUE(v) + REG_VALUE(r)*8);
|
|
}
|
|
} else if (r == TREG_ST0) {
|
|
assert((v >= TREG_XMM0) && (v <= TREG_XMM7));
|
|
/* gen_cvt_ftof(VT_LDOUBLE); */
|
|
/* movsd %xmmN,-0x10(%rsp) */
|
|
o(0x110ff2);
|
|
o(0x44 + REG_VALUE(r)*8); /* %xmmN */
|
|
o(0xf024);
|
|
o(0xf02444dd); /* fldl -0x10(%rsp) */
|
|
} else {
|
|
orex(1,r,v, 0x89);
|
|
o(0xc0 + REG_VALUE(r) + REG_VALUE(v) * 8); /* mov v, r */
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* store register 'r' in lvalue 'v' */
|
|
void store(int r, SValue *v)
|
|
{
|
|
int fr, bt, ft, fc;
|
|
int op64 = 0;
|
|
/* store the REX prefix in this variable when PIC is enabled */
|
|
int pic = 0;
|
|
|
|
#ifdef TCC_TARGET_PE
|
|
SValue v2;
|
|
v = pe_getimport(v, &v2);
|
|
#endif
|
|
|
|
ft = v->type.t;
|
|
fc = v->c.i;
|
|
fr = v->r & VT_VALMASK;
|
|
ft &= ~(VT_VOLATILE | VT_CONSTANT);
|
|
bt = ft & VT_BTYPE;
|
|
|
|
#ifndef TCC_TARGET_PE
|
|
/* we need to access the variable via got */
|
|
if (fr == VT_CONST && (v->r & VT_SYM)) {
|
|
/* mov xx(%rip), %r11 */
|
|
o(0x1d8b4c);
|
|
gen_gotpcrel(TREG_R11, v->sym, v->c.i);
|
|
pic = is64_type(bt) ? 0x49 : 0x41;
|
|
}
|
|
#endif
|
|
|
|
/* XXX: incorrect if float reg to reg */
|
|
if (bt == VT_FLOAT) {
|
|
o(0x66);
|
|
o(pic);
|
|
o(0x7e0f); /* movd */
|
|
r = REG_VALUE(r);
|
|
} else if (bt == VT_DOUBLE) {
|
|
o(0x66);
|
|
o(pic);
|
|
o(0xd60f); /* movq */
|
|
r = REG_VALUE(r);
|
|
} else if (bt == VT_LDOUBLE) {
|
|
o(0xc0d9); /* fld %st(0) */
|
|
o(pic);
|
|
o(0xdb); /* fstpt */
|
|
r = 7;
|
|
} else {
|
|
if (bt == VT_SHORT)
|
|
o(0x66);
|
|
o(pic);
|
|
if (bt == VT_BYTE || bt == VT_BOOL)
|
|
orex(0, 0, r, 0x88);
|
|
else if (is64_type(bt))
|
|
op64 = 0x89;
|
|
else
|
|
orex(0, 0, r, 0x89);
|
|
}
|
|
if (pic) {
|
|
/* xxx r, (%r11) where xxx is mov, movq, fld, or etc */
|
|
if (op64)
|
|
o(op64);
|
|
o(3 + (r << 3));
|
|
} else if (op64) {
|
|
if (fr == VT_CONST || fr == VT_LOCAL || (v->r & VT_LVAL)) {
|
|
gen_modrm64(op64, r, v->r, v->sym, fc);
|
|
} else if (fr != r) {
|
|
/* XXX: don't we really come here? */
|
|
abort();
|
|
o(0xc0 + fr + r * 8); /* mov r, fr */
|
|
}
|
|
} else {
|
|
if (fr == VT_CONST || fr == VT_LOCAL || (v->r & VT_LVAL)) {
|
|
gen_modrm(r, v->r, v->sym, fc);
|
|
} else if (fr != r) {
|
|
/* XXX: don't we really come here? */
|
|
abort();
|
|
o(0xc0 + fr + r * 8); /* mov r, fr */
|
|
}
|
|
}
|
|
}
|
|
|
|
/* 'is_jmp' is '1' if it is a jump */
|
|
static void gcall_or_jmp(int is_jmp)
|
|
{
|
|
int r;
|
|
if ((vtop->r & (VT_VALMASK | VT_LVAL)) == VT_CONST &&
|
|
((vtop->r & VT_SYM) || (vtop->c.i-4) == (int)(vtop->c.i-4))) {
|
|
/* constant case */
|
|
if (vtop->r & VT_SYM) {
|
|
/* relocation case */
|
|
#ifdef TCC_TARGET_PE
|
|
greloca(cur_text_section, vtop->sym, ind + 1, R_X86_64_PC32, (int)(vtop->c.i-4));
|
|
#else
|
|
greloca(cur_text_section, vtop->sym, ind + 1, R_X86_64_PLT32, (int)(vtop->c.i-4));
|
|
#endif
|
|
} else {
|
|
/* put an empty PC32 relocation */
|
|
put_elf_reloca(symtab_section, cur_text_section,
|
|
ind + 1, R_X86_64_PC32, 0, (int)(vtop->c.i-4));
|
|
}
|
|
oad(0xe8 + is_jmp, 0); /* call/jmp im */
|
|
} else {
|
|
/* otherwise, indirect call */
|
|
r = TREG_R11;
|
|
load(r, vtop);
|
|
o(0x41); /* REX */
|
|
o(0xff); /* call/jmp *r */
|
|
o(0xd0 + REG_VALUE(r) + (is_jmp << 4));
|
|
}
|
|
}
|
|
|
|
#if defined(CONFIG_TCC_BCHECK)
|
|
#ifndef TCC_TARGET_PE
|
|
static addr_t func_bound_offset;
|
|
static unsigned long func_bound_ind;
|
|
#endif
|
|
|
|
static void gen_static_call(int v)
|
|
{
|
|
Sym *sym = external_global_sym(v, &func_old_type, 0);
|
|
oad(0xe8, 0);
|
|
greloca(cur_text_section, sym, ind-4, R_X86_64_PC32, -4);
|
|
}
|
|
|
|
/* generate a bounded pointer addition */
|
|
ST_FUNC void gen_bounded_ptr_add(void)
|
|
{
|
|
/* save all temporary registers */
|
|
save_regs(0);
|
|
|
|
/* prepare fast x86_64 function call */
|
|
gv(RC_RAX);
|
|
o(0xc68948); // mov %rax,%rsi ## second arg in %rsi, this must be size
|
|
vtop--;
|
|
|
|
gv(RC_RAX);
|
|
o(0xc78948); // mov %rax,%rdi ## first arg in %rdi, this must be ptr
|
|
vtop--;
|
|
|
|
/* do a fast function call */
|
|
gen_static_call(TOK___bound_ptr_add);
|
|
|
|
/* returned pointer is in rax */
|
|
vtop++;
|
|
vtop->r = TREG_RAX | VT_BOUNDED;
|
|
|
|
|
|
/* relocation offset of the bounding function call point */
|
|
vtop->c.i = (cur_text_section->reloc->data_offset - sizeof(ElfW(Rela)));
|
|
}
|
|
|
|
/* patch pointer addition in vtop so that pointer dereferencing is
|
|
also tested */
|
|
ST_FUNC void gen_bounded_ptr_deref(void)
|
|
{
|
|
addr_t func;
|
|
int size, align;
|
|
ElfW(Rela) *rel;
|
|
Sym *sym;
|
|
|
|
size = 0;
|
|
/* XXX: put that code in generic part of tcc */
|
|
if (!is_float(vtop->type.t)) {
|
|
if (vtop->r & VT_LVAL_BYTE)
|
|
size = 1;
|
|
else if (vtop->r & VT_LVAL_SHORT)
|
|
size = 2;
|
|
}
|
|
if (!size)
|
|
size = type_size(&vtop->type, &align);
|
|
switch(size) {
|
|
case 1: func = TOK___bound_ptr_indir1; break;
|
|
case 2: func = TOK___bound_ptr_indir2; break;
|
|
case 4: func = TOK___bound_ptr_indir4; break;
|
|
case 8: func = TOK___bound_ptr_indir8; break;
|
|
case 12: func = TOK___bound_ptr_indir12; break;
|
|
case 16: func = TOK___bound_ptr_indir16; break;
|
|
default:
|
|
tcc_error("unhandled size when dereferencing bounded pointer");
|
|
func = 0;
|
|
break;
|
|
}
|
|
|
|
sym = external_global_sym(func, &func_old_type, 0);
|
|
if (!sym->c)
|
|
put_extern_sym(sym, NULL, 0, 0);
|
|
|
|
/* patch relocation */
|
|
/* XXX: find a better solution ? */
|
|
|
|
rel = (ElfW(Rela) *)(cur_text_section->reloc->data + vtop->c.i);
|
|
rel->r_info = ELF64_R_INFO(sym->c, ELF64_R_TYPE(rel->r_info));
|
|
}
|
|
#endif
|
|
|
|
#ifdef TCC_TARGET_PE
|
|
|
|
#define REGN 4
|
|
static const uint8_t arg_regs[REGN] = {
|
|
TREG_RCX, TREG_RDX, TREG_R8, TREG_R9
|
|
};
|
|
|
|
/* Prepare arguments in R10 and R11 rather than RCX and RDX
|
|
because gv() will not ever use these */
|
|
static int arg_prepare_reg(int idx) {
|
|
if (idx == 0 || idx == 1)
|
|
/* idx=0: r10, idx=1: r11 */
|
|
return idx + 10;
|
|
else
|
|
return arg_regs[idx];
|
|
}
|
|
|
|
static int func_scratch;
|
|
|
|
/* Generate function call. The function address is pushed first, then
|
|
all the parameters in call order. This functions pops all the
|
|
parameters and the function address. */
|
|
|
|
void gen_offs_sp(int b, int r, int d)
|
|
{
|
|
orex(1,0,r & 0x100 ? 0 : r, b);
|
|
if (d == (char)d) {
|
|
o(0x2444 | (REG_VALUE(r) << 3));
|
|
g(d);
|
|
} else {
|
|
o(0x2484 | (REG_VALUE(r) << 3));
|
|
gen_le32(d);
|
|
}
|
|
}
|
|
|
|
/* Return the number of registers needed to return the struct, or 0 if
|
|
returning via struct pointer. */
|
|
ST_FUNC int gfunc_sret(CType *vt, int variadic, CType *ret, int *ret_align, int *regsize)
|
|
{
|
|
int size, align;
|
|
*regsize = 8;
|
|
*ret_align = 1; // Never have to re-align return values for x86-64
|
|
size = type_size(vt, &align);
|
|
ret->ref = NULL;
|
|
if (size > 8) {
|
|
return 0;
|
|
} else if (size > 4) {
|
|
ret->t = VT_LLONG;
|
|
return 1;
|
|
} else if (size > 2) {
|
|
ret->t = VT_INT;
|
|
return 1;
|
|
} else if (size > 1) {
|
|
ret->t = VT_SHORT;
|
|
return 1;
|
|
} else {
|
|
ret->t = VT_BYTE;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
static int is_sse_float(int t) {
|
|
int bt;
|
|
bt = t & VT_BTYPE;
|
|
return bt == VT_DOUBLE || bt == VT_FLOAT;
|
|
}
|
|
|
|
int gfunc_arg_size(CType *type) {
|
|
int align;
|
|
if (type->t & (VT_ARRAY|VT_BITFIELD))
|
|
return 8;
|
|
return type_size(type, &align);
|
|
}
|
|
|
|
void gfunc_call(int nb_args)
|
|
{
|
|
int size, r, args_size, i, d, bt, struct_size;
|
|
int arg;
|
|
|
|
args_size = (nb_args < REGN ? REGN : nb_args) * PTR_SIZE;
|
|
arg = nb_args;
|
|
|
|
/* for struct arguments, we need to call memcpy and the function
|
|
call breaks register passing arguments we are preparing.
|
|
So, we process arguments which will be passed by stack first. */
|
|
struct_size = args_size;
|
|
for(i = 0; i < nb_args; i++) {
|
|
SValue *sv;
|
|
|
|
--arg;
|
|
sv = &vtop[-i];
|
|
bt = (sv->type.t & VT_BTYPE);
|
|
size = gfunc_arg_size(&sv->type);
|
|
|
|
if (size <= 8)
|
|
continue; /* arguments smaller than 8 bytes passed in registers or on stack */
|
|
|
|
if (bt == VT_STRUCT) {
|
|
/* align to stack align size */
|
|
size = (size + 15) & ~15;
|
|
/* generate structure store */
|
|
r = get_reg(RC_INT);
|
|
gen_offs_sp(0x8d, r, struct_size);
|
|
struct_size += size;
|
|
|
|
/* generate memcpy call */
|
|
vset(&sv->type, r | VT_LVAL, 0);
|
|
vpushv(sv);
|
|
vstore();
|
|
--vtop;
|
|
} else if (bt == VT_LDOUBLE) {
|
|
gv(RC_ST0);
|
|
gen_offs_sp(0xdb, 0x107, struct_size);
|
|
struct_size += 16;
|
|
}
|
|
}
|
|
|
|
if (func_scratch < struct_size)
|
|
func_scratch = struct_size;
|
|
|
|
arg = nb_args;
|
|
struct_size = args_size;
|
|
|
|
for(i = 0; i < nb_args; i++) {
|
|
--arg;
|
|
bt = (vtop->type.t & VT_BTYPE);
|
|
|
|
size = gfunc_arg_size(&vtop->type);
|
|
if (size > 8) {
|
|
/* align to stack align size */
|
|
size = (size + 15) & ~15;
|
|
if (arg >= REGN) {
|
|
d = get_reg(RC_INT);
|
|
gen_offs_sp(0x8d, d, struct_size);
|
|
gen_offs_sp(0x89, d, arg*8);
|
|
} else {
|
|
d = arg_prepare_reg(arg);
|
|
gen_offs_sp(0x8d, d, struct_size);
|
|
}
|
|
struct_size += size;
|
|
} else {
|
|
if (is_sse_float(vtop->type.t)) {
|
|
gv(RC_XMM0); /* only use one float register */
|
|
if (arg >= REGN) {
|
|
/* movq %xmm0, j*8(%rsp) */
|
|
gen_offs_sp(0xd60f66, 0x100, arg*8);
|
|
} else {
|
|
/* movaps %xmm0, %xmmN */
|
|
o(0x280f);
|
|
o(0xc0 + (arg << 3));
|
|
d = arg_prepare_reg(arg);
|
|
/* mov %xmm0, %rxx */
|
|
o(0x66);
|
|
orex(1,d,0, 0x7e0f);
|
|
o(0xc0 + REG_VALUE(d));
|
|
}
|
|
} else {
|
|
if (bt == VT_STRUCT) {
|
|
vtop->type.ref = NULL;
|
|
vtop->type.t = size > 4 ? VT_LLONG : size > 2 ? VT_INT
|
|
: size > 1 ? VT_SHORT : VT_BYTE;
|
|
}
|
|
|
|
r = gv(RC_INT);
|
|
if (arg >= REGN) {
|
|
gen_offs_sp(0x89, r, arg*8);
|
|
} else {
|
|
d = arg_prepare_reg(arg);
|
|
orex(1,d,r,0x89); /* mov */
|
|
o(0xc0 + REG_VALUE(r) * 8 + REG_VALUE(d));
|
|
}
|
|
}
|
|
}
|
|
vtop--;
|
|
}
|
|
save_regs(0);
|
|
|
|
/* Copy R10 and R11 into RCX and RDX, respectively */
|
|
if (nb_args > 0) {
|
|
o(0xd1894c); /* mov %r10, %rcx */
|
|
if (nb_args > 1) {
|
|
o(0xda894c); /* mov %r11, %rdx */
|
|
}
|
|
}
|
|
|
|
gcall_or_jmp(0);
|
|
/* other compilers don't clear the upper bits when returning char/short */
|
|
bt = vtop->type.ref->type.t & (VT_BTYPE | VT_UNSIGNED);
|
|
if (bt == (VT_BYTE | VT_UNSIGNED))
|
|
o(0xc0b60f); /* movzbl %al, %eax */
|
|
else if (bt == VT_BYTE)
|
|
o(0xc0be0f); /* movsbl %al, %eax */
|
|
else if (bt == VT_SHORT)
|
|
o(0x98); /* cwtl */
|
|
else if (bt == (VT_SHORT | VT_UNSIGNED))
|
|
o(0xc0b70f); /* movzbl %al, %eax */
|
|
#if 0 /* handled in gen_cast() */
|
|
else if (bt == VT_INT)
|
|
o(0x9848); /* cltq */
|
|
else if (bt == (VT_INT | VT_UNSIGNED))
|
|
o(0xc089); /* mov %eax,%eax */
|
|
#endif
|
|
vtop--;
|
|
}
|
|
|
|
|
|
#define FUNC_PROLOG_SIZE 11
|
|
|
|
/* generate function prolog of type 't' */
|
|
void gfunc_prolog(CType *func_type)
|
|
{
|
|
int addr, reg_param_index, bt, size;
|
|
Sym *sym;
|
|
CType *type;
|
|
|
|
func_ret_sub = 0;
|
|
func_scratch = 0;
|
|
loc = 0;
|
|
|
|
addr = PTR_SIZE * 2;
|
|
ind += FUNC_PROLOG_SIZE;
|
|
func_sub_sp_offset = ind;
|
|
reg_param_index = 0;
|
|
|
|
sym = func_type->ref;
|
|
|
|
/* if the function returns a structure, then add an
|
|
implicit pointer parameter */
|
|
func_vt = sym->type;
|
|
func_var = (sym->c == FUNC_ELLIPSIS);
|
|
size = gfunc_arg_size(&func_vt);
|
|
if (size > 8) {
|
|
gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr);
|
|
func_vc = addr;
|
|
reg_param_index++;
|
|
addr += 8;
|
|
}
|
|
|
|
/* define parameters */
|
|
while ((sym = sym->next) != NULL) {
|
|
type = &sym->type;
|
|
bt = type->t & VT_BTYPE;
|
|
size = gfunc_arg_size(type);
|
|
if (size > 8) {
|
|
if (reg_param_index < REGN) {
|
|
gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr);
|
|
}
|
|
sym_push(sym->v & ~SYM_FIELD, type, VT_LOCAL | VT_LVAL | VT_REF, addr);
|
|
} else {
|
|
if (reg_param_index < REGN) {
|
|
/* save arguments passed by register */
|
|
if ((bt == VT_FLOAT) || (bt == VT_DOUBLE)) {
|
|
o(0xd60f66); /* movq */
|
|
gen_modrm(reg_param_index, VT_LOCAL, NULL, addr);
|
|
} else {
|
|
gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr);
|
|
}
|
|
}
|
|
sym_push(sym->v & ~SYM_FIELD, type, VT_LOCAL | VT_LVAL, addr);
|
|
}
|
|
addr += 8;
|
|
reg_param_index++;
|
|
}
|
|
|
|
while (reg_param_index < REGN) {
|
|
if (func_type->ref->c == FUNC_ELLIPSIS) {
|
|
gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, addr);
|
|
addr += 8;
|
|
}
|
|
reg_param_index++;
|
|
}
|
|
}
|
|
|
|
/* generate function epilog */
|
|
void gfunc_epilog(void)
|
|
{
|
|
int v, saved_ind;
|
|
|
|
o(0xc9); /* leave */
|
|
if (func_ret_sub == 0) {
|
|
o(0xc3); /* ret */
|
|
} else {
|
|
o(0xc2); /* ret n */
|
|
g(func_ret_sub);
|
|
g(func_ret_sub >> 8);
|
|
}
|
|
|
|
saved_ind = ind;
|
|
ind = func_sub_sp_offset - FUNC_PROLOG_SIZE;
|
|
/* align local size to word & save local variables */
|
|
v = (func_scratch + -loc + 15) & -16;
|
|
|
|
if (v >= 4096) {
|
|
Sym *sym = external_global_sym(TOK___chkstk, &func_old_type, 0);
|
|
oad(0xb8, v); /* mov stacksize, %eax */
|
|
oad(0xe8, 0); /* call __chkstk, (does the stackframe too) */
|
|
greloca(cur_text_section, sym, ind-4, R_X86_64_PC32, -4);
|
|
o(0x90); /* fill for FUNC_PROLOG_SIZE = 11 bytes */
|
|
} else {
|
|
o(0xe5894855); /* push %rbp, mov %rsp, %rbp */
|
|
o(0xec8148); /* sub rsp, stacksize */
|
|
gen_le32(v);
|
|
}
|
|
|
|
cur_text_section->data_offset = saved_ind;
|
|
pe_add_unwind_data(ind, saved_ind, v);
|
|
ind = cur_text_section->data_offset;
|
|
}
|
|
|
|
#else
|
|
|
|
static void gadd_sp(int val)
|
|
{
|
|
if (val == (char)val) {
|
|
o(0xc48348);
|
|
g(val);
|
|
} else {
|
|
oad(0xc48148, val); /* add $xxx, %rsp */
|
|
}
|
|
}
|
|
|
|
typedef enum X86_64_Mode {
|
|
x86_64_mode_none,
|
|
x86_64_mode_memory,
|
|
x86_64_mode_integer,
|
|
x86_64_mode_sse,
|
|
x86_64_mode_x87
|
|
} X86_64_Mode;
|
|
|
|
static X86_64_Mode classify_x86_64_merge(X86_64_Mode a, X86_64_Mode b)
|
|
{
|
|
if (a == b)
|
|
return a;
|
|
else if (a == x86_64_mode_none)
|
|
return b;
|
|
else if (b == x86_64_mode_none)
|
|
return a;
|
|
else if ((a == x86_64_mode_memory) || (b == x86_64_mode_memory))
|
|
return x86_64_mode_memory;
|
|
else if ((a == x86_64_mode_integer) || (b == x86_64_mode_integer))
|
|
return x86_64_mode_integer;
|
|
else if ((a == x86_64_mode_x87) || (b == x86_64_mode_x87))
|
|
return x86_64_mode_memory;
|
|
else
|
|
return x86_64_mode_sse;
|
|
}
|
|
|
|
static X86_64_Mode classify_x86_64_inner(CType *ty)
|
|
{
|
|
X86_64_Mode mode;
|
|
Sym *f;
|
|
|
|
switch (ty->t & VT_BTYPE) {
|
|
case VT_VOID: return x86_64_mode_none;
|
|
|
|
case VT_INT:
|
|
case VT_BYTE:
|
|
case VT_SHORT:
|
|
case VT_LLONG:
|
|
case VT_BOOL:
|
|
case VT_PTR:
|
|
case VT_FUNC:
|
|
case VT_ENUM: return x86_64_mode_integer;
|
|
|
|
case VT_FLOAT:
|
|
case VT_DOUBLE: return x86_64_mode_sse;
|
|
|
|
case VT_LDOUBLE: return x86_64_mode_x87;
|
|
|
|
case VT_STRUCT:
|
|
f = ty->ref;
|
|
|
|
mode = x86_64_mode_none;
|
|
for (f = f->next; f; f = f->next)
|
|
mode = classify_x86_64_merge(mode, classify_x86_64_inner(&f->type));
|
|
|
|
return mode;
|
|
}
|
|
assert(0);
|
|
return 0;
|
|
}
|
|
|
|
static X86_64_Mode classify_x86_64_arg(CType *ty, CType *ret, int *psize, int *palign, int *reg_count)
|
|
{
|
|
X86_64_Mode mode;
|
|
int size, align, ret_t = 0;
|
|
|
|
if (ty->t & (VT_BITFIELD|VT_ARRAY)) {
|
|
*psize = 8;
|
|
*palign = 8;
|
|
*reg_count = 1;
|
|
ret_t = ty->t;
|
|
mode = x86_64_mode_integer;
|
|
} else {
|
|
size = type_size(ty, &align);
|
|
*psize = (size + 7) & ~7;
|
|
*palign = (align + 7) & ~7;
|
|
|
|
if (size > 16) {
|
|
mode = x86_64_mode_memory;
|
|
} else {
|
|
mode = classify_x86_64_inner(ty);
|
|
switch (mode) {
|
|
case x86_64_mode_integer:
|
|
if (size > 8) {
|
|
*reg_count = 2;
|
|
ret_t = VT_QLONG;
|
|
} else {
|
|
*reg_count = 1;
|
|
ret_t = (size > 4) ? VT_LLONG : VT_INT;
|
|
}
|
|
break;
|
|
|
|
case x86_64_mode_x87:
|
|
*reg_count = 1;
|
|
ret_t = VT_LDOUBLE;
|
|
break;
|
|
|
|
case x86_64_mode_sse:
|
|
if (size > 8) {
|
|
*reg_count = 2;
|
|
ret_t = VT_QFLOAT;
|
|
} else {
|
|
*reg_count = 1;
|
|
ret_t = (size > 4) ? VT_DOUBLE : VT_FLOAT;
|
|
}
|
|
break;
|
|
default: break; /* nothing to be done for x86_64_mode_memory and x86_64_mode_none*/
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ret) {
|
|
ret->ref = NULL;
|
|
ret->t = ret_t;
|
|
}
|
|
|
|
return mode;
|
|
}
|
|
|
|
ST_FUNC int classify_x86_64_va_arg(CType *ty)
|
|
{
|
|
/* This definition must be synced with stdarg.h */
|
|
enum __va_arg_type {
|
|
__va_gen_reg, __va_float_reg, __va_stack
|
|
};
|
|
int size, align, reg_count;
|
|
X86_64_Mode mode = classify_x86_64_arg(ty, NULL, &size, &align, ®_count);
|
|
switch (mode) {
|
|
default: return __va_stack;
|
|
case x86_64_mode_integer: return __va_gen_reg;
|
|
case x86_64_mode_sse: return __va_float_reg;
|
|
}
|
|
}
|
|
|
|
/* Return the number of registers needed to return the struct, or 0 if
|
|
returning via struct pointer. */
|
|
ST_FUNC int gfunc_sret(CType *vt, int variadic, CType *ret, int *ret_align, int *regsize)
|
|
{
|
|
int size, align, reg_count;
|
|
*ret_align = 1; // Never have to re-align return values for x86-64
|
|
*regsize = 8;
|
|
return (classify_x86_64_arg(vt, ret, &size, &align, ®_count) != x86_64_mode_memory);
|
|
}
|
|
|
|
#define REGN 6
|
|
static const uint8_t arg_regs[REGN] = {
|
|
TREG_RDI, TREG_RSI, TREG_RDX, TREG_RCX, TREG_R8, TREG_R9
|
|
};
|
|
|
|
static int arg_prepare_reg(int idx) {
|
|
if (idx == 2 || idx == 3)
|
|
/* idx=2: r10, idx=3: r11 */
|
|
return idx + 8;
|
|
else
|
|
return arg_regs[idx];
|
|
}
|
|
|
|
/* Generate function call. The function address is pushed first, then
|
|
all the parameters in call order. This functions pops all the
|
|
parameters and the function address. */
|
|
void gfunc_call(int nb_args)
|
|
{
|
|
X86_64_Mode mode;
|
|
CType type;
|
|
int size, align, r, args_size, stack_adjust, run_start, run_end, i, reg_count;
|
|
int nb_reg_args = 0;
|
|
int nb_sse_args = 0;
|
|
int sse_reg, gen_reg;
|
|
|
|
/* calculate the number of integer/float register arguments */
|
|
for(i = 0; i < nb_args; i++) {
|
|
mode = classify_x86_64_arg(&vtop[-i].type, NULL, &size, &align, ®_count);
|
|
if (mode == x86_64_mode_sse)
|
|
nb_sse_args += reg_count;
|
|
else if (mode == x86_64_mode_integer)
|
|
nb_reg_args += reg_count;
|
|
}
|
|
|
|
/* arguments are collected in runs. Each run is a collection of 8-byte aligned arguments
|
|
and ended by a 16-byte aligned argument. This is because, from the point of view of
|
|
the callee, argument alignment is computed from the bottom up. */
|
|
/* for struct arguments, we need to call memcpy and the function
|
|
call breaks register passing arguments we are preparing.
|
|
So, we process arguments which will be passed by stack first. */
|
|
gen_reg = nb_reg_args;
|
|
sse_reg = nb_sse_args;
|
|
run_start = 0;
|
|
args_size = 0;
|
|
while (run_start != nb_args) {
|
|
int run_gen_reg = gen_reg, run_sse_reg = sse_reg;
|
|
|
|
run_end = nb_args;
|
|
stack_adjust = 0;
|
|
for(i = run_start; (i < nb_args) && (run_end == nb_args); i++) {
|
|
mode = classify_x86_64_arg(&vtop[-i].type, NULL, &size, &align, ®_count);
|
|
switch (mode) {
|
|
case x86_64_mode_memory:
|
|
case x86_64_mode_x87:
|
|
stack_arg:
|
|
if (align == 16)
|
|
run_end = i;
|
|
else
|
|
stack_adjust += size;
|
|
break;
|
|
|
|
case x86_64_mode_sse:
|
|
sse_reg -= reg_count;
|
|
if (sse_reg + reg_count > 8) goto stack_arg;
|
|
break;
|
|
|
|
case x86_64_mode_integer:
|
|
gen_reg -= reg_count;
|
|
if (gen_reg + reg_count > REGN) goto stack_arg;
|
|
break;
|
|
default: break; /* nothing to be done for x86_64_mode_none */
|
|
}
|
|
}
|
|
|
|
gen_reg = run_gen_reg;
|
|
sse_reg = run_sse_reg;
|
|
|
|
/* adjust stack to align SSE boundary */
|
|
if (stack_adjust &= 15) {
|
|
/* fetch cpu flag before the following sub will change the value */
|
|
if (vtop >= vstack && (vtop->r & VT_VALMASK) == VT_CMP)
|
|
gv(RC_INT);
|
|
|
|
stack_adjust = 16 - stack_adjust;
|
|
o(0x48);
|
|
oad(0xec81, stack_adjust); /* sub $xxx, %rsp */
|
|
args_size += stack_adjust;
|
|
}
|
|
|
|
for(i = run_start; i < run_end;) {
|
|
/* Swap argument to top, it will possibly be changed here,
|
|
and might use more temps. At the end of the loop we keep
|
|
in on the stack and swap it back to its original position
|
|
if it is a register. */
|
|
SValue tmp = vtop[0];
|
|
int arg_stored = 1;
|
|
|
|
vtop[0] = vtop[-i];
|
|
vtop[-i] = tmp;
|
|
mode = classify_x86_64_arg(&vtop->type, NULL, &size, &align, ®_count);
|
|
|
|
switch (vtop->type.t & VT_BTYPE) {
|
|
case VT_STRUCT:
|
|
if (mode == x86_64_mode_sse) {
|
|
if (sse_reg > 8)
|
|
sse_reg -= reg_count;
|
|
else
|
|
arg_stored = 0;
|
|
} else if (mode == x86_64_mode_integer) {
|
|
if (gen_reg > REGN)
|
|
gen_reg -= reg_count;
|
|
else
|
|
arg_stored = 0;
|
|
}
|
|
|
|
if (arg_stored) {
|
|
/* allocate the necessary size on stack */
|
|
o(0x48);
|
|
oad(0xec81, size); /* sub $xxx, %rsp */
|
|
/* generate structure store */
|
|
r = get_reg(RC_INT);
|
|
orex(1, r, 0, 0x89); /* mov %rsp, r */
|
|
o(0xe0 + REG_VALUE(r));
|
|
vset(&vtop->type, r | VT_LVAL, 0);
|
|
vswap();
|
|
vstore();
|
|
args_size += size;
|
|
}
|
|
break;
|
|
|
|
case VT_LDOUBLE:
|
|
assert(0);
|
|
break;
|
|
|
|
case VT_FLOAT:
|
|
case VT_DOUBLE:
|
|
assert(mode == x86_64_mode_sse);
|
|
if (sse_reg > 8) {
|
|
--sse_reg;
|
|
r = gv(RC_FLOAT);
|
|
o(0x50); /* push $rax */
|
|
/* movq %xmmN, (%rsp) */
|
|
o(0xd60f66);
|
|
o(0x04 + REG_VALUE(r)*8);
|
|
o(0x24);
|
|
args_size += size;
|
|
} else {
|
|
arg_stored = 0;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
assert(mode == x86_64_mode_integer);
|
|
/* simple type */
|
|
/* XXX: implicit cast ? */
|
|
if (gen_reg > REGN) {
|
|
--gen_reg;
|
|
r = gv(RC_INT);
|
|
orex(0,r,0,0x50 + REG_VALUE(r)); /* push r */
|
|
args_size += size;
|
|
} else {
|
|
arg_stored = 0;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* And swap the argument back to it's original position. */
|
|
tmp = vtop[0];
|
|
vtop[0] = vtop[-i];
|
|
vtop[-i] = tmp;
|
|
|
|
if (arg_stored) {
|
|
vrotb(i+1);
|
|
assert((vtop->type.t == tmp.type.t) && (vtop->r == tmp.r));
|
|
vpop();
|
|
--nb_args;
|
|
--run_end;
|
|
} else {
|
|
++i;
|
|
}
|
|
}
|
|
|
|
/* handle 16 byte aligned arguments at end of run */
|
|
run_start = i = run_end;
|
|
while (i < nb_args) {
|
|
/* Rotate argument to top since it will always be popped */
|
|
mode = classify_x86_64_arg(&vtop[-i].type, NULL, &size, &align, ®_count);
|
|
if (align != 16)
|
|
break;
|
|
|
|
vrotb(i+1);
|
|
|
|
if ((vtop->type.t & VT_BTYPE) == VT_LDOUBLE) {
|
|
gv(RC_ST0);
|
|
oad(0xec8148, size); /* sub $xxx, %rsp */
|
|
o(0x7cdb); /* fstpt 0(%rsp) */
|
|
g(0x24);
|
|
g(0x00);
|
|
args_size += size;
|
|
} else {
|
|
assert(mode == x86_64_mode_memory);
|
|
|
|
/* allocate the necessary size on stack */
|
|
o(0x48);
|
|
oad(0xec81, size); /* sub $xxx, %rsp */
|
|
/* generate structure store */
|
|
r = get_reg(RC_INT);
|
|
orex(1, r, 0, 0x89); /* mov %rsp, r */
|
|
o(0xe0 + REG_VALUE(r));
|
|
vset(&vtop->type, r | VT_LVAL, 0);
|
|
vswap();
|
|
vstore();
|
|
args_size += size;
|
|
}
|
|
|
|
vpop();
|
|
--nb_args;
|
|
}
|
|
}
|
|
|
|
/* XXX This should be superfluous. */
|
|
save_regs(0); /* save used temporary registers */
|
|
|
|
/* then, we prepare register passing arguments.
|
|
Note that we cannot set RDX and RCX in this loop because gv()
|
|
may break these temporary registers. Let's use R10 and R11
|
|
instead of them */
|
|
assert(gen_reg <= REGN);
|
|
assert(sse_reg <= 8);
|
|
for(i = 0; i < nb_args; i++) {
|
|
mode = classify_x86_64_arg(&vtop->type, &type, &size, &align, ®_count);
|
|
/* Alter stack entry type so that gv() knows how to treat it */
|
|
vtop->type = type;
|
|
if (mode == x86_64_mode_sse) {
|
|
if (reg_count == 2) {
|
|
sse_reg -= 2;
|
|
gv(RC_FRET); /* Use pair load into xmm0 & xmm1 */
|
|
if (sse_reg) { /* avoid redundant movaps %xmm0, %xmm0 */
|
|
/* movaps %xmm0, %xmmN */
|
|
o(0x280f);
|
|
o(0xc0 + (sse_reg << 3));
|
|
/* movaps %xmm1, %xmmN */
|
|
o(0x280f);
|
|
o(0xc1 + ((sse_reg+1) << 3));
|
|
}
|
|
} else {
|
|
assert(reg_count == 1);
|
|
--sse_reg;
|
|
/* Load directly to register */
|
|
gv(RC_XMM0 << sse_reg);
|
|
}
|
|
} else if (mode == x86_64_mode_integer) {
|
|
/* simple type */
|
|
/* XXX: implicit cast ? */
|
|
int d;
|
|
gen_reg -= reg_count;
|
|
r = gv(RC_INT);
|
|
d = arg_prepare_reg(gen_reg);
|
|
orex(1,d,r,0x89); /* mov */
|
|
o(0xc0 + REG_VALUE(r) * 8 + REG_VALUE(d));
|
|
if (reg_count == 2) {
|
|
d = arg_prepare_reg(gen_reg+1);
|
|
orex(1,d,vtop->r2,0x89); /* mov */
|
|
o(0xc0 + REG_VALUE(vtop->r2) * 8 + REG_VALUE(d));
|
|
}
|
|
}
|
|
vtop--;
|
|
}
|
|
assert(gen_reg == 0);
|
|
assert(sse_reg == 0);
|
|
|
|
/* We shouldn't have many operands on the stack anymore, but the
|
|
call address itself is still there, and it might be in %eax
|
|
(or edx/ecx) currently, which the below writes would clobber.
|
|
So evict all remaining operands here. */
|
|
save_regs(0);
|
|
|
|
/* Copy R10 and R11 into RDX and RCX, respectively */
|
|
if (nb_reg_args > 2) {
|
|
o(0xd2894c); /* mov %r10, %rdx */
|
|
if (nb_reg_args > 3) {
|
|
o(0xd9894c); /* mov %r11, %rcx */
|
|
}
|
|
}
|
|
|
|
if (vtop->type.ref->c != FUNC_NEW) /* implies FUNC_OLD or FUNC_ELLIPSIS */
|
|
oad(0xb8, nb_sse_args < 8 ? nb_sse_args : 8); /* mov nb_sse_args, %eax */
|
|
gcall_or_jmp(0);
|
|
if (args_size)
|
|
gadd_sp(args_size);
|
|
vtop--;
|
|
}
|
|
|
|
|
|
#define FUNC_PROLOG_SIZE 11
|
|
|
|
static void push_arg_reg(int i) {
|
|
loc -= 8;
|
|
gen_modrm64(0x89, arg_regs[i], VT_LOCAL, NULL, loc);
|
|
}
|
|
|
|
/* generate function prolog of type 't' */
|
|
void gfunc_prolog(CType *func_type)
|
|
{
|
|
X86_64_Mode mode;
|
|
int i, addr, align, size, reg_count;
|
|
int param_addr = 0, reg_param_index, sse_param_index;
|
|
Sym *sym;
|
|
CType *type;
|
|
|
|
sym = func_type->ref;
|
|
addr = PTR_SIZE * 2;
|
|
loc = 0;
|
|
ind += FUNC_PROLOG_SIZE;
|
|
func_sub_sp_offset = ind;
|
|
func_ret_sub = 0;
|
|
|
|
if (func_type->ref->c == FUNC_ELLIPSIS) {
|
|
int seen_reg_num, seen_sse_num, seen_stack_size;
|
|
seen_reg_num = seen_sse_num = 0;
|
|
/* frame pointer and return address */
|
|
seen_stack_size = PTR_SIZE * 2;
|
|
/* count the number of seen parameters */
|
|
sym = func_type->ref;
|
|
while ((sym = sym->next) != NULL) {
|
|
type = &sym->type;
|
|
mode = classify_x86_64_arg(type, NULL, &size, &align, ®_count);
|
|
switch (mode) {
|
|
default:
|
|
stack_arg:
|
|
seen_stack_size = ((seen_stack_size + align - 1) & -align) + size;
|
|
break;
|
|
|
|
case x86_64_mode_integer:
|
|
if (seen_reg_num + reg_count <= 8) {
|
|
seen_reg_num += reg_count;
|
|
} else {
|
|
seen_reg_num = 8;
|
|
goto stack_arg;
|
|
}
|
|
break;
|
|
|
|
case x86_64_mode_sse:
|
|
if (seen_sse_num + reg_count <= 8) {
|
|
seen_sse_num += reg_count;
|
|
} else {
|
|
seen_sse_num = 8;
|
|
goto stack_arg;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
loc -= 16;
|
|
/* movl $0x????????, -0x10(%rbp) */
|
|
o(0xf045c7);
|
|
gen_le32(seen_reg_num * 8);
|
|
/* movl $0x????????, -0xc(%rbp) */
|
|
o(0xf445c7);
|
|
gen_le32(seen_sse_num * 16 + 48);
|
|
/* movl $0x????????, -0x8(%rbp) */
|
|
o(0xf845c7);
|
|
gen_le32(seen_stack_size);
|
|
|
|
/* save all register passing arguments */
|
|
for (i = 0; i < 8; i++) {
|
|
loc -= 16;
|
|
o(0xd60f66); /* movq */
|
|
gen_modrm(7 - i, VT_LOCAL, NULL, loc);
|
|
/* movq $0, loc+8(%rbp) */
|
|
o(0x85c748);
|
|
gen_le32(loc + 8);
|
|
gen_le32(0);
|
|
}
|
|
for (i = 0; i < REGN; i++) {
|
|
push_arg_reg(REGN-1-i);
|
|
}
|
|
}
|
|
|
|
sym = func_type->ref;
|
|
reg_param_index = 0;
|
|
sse_param_index = 0;
|
|
|
|
/* if the function returns a structure, then add an
|
|
implicit pointer parameter */
|
|
func_vt = sym->type;
|
|
mode = classify_x86_64_arg(&func_vt, NULL, &size, &align, ®_count);
|
|
if (mode == x86_64_mode_memory) {
|
|
push_arg_reg(reg_param_index);
|
|
func_vc = loc;
|
|
reg_param_index++;
|
|
}
|
|
/* define parameters */
|
|
while ((sym = sym->next) != NULL) {
|
|
type = &sym->type;
|
|
mode = classify_x86_64_arg(type, NULL, &size, &align, ®_count);
|
|
switch (mode) {
|
|
case x86_64_mode_sse:
|
|
if (sse_param_index + reg_count <= 8) {
|
|
/* save arguments passed by register */
|
|
loc -= reg_count * 8;
|
|
param_addr = loc;
|
|
for (i = 0; i < reg_count; ++i) {
|
|
o(0xd60f66); /* movq */
|
|
gen_modrm(sse_param_index, VT_LOCAL, NULL, param_addr + i*8);
|
|
++sse_param_index;
|
|
}
|
|
} else {
|
|
addr = (addr + align - 1) & -align;
|
|
param_addr = addr;
|
|
addr += size;
|
|
}
|
|
break;
|
|
|
|
case x86_64_mode_memory:
|
|
case x86_64_mode_x87:
|
|
addr = (addr + align - 1) & -align;
|
|
param_addr = addr;
|
|
addr += size;
|
|
break;
|
|
|
|
case x86_64_mode_integer: {
|
|
if (reg_param_index + reg_count <= REGN) {
|
|
/* save arguments passed by register */
|
|
loc -= reg_count * 8;
|
|
param_addr = loc;
|
|
for (i = 0; i < reg_count; ++i) {
|
|
gen_modrm64(0x89, arg_regs[reg_param_index], VT_LOCAL, NULL, param_addr + i*8);
|
|
++reg_param_index;
|
|
}
|
|
} else {
|
|
addr = (addr + align - 1) & -align;
|
|
param_addr = addr;
|
|
addr += size;
|
|
}
|
|
break;
|
|
}
|
|
default: break; /* nothing to be done for x86_64_mode_none */
|
|
}
|
|
sym_push(sym->v & ~SYM_FIELD, type,
|
|
VT_LOCAL | VT_LVAL, param_addr);
|
|
}
|
|
|
|
#ifdef CONFIG_TCC_BCHECK
|
|
/* leave some room for bound checking code */
|
|
if (tcc_state->do_bounds_check) {
|
|
func_bound_offset = lbounds_section->data_offset;
|
|
func_bound_ind = ind;
|
|
oad(0xb8, 0); /* lbound section pointer */
|
|
o(0xc78948); /* mov %rax,%rdi ## first arg in %rdi, this must be ptr */
|
|
oad(0xb8, 0); /* call to function */
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* generate function epilog */
|
|
void gfunc_epilog(void)
|
|
{
|
|
int v, saved_ind;
|
|
|
|
#ifdef CONFIG_TCC_BCHECK
|
|
if (tcc_state->do_bounds_check
|
|
&& func_bound_offset != lbounds_section->data_offset)
|
|
{
|
|
addr_t saved_ind;
|
|
addr_t *bounds_ptr;
|
|
Sym *sym_data;
|
|
|
|
/* add end of table info */
|
|
bounds_ptr = section_ptr_add(lbounds_section, sizeof(addr_t));
|
|
*bounds_ptr = 0;
|
|
|
|
/* generate bound local allocation */
|
|
sym_data = get_sym_ref(&char_pointer_type, lbounds_section,
|
|
func_bound_offset, lbounds_section->data_offset);
|
|
saved_ind = ind;
|
|
ind = func_bound_ind;
|
|
greloc(cur_text_section, sym_data, ind + 1, R_386_32);
|
|
ind = ind + 5 + 3;
|
|
gen_static_call(TOK___bound_local_new);
|
|
ind = saved_ind;
|
|
|
|
/* generate bound check local freeing */
|
|
o(0x5250); /* save returned value, if any */
|
|
greloc(cur_text_section, sym_data, ind + 1, R_386_32);
|
|
oad(0xb8, 0); /* mov xxx, %rax */
|
|
o(0xc78948); /* mov %rax,%rdi # first arg in %rdi, this must be ptr */
|
|
gen_static_call(TOK___bound_local_delete);
|
|
o(0x585a); /* restore returned value, if any */
|
|
}
|
|
#endif
|
|
o(0xc9); /* leave */
|
|
if (func_ret_sub == 0) {
|
|
o(0xc3); /* ret */
|
|
} else {
|
|
o(0xc2); /* ret n */
|
|
g(func_ret_sub);
|
|
g(func_ret_sub >> 8);
|
|
}
|
|
/* align local size to word & save local variables */
|
|
v = (-loc + 15) & -16;
|
|
saved_ind = ind;
|
|
ind = func_sub_sp_offset - FUNC_PROLOG_SIZE;
|
|
o(0xe5894855); /* push %rbp, mov %rsp, %rbp */
|
|
o(0xec8148); /* sub rsp, stacksize */
|
|
gen_le32(v);
|
|
ind = saved_ind;
|
|
}
|
|
|
|
#endif /* not PE */
|
|
|
|
/* generate a jump to a label */
|
|
int gjmp(int t)
|
|
{
|
|
return psym(0xe9, t);
|
|
}
|
|
|
|
/* generate a jump to a fixed address */
|
|
void gjmp_addr(int a)
|
|
{
|
|
int r;
|
|
r = a - ind - 2;
|
|
if (r == (char)r) {
|
|
g(0xeb);
|
|
g(r);
|
|
} else {
|
|
oad(0xe9, a - ind - 5);
|
|
}
|
|
}
|
|
|
|
ST_FUNC void gtst_addr(int inv, int a)
|
|
{
|
|
inv ^= (vtop--)->c.i;
|
|
a -= ind + 2;
|
|
if (a == (char)a) {
|
|
g(inv - 32);
|
|
g(a);
|
|
} else {
|
|
g(0x0f);
|
|
oad(inv - 16, a - 4);
|
|
}
|
|
}
|
|
|
|
/* generate a test. set 'inv' to invert test. Stack entry is popped */
|
|
ST_FUNC int gtst(int inv, int t)
|
|
{
|
|
int v = vtop->r & VT_VALMASK;
|
|
if (v == VT_CMP) {
|
|
/* fast case : can jump directly since flags are set */
|
|
if (vtop->c.i & 0x100)
|
|
{
|
|
/* This was a float compare. If the parity flag is set
|
|
the result was unordered. For anything except != this
|
|
means false and we don't jump (anding both conditions).
|
|
For != this means true (oring both).
|
|
Take care about inverting the test. We need to jump
|
|
to our target if the result was unordered and test wasn't NE,
|
|
otherwise if unordered we don't want to jump. */
|
|
vtop->c.i &= ~0x100;
|
|
if (inv == (vtop->c.i == TOK_NE))
|
|
o(0x067a); /* jp +6 */
|
|
else
|
|
{
|
|
g(0x0f);
|
|
t = psym(0x8a, t); /* jp t */
|
|
}
|
|
}
|
|
g(0x0f);
|
|
t = psym((vtop->c.i - 16) ^ inv, t);
|
|
} else if (v == VT_JMP || v == VT_JMPI) {
|
|
/* && or || optimization */
|
|
if ((v & 1) == inv) {
|
|
/* insert vtop->c jump list in t */
|
|
uint32_t n1, n = vtop->c.i;
|
|
if (n) {
|
|
while ((n1 = read32le(cur_text_section->data + n)))
|
|
n = n1;
|
|
write32le(cur_text_section->data + n, t);
|
|
t = vtop->c.i;
|
|
}
|
|
} else {
|
|
t = gjmp(t);
|
|
gsym(vtop->c.i);
|
|
}
|
|
}
|
|
vtop--;
|
|
return t;
|
|
}
|
|
|
|
/* generate an integer binary operation */
|
|
void gen_opi(int op)
|
|
{
|
|
int r, fr, opc, c;
|
|
int ll, uu, cc;
|
|
|
|
ll = is64_type(vtop[-1].type.t);
|
|
uu = (vtop[-1].type.t & VT_UNSIGNED) != 0;
|
|
cc = (vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST;
|
|
|
|
switch(op) {
|
|
case '+':
|
|
case TOK_ADDC1: /* add with carry generation */
|
|
opc = 0;
|
|
gen_op8:
|
|
if (cc && (!ll || (int)vtop->c.i == vtop->c.i)) {
|
|
/* constant case */
|
|
vswap();
|
|
r = gv(RC_INT);
|
|
vswap();
|
|
c = vtop->c.i;
|
|
if (c == (char)c) {
|
|
/* XXX: generate inc and dec for smaller code ? */
|
|
orex(ll, r, 0, 0x83);
|
|
o(0xc0 | (opc << 3) | REG_VALUE(r));
|
|
g(c);
|
|
} else {
|
|
orex(ll, r, 0, 0x81);
|
|
oad(0xc0 | (opc << 3) | REG_VALUE(r), c);
|
|
}
|
|
} else {
|
|
gv2(RC_INT, RC_INT);
|
|
r = vtop[-1].r;
|
|
fr = vtop[0].r;
|
|
orex(ll, r, fr, (opc << 3) | 0x01);
|
|
o(0xc0 + REG_VALUE(r) + REG_VALUE(fr) * 8);
|
|
}
|
|
vtop--;
|
|
if (op >= TOK_ULT && op <= TOK_GT) {
|
|
vtop->r = VT_CMP;
|
|
vtop->c.i = op;
|
|
}
|
|
break;
|
|
case '-':
|
|
case TOK_SUBC1: /* sub with carry generation */
|
|
opc = 5;
|
|
goto gen_op8;
|
|
case TOK_ADDC2: /* add with carry use */
|
|
opc = 2;
|
|
goto gen_op8;
|
|
case TOK_SUBC2: /* sub with carry use */
|
|
opc = 3;
|
|
goto gen_op8;
|
|
case '&':
|
|
opc = 4;
|
|
goto gen_op8;
|
|
case '^':
|
|
opc = 6;
|
|
goto gen_op8;
|
|
case '|':
|
|
opc = 1;
|
|
goto gen_op8;
|
|
case '*':
|
|
gv2(RC_INT, RC_INT);
|
|
r = vtop[-1].r;
|
|
fr = vtop[0].r;
|
|
orex(ll, fr, r, 0xaf0f); /* imul fr, r */
|
|
o(0xc0 + REG_VALUE(fr) + REG_VALUE(r) * 8);
|
|
vtop--;
|
|
break;
|
|
case TOK_SHL:
|
|
opc = 4;
|
|
goto gen_shift;
|
|
case TOK_SHR:
|
|
opc = 5;
|
|
goto gen_shift;
|
|
case TOK_SAR:
|
|
opc = 7;
|
|
gen_shift:
|
|
opc = 0xc0 | (opc << 3);
|
|
if (cc) {
|
|
/* constant case */
|
|
vswap();
|
|
r = gv(RC_INT);
|
|
vswap();
|
|
orex(ll, r, 0, 0xc1); /* shl/shr/sar $xxx, r */
|
|
o(opc | REG_VALUE(r));
|
|
g(vtop->c.i & (ll ? 63 : 31));
|
|
} else {
|
|
/* we generate the shift in ecx */
|
|
gv2(RC_INT, RC_RCX);
|
|
r = vtop[-1].r;
|
|
orex(ll, r, 0, 0xd3); /* shl/shr/sar %cl, r */
|
|
o(opc | REG_VALUE(r));
|
|
}
|
|
vtop--;
|
|
break;
|
|
case TOK_UDIV:
|
|
case TOK_UMOD:
|
|
uu = 1;
|
|
goto divmod;
|
|
case '/':
|
|
case '%':
|
|
case TOK_PDIV:
|
|
uu = 0;
|
|
divmod:
|
|
/* first operand must be in eax */
|
|
/* XXX: need better constraint for second operand */
|
|
gv2(RC_RAX, RC_RCX);
|
|
r = vtop[-1].r;
|
|
fr = vtop[0].r;
|
|
vtop--;
|
|
save_reg(TREG_RDX);
|
|
orex(ll, 0, 0, uu ? 0xd231 : 0x99); /* xor %edx,%edx : cqto */
|
|
orex(ll, fr, 0, 0xf7); /* div fr, %eax */
|
|
o((uu ? 0xf0 : 0xf8) + REG_VALUE(fr));
|
|
if (op == '%' || op == TOK_UMOD)
|
|
r = TREG_RDX;
|
|
else
|
|
r = TREG_RAX;
|
|
vtop->r = r;
|
|
break;
|
|
default:
|
|
opc = 7;
|
|
goto gen_op8;
|
|
}
|
|
}
|
|
|
|
void gen_opl(int op)
|
|
{
|
|
gen_opi(op);
|
|
}
|
|
|
|
/* generate a floating point operation 'v = t1 op t2' instruction. The
|
|
two operands are guaranted to have the same floating point type */
|
|
/* XXX: need to use ST1 too */
|
|
void gen_opf(int op)
|
|
{
|
|
int a, ft, fc, swapped, r;
|
|
int float_type =
|
|
(vtop->type.t & VT_BTYPE) == VT_LDOUBLE ? RC_ST0 : RC_FLOAT;
|
|
|
|
/* convert constants to memory references */
|
|
if ((vtop[-1].r & (VT_VALMASK | VT_LVAL)) == VT_CONST) {
|
|
vswap();
|
|
gv(float_type);
|
|
vswap();
|
|
}
|
|
if ((vtop[0].r & (VT_VALMASK | VT_LVAL)) == VT_CONST)
|
|
gv(float_type);
|
|
|
|
/* must put at least one value in the floating point register */
|
|
if ((vtop[-1].r & VT_LVAL) &&
|
|
(vtop[0].r & VT_LVAL)) {
|
|
vswap();
|
|
gv(float_type);
|
|
vswap();
|
|
}
|
|
swapped = 0;
|
|
/* swap the stack if needed so that t1 is the register and t2 is
|
|
the memory reference */
|
|
if (vtop[-1].r & VT_LVAL) {
|
|
vswap();
|
|
swapped = 1;
|
|
}
|
|
if ((vtop->type.t & VT_BTYPE) == VT_LDOUBLE) {
|
|
if (op >= TOK_ULT && op <= TOK_GT) {
|
|
/* load on stack second operand */
|
|
load(TREG_ST0, vtop);
|
|
save_reg(TREG_RAX); /* eax is used by FP comparison code */
|
|
if (op == TOK_GE || op == TOK_GT)
|
|
swapped = !swapped;
|
|
else if (op == TOK_EQ || op == TOK_NE)
|
|
swapped = 0;
|
|
if (swapped)
|
|
o(0xc9d9); /* fxch %st(1) */
|
|
if (op == TOK_EQ || op == TOK_NE)
|
|
o(0xe9da); /* fucompp */
|
|
else
|
|
o(0xd9de); /* fcompp */
|
|
o(0xe0df); /* fnstsw %ax */
|
|
if (op == TOK_EQ) {
|
|
o(0x45e480); /* and $0x45, %ah */
|
|
o(0x40fC80); /* cmp $0x40, %ah */
|
|
} else if (op == TOK_NE) {
|
|
o(0x45e480); /* and $0x45, %ah */
|
|
o(0x40f480); /* xor $0x40, %ah */
|
|
op = TOK_NE;
|
|
} else if (op == TOK_GE || op == TOK_LE) {
|
|
o(0x05c4f6); /* test $0x05, %ah */
|
|
op = TOK_EQ;
|
|
} else {
|
|
o(0x45c4f6); /* test $0x45, %ah */
|
|
op = TOK_EQ;
|
|
}
|
|
vtop--;
|
|
vtop->r = VT_CMP;
|
|
vtop->c.i = op;
|
|
} else {
|
|
/* no memory reference possible for long double operations */
|
|
load(TREG_ST0, vtop);
|
|
swapped = !swapped;
|
|
|
|
switch(op) {
|
|
default:
|
|
case '+':
|
|
a = 0;
|
|
break;
|
|
case '-':
|
|
a = 4;
|
|
if (swapped)
|
|
a++;
|
|
break;
|
|
case '*':
|
|
a = 1;
|
|
break;
|
|
case '/':
|
|
a = 6;
|
|
if (swapped)
|
|
a++;
|
|
break;
|
|
}
|
|
ft = vtop->type.t;
|
|
fc = vtop->c.i;
|
|
o(0xde); /* fxxxp %st, %st(1) */
|
|
o(0xc1 + (a << 3));
|
|
vtop--;
|
|
}
|
|
} else {
|
|
if (op >= TOK_ULT && op <= TOK_GT) {
|
|
/* if saved lvalue, then we must reload it */
|
|
r = vtop->r;
|
|
fc = vtop->c.i;
|
|
if ((r & VT_VALMASK) == VT_LLOCAL) {
|
|
SValue v1;
|
|
r = get_reg(RC_INT);
|
|
v1.type.t = VT_PTR;
|
|
v1.r = VT_LOCAL | VT_LVAL;
|
|
v1.c.i = fc;
|
|
load(r, &v1);
|
|
fc = 0;
|
|
}
|
|
|
|
if (op == TOK_EQ || op == TOK_NE) {
|
|
swapped = 0;
|
|
} else {
|
|
if (op == TOK_LE || op == TOK_LT)
|
|
swapped = !swapped;
|
|
if (op == TOK_LE || op == TOK_GE) {
|
|
op = 0x93; /* setae */
|
|
} else {
|
|
op = 0x97; /* seta */
|
|
}
|
|
}
|
|
|
|
if (swapped) {
|
|
gv(RC_FLOAT);
|
|
vswap();
|
|
}
|
|
assert(!(vtop[-1].r & VT_LVAL));
|
|
|
|
if ((vtop->type.t & VT_BTYPE) == VT_DOUBLE)
|
|
o(0x66);
|
|
if (op == TOK_EQ || op == TOK_NE)
|
|
o(0x2e0f); /* ucomisd */
|
|
else
|
|
o(0x2f0f); /* comisd */
|
|
|
|
if (vtop->r & VT_LVAL) {
|
|
gen_modrm(vtop[-1].r, r, vtop->sym, fc);
|
|
} else {
|
|
o(0xc0 + REG_VALUE(vtop[0].r) + REG_VALUE(vtop[-1].r)*8);
|
|
}
|
|
|
|
vtop--;
|
|
vtop->r = VT_CMP;
|
|
vtop->c.i = op | 0x100;
|
|
} else {
|
|
assert((vtop->type.t & VT_BTYPE) != VT_LDOUBLE);
|
|
switch(op) {
|
|
default:
|
|
case '+':
|
|
a = 0;
|
|
break;
|
|
case '-':
|
|
a = 4;
|
|
break;
|
|
case '*':
|
|
a = 1;
|
|
break;
|
|
case '/':
|
|
a = 6;
|
|
break;
|
|
}
|
|
ft = vtop->type.t;
|
|
fc = vtop->c.i;
|
|
assert((ft & VT_BTYPE) != VT_LDOUBLE);
|
|
|
|
r = vtop->r;
|
|
/* if saved lvalue, then we must reload it */
|
|
if ((vtop->r & VT_VALMASK) == VT_LLOCAL) {
|
|
SValue v1;
|
|
r = get_reg(RC_INT);
|
|
v1.type.t = VT_PTR;
|
|
v1.r = VT_LOCAL | VT_LVAL;
|
|
v1.c.i = fc;
|
|
load(r, &v1);
|
|
fc = 0;
|
|
}
|
|
|
|
assert(!(vtop[-1].r & VT_LVAL));
|
|
if (swapped) {
|
|
assert(vtop->r & VT_LVAL);
|
|
gv(RC_FLOAT);
|
|
vswap();
|
|
}
|
|
|
|
if ((ft & VT_BTYPE) == VT_DOUBLE) {
|
|
o(0xf2);
|
|
} else {
|
|
o(0xf3);
|
|
}
|
|
o(0x0f);
|
|
o(0x58 + a);
|
|
|
|
if (vtop->r & VT_LVAL) {
|
|
gen_modrm(vtop[-1].r, r, vtop->sym, fc);
|
|
} else {
|
|
o(0xc0 + REG_VALUE(vtop[0].r) + REG_VALUE(vtop[-1].r)*8);
|
|
}
|
|
|
|
vtop--;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* convert integers to fp 't' type. Must handle 'int', 'unsigned int'
|
|
and 'long long' cases. */
|
|
void gen_cvt_itof(int t)
|
|
{
|
|
if ((t & VT_BTYPE) == VT_LDOUBLE) {
|
|
save_reg(TREG_ST0);
|
|
gv(RC_INT);
|
|
if ((vtop->type.t & VT_BTYPE) == VT_LLONG) {
|
|
/* signed long long to float/double/long double (unsigned case
|
|
is handled generically) */
|
|
o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
|
|
o(0x242cdf); /* fildll (%rsp) */
|
|
o(0x08c48348); /* add $8, %rsp */
|
|
} else if ((vtop->type.t & (VT_BTYPE | VT_UNSIGNED)) ==
|
|
(VT_INT | VT_UNSIGNED)) {
|
|
/* unsigned int to float/double/long double */
|
|
o(0x6a); /* push $0 */
|
|
g(0x00);
|
|
o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
|
|
o(0x242cdf); /* fildll (%rsp) */
|
|
o(0x10c48348); /* add $16, %rsp */
|
|
} else {
|
|
/* int to float/double/long double */
|
|
o(0x50 + (vtop->r & VT_VALMASK)); /* push r */
|
|
o(0x2404db); /* fildl (%rsp) */
|
|
o(0x08c48348); /* add $8, %rsp */
|
|
}
|
|
vtop->r = TREG_ST0;
|
|
} else {
|
|
int r = get_reg(RC_FLOAT);
|
|
gv(RC_INT);
|
|
o(0xf2 + ((t & VT_BTYPE) == VT_FLOAT?1:0));
|
|
if ((vtop->type.t & (VT_BTYPE | VT_UNSIGNED)) ==
|
|
(VT_INT | VT_UNSIGNED) ||
|
|
(vtop->type.t & VT_BTYPE) == VT_LLONG) {
|
|
o(0x48); /* REX */
|
|
}
|
|
o(0x2a0f);
|
|
o(0xc0 + (vtop->r & VT_VALMASK) + REG_VALUE(r)*8); /* cvtsi2sd */
|
|
vtop->r = r;
|
|
}
|
|
}
|
|
|
|
/* convert from one floating point type to another */
|
|
void gen_cvt_ftof(int t)
|
|
{
|
|
int ft, bt, tbt;
|
|
|
|
ft = vtop->type.t;
|
|
bt = ft & VT_BTYPE;
|
|
tbt = t & VT_BTYPE;
|
|
|
|
if (bt == VT_FLOAT) {
|
|
gv(RC_FLOAT);
|
|
if (tbt == VT_DOUBLE) {
|
|
o(0x140f); /* unpcklps */
|
|
o(0xc0 + REG_VALUE(vtop->r)*9);
|
|
o(0x5a0f); /* cvtps2pd */
|
|
o(0xc0 + REG_VALUE(vtop->r)*9);
|
|
} else if (tbt == VT_LDOUBLE) {
|
|
save_reg(RC_ST0);
|
|
/* movss %xmm0,-0x10(%rsp) */
|
|
o(0x110ff3);
|
|
o(0x44 + REG_VALUE(vtop->r)*8);
|
|
o(0xf024);
|
|
o(0xf02444d9); /* flds -0x10(%rsp) */
|
|
vtop->r = TREG_ST0;
|
|
}
|
|
} else if (bt == VT_DOUBLE) {
|
|
gv(RC_FLOAT);
|
|
if (tbt == VT_FLOAT) {
|
|
o(0x140f66); /* unpcklpd */
|
|
o(0xc0 + REG_VALUE(vtop->r)*9);
|
|
o(0x5a0f66); /* cvtpd2ps */
|
|
o(0xc0 + REG_VALUE(vtop->r)*9);
|
|
} else if (tbt == VT_LDOUBLE) {
|
|
save_reg(RC_ST0);
|
|
/* movsd %xmm0,-0x10(%rsp) */
|
|
o(0x110ff2);
|
|
o(0x44 + REG_VALUE(vtop->r)*8);
|
|
o(0xf024);
|
|
o(0xf02444dd); /* fldl -0x10(%rsp) */
|
|
vtop->r = TREG_ST0;
|
|
}
|
|
} else {
|
|
int r;
|
|
gv(RC_ST0);
|
|
r = get_reg(RC_FLOAT);
|
|
if (tbt == VT_DOUBLE) {
|
|
o(0xf0245cdd); /* fstpl -0x10(%rsp) */
|
|
/* movsd -0x10(%rsp),%xmm0 */
|
|
o(0x100ff2);
|
|
o(0x44 + REG_VALUE(r)*8);
|
|
o(0xf024);
|
|
vtop->r = r;
|
|
} else if (tbt == VT_FLOAT) {
|
|
o(0xf0245cd9); /* fstps -0x10(%rsp) */
|
|
/* movss -0x10(%rsp),%xmm0 */
|
|
o(0x100ff3);
|
|
o(0x44 + REG_VALUE(r)*8);
|
|
o(0xf024);
|
|
vtop->r = r;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* convert fp to int 't' type */
|
|
void gen_cvt_ftoi(int t)
|
|
{
|
|
int ft, bt, size, r;
|
|
ft = vtop->type.t;
|
|
bt = ft & VT_BTYPE;
|
|
if (bt == VT_LDOUBLE) {
|
|
gen_cvt_ftof(VT_DOUBLE);
|
|
bt = VT_DOUBLE;
|
|
}
|
|
|
|
gv(RC_FLOAT);
|
|
if (t != VT_INT)
|
|
size = 8;
|
|
else
|
|
size = 4;
|
|
|
|
r = get_reg(RC_INT);
|
|
if (bt == VT_FLOAT) {
|
|
o(0xf3);
|
|
} else if (bt == VT_DOUBLE) {
|
|
o(0xf2);
|
|
} else {
|
|
assert(0);
|
|
}
|
|
orex(size == 8, r, 0, 0x2c0f); /* cvttss2si or cvttsd2si */
|
|
o(0xc0 + REG_VALUE(vtop->r) + REG_VALUE(r)*8);
|
|
vtop->r = r;
|
|
}
|
|
|
|
/* computed goto support */
|
|
void ggoto(void)
|
|
{
|
|
gcall_or_jmp(1);
|
|
vtop--;
|
|
}
|
|
|
|
/* Save the stack pointer onto the stack and return the location of its address */
|
|
ST_FUNC void gen_vla_sp_save(int addr) {
|
|
/* mov %rsp,addr(%rbp)*/
|
|
gen_modrm64(0x89, TREG_RSP, VT_LOCAL, NULL, addr);
|
|
}
|
|
|
|
/* Restore the SP from a location on the stack */
|
|
ST_FUNC void gen_vla_sp_restore(int addr) {
|
|
gen_modrm64(0x8b, TREG_RSP, VT_LOCAL, NULL, addr);
|
|
}
|
|
|
|
/* Subtract from the stack pointer, and push the resulting value onto the stack */
|
|
ST_FUNC void gen_vla_alloc(CType *type, int align) {
|
|
#ifdef TCC_TARGET_PE
|
|
/* alloca does more than just adjust %rsp on Windows */
|
|
vpush_global_sym(&func_old_type, TOK_alloca);
|
|
vswap(); /* Move alloca ref past allocation size */
|
|
gfunc_call(1);
|
|
#else
|
|
int r;
|
|
r = gv(RC_INT); /* allocation size */
|
|
/* sub r,%rsp */
|
|
o(0x2b48);
|
|
o(0xe0 | REG_VALUE(r));
|
|
/* We align to 16 bytes rather than align */
|
|
/* and ~15, %rsp */
|
|
o(0xf0e48348);
|
|
vpop();
|
|
#endif
|
|
}
|
|
|
|
|
|
/* end of x86-64 code generator */
|
|
/*************************************************************/
|
|
#endif /* ! TARGET_DEFS_ONLY */
|
|
/******************************************************/
|