tinycc/tccgen.c
grischka a4a20360e9 fixes & cleanups
- tccgen.c/tcc.h: allow function declaration after use:
      int f() { return g(); }
      int g() { return 1; }
  may be a warning but not an error
  see also 76cb1144ef

- tccgen.c: redundant code related to inline functions removed
  (functions used anywhere have sym->c set automatically)

- tccgen.c: make 32bit llop non-equal test portable
  (probably not on C67)

- dynarray_add: change prototype to possibly avoid aliasing
  problems or at least warnings

- lib/alloca*.S: ".section .note.GNU-stack,"",%progbits" removed
  (has no effect)

- tccpe: set SizeOfCode field (for correct upx decompression)

- libtcc.c: fixed alternative -run invocation
      tcc "-run -lxxx ..." file.c
  (meant to load the library after file).
  Also supported now:
      tcc files ... options ... -run @ arguments ...
2017-02-13 18:23:43 +01:00

7185 lines
212 KiB
C

/*
* TCC - Tiny C Compiler
*
* Copyright (c) 2001-2004 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "tcc.h"
/********************************************************/
/* global variables */
/* loc : local variable index
ind : output code index
rsym: return symbol
anon_sym: anonymous symbol index
*/
ST_DATA int rsym, anon_sym, ind, loc;
ST_DATA Sym *sym_free_first;
ST_DATA void **sym_pools;
ST_DATA int nb_sym_pools;
ST_DATA Sym *global_stack;
ST_DATA Sym *local_stack;
ST_DATA Sym *define_stack;
ST_DATA Sym *global_label_stack;
ST_DATA Sym *local_label_stack;
static int local_scope;
static int in_sizeof;
static int section_sym;
ST_DATA int vlas_in_scope; /* number of VLAs that are currently in scope */
ST_DATA int vla_sp_root_loc; /* vla_sp_loc for SP before any VLAs were pushed */
ST_DATA int vla_sp_loc; /* Pointer to variable holding location to store stack pointer on the stack when modifying stack pointer */
ST_DATA SValue __vstack[1+VSTACK_SIZE], *vtop, *pvtop;
ST_DATA int const_wanted; /* true if constant wanted */
ST_DATA int nocode_wanted; /* true if no code generation wanted for an expression */
ST_DATA int global_expr; /* true if compound literals must be allocated globally (used during initializers parsing */
ST_DATA CType func_vt; /* current function return type (used by return instruction) */
ST_DATA int func_var; /* true if current function is variadic (used by return instruction) */
ST_DATA int func_vc;
ST_DATA int last_line_num, last_ind, func_ind; /* debug last line number and pc */
ST_DATA const char *funcname;
ST_DATA CType char_pointer_type, func_old_type, int_type, size_type;
ST_DATA struct switch_t {
struct case_t {
int64_t v1, v2;
int sym;
} **p; int n; /* list of case ranges */
int def_sym; /* default symbol */
} *cur_switch; /* current switch */
/* ------------------------------------------------------------------------- */
static void gen_cast(CType *type);
static inline CType *pointed_type(CType *type);
static int is_compatible_types(CType *type1, CType *type2);
static int parse_btype(CType *type, AttributeDef *ad);
static void type_decl(CType *type, AttributeDef *ad, int *v, int td);
static void parse_expr_type(CType *type);
static void decl_initializer(CType *type, Section *sec, unsigned long c, int first, int size_only);
static void block(int *bsym, int *csym, int is_expr);
static void decl_initializer_alloc(CType *type, AttributeDef *ad, int r, int has_init, int v, int scope);
static int decl0(int l, int is_for_loop_init);
static void expr_eq(void);
static void expr_lor_const(void);
static void unary_type(CType *type);
static void vla_runtime_type_size(CType *type, int *a);
static void vla_sp_restore(void);
static void vla_sp_restore_root(void);
static int is_compatible_parameter_types(CType *type1, CType *type2);
static void expr_type(CType *type);
static inline int64_t expr_const64(void);
ST_FUNC void vpush64(int ty, unsigned long long v);
ST_FUNC void vpush(CType *type);
ST_FUNC int gvtst(int inv, int t);
ST_FUNC int is_btype_size(int bt);
static void gen_inline_functions(TCCState *s);
ST_INLN int is_float(int t)
{
int bt;
bt = t & VT_BTYPE;
return bt == VT_LDOUBLE || bt == VT_DOUBLE || bt == VT_FLOAT || bt == VT_QFLOAT;
}
/* we use our own 'finite' function to avoid potential problems with
non standard math libs */
/* XXX: endianness dependent */
ST_FUNC int ieee_finite(double d)
{
int p[4];
memcpy(p, &d, sizeof(double));
return ((unsigned)((p[1] | 0x800fffff) + 1)) >> 31;
}
ST_FUNC void test_lvalue(void)
{
if (!(vtop->r & VT_LVAL))
expect("lvalue");
}
ST_FUNC void check_vstack(void)
{
if (pvtop != vtop)
tcc_error("internal compiler error: vstack leak (%d)", vtop - pvtop);
}
/* ------------------------------------------------------------------------- */
/* vstack debugging aid */
#if 0
void pv (const char *lbl, int a, int b)
{
int i;
for (i = a; i < a + b; ++i) {
SValue *p = &vtop[-i];
printf("%s vtop[-%d] : type.t:%04x r:%04x r2:%04x c.i:%d\n",
lbl, i, p->type.t, p->r, p->r2, (int)p->c.i);
}
}
#endif
/* ------------------------------------------------------------------------- */
ST_FUNC void tccgen_start(TCCState *s1)
{
cur_text_section = NULL;
funcname = "";
anon_sym = SYM_FIRST_ANOM;
section_sym = 0;
const_wanted = 0;
nocode_wanted = 1;
/* define some often used types */
int_type.t = VT_INT;
char_pointer_type.t = VT_BYTE;
mk_pointer(&char_pointer_type);
#if PTR_SIZE == 4
size_type.t = VT_INT;
#else
size_type.t = VT_LLONG;
#endif
func_old_type.t = VT_FUNC;
func_old_type.ref = sym_push(SYM_FIELD, &int_type, FUNC_CDECL, FUNC_OLD);
if (s1->do_debug) {
char buf[512];
/* file info: full path + filename */
section_sym = put_elf_sym(symtab_section, 0, 0,
ELFW(ST_INFO)(STB_LOCAL, STT_SECTION), 0,
text_section->sh_num, NULL);
getcwd(buf, sizeof(buf));
#ifdef _WIN32
normalize_slashes(buf);
#endif
pstrcat(buf, sizeof(buf), "/");
put_stabs_r(buf, N_SO, 0, 0,
text_section->data_offset, text_section, section_sym);
put_stabs_r(file->filename, N_SO, 0, 0,
text_section->data_offset, text_section, section_sym);
}
/* an elf symbol of type STT_FILE must be put so that STB_LOCAL
symbols can be safely used */
put_elf_sym(symtab_section, 0, 0,
ELFW(ST_INFO)(STB_LOCAL, STT_FILE), 0,
SHN_ABS, file->filename);
#ifdef TCC_TARGET_ARM
arm_init(s1);
#endif
}
ST_FUNC void tccgen_end(TCCState *s1)
{
gen_inline_functions(s1);
check_vstack();
/* end of translation unit info */
if (s1->do_debug) {
put_stabs_r(NULL, N_SO, 0, 0,
text_section->data_offset, text_section, section_sym);
}
}
/* ------------------------------------------------------------------------- */
/* update sym->c so that it points to an external symbol in section
'section' with value 'value' */
ST_FUNC void put_extern_sym2(Sym *sym, Section *section,
addr_t value, unsigned long size,
int can_add_underscore)
{
int sym_type, sym_bind, sh_num, info, other;
ElfW(Sym) *esym;
const char *name;
char buf1[256];
#ifdef CONFIG_TCC_BCHECK
char buf[32];
#endif
if (section == NULL)
sh_num = SHN_UNDEF;
else if (section == SECTION_ABS)
sh_num = SHN_ABS;
else
sh_num = section->sh_num;
if ((sym->type.t & VT_BTYPE) == VT_FUNC) {
sym_type = STT_FUNC;
} else if ((sym->type.t & VT_BTYPE) == VT_VOID) {
sym_type = STT_NOTYPE;
} else {
sym_type = STT_OBJECT;
}
if (sym->type.t & VT_STATIC)
sym_bind = STB_LOCAL;
else {
if (sym->type.t & VT_WEAK)
sym_bind = STB_WEAK;
else
sym_bind = STB_GLOBAL;
}
if (!sym->c) {
name = get_tok_str(sym->v, NULL);
#ifdef CONFIG_TCC_BCHECK
if (tcc_state->do_bounds_check) {
/* XXX: avoid doing that for statics ? */
/* if bound checking is activated, we change some function
names by adding the "__bound" prefix */
switch(sym->v) {
#ifdef TCC_TARGET_PE
/* XXX: we rely only on malloc hooks */
case TOK_malloc:
case TOK_free:
case TOK_realloc:
case TOK_memalign:
case TOK_calloc:
#endif
case TOK_memcpy:
case TOK_memmove:
case TOK_memset:
case TOK_strlen:
case TOK_strcpy:
case TOK_alloca:
strcpy(buf, "__bound_");
strcat(buf, name);
name = buf;
break;
}
}
#endif
other = 0;
#ifdef TCC_TARGET_PE
if (sym->type.t & VT_EXPORT)
other |= ST_PE_EXPORT;
if (sym_type == STT_FUNC && sym->type.ref) {
Sym *ref = sym->type.ref;
if (ref->a.func_export)
other |= ST_PE_EXPORT;
if (ref->a.func_call == FUNC_STDCALL && can_add_underscore) {
sprintf(buf1, "_%s@%d", name, ref->a.func_args * PTR_SIZE);
name = buf1;
other |= ST_PE_STDCALL;
can_add_underscore = 0;
}
} else {
if (find_elf_sym(tcc_state->dynsymtab_section, name))
other |= ST_PE_IMPORT;
if (sym->type.t & VT_IMPORT)
other |= ST_PE_IMPORT;
}
#else
if (! (sym->type.t & VT_STATIC))
other = (sym->type.t & VT_VIS_MASK) >> VT_VIS_SHIFT;
#endif
if (tcc_state->leading_underscore && can_add_underscore) {
buf1[0] = '_';
pstrcpy(buf1 + 1, sizeof(buf1) - 1, name);
name = buf1;
}
if (sym->asm_label) {
name = get_tok_str(sym->asm_label, NULL);
}
info = ELFW(ST_INFO)(sym_bind, sym_type);
sym->c = set_elf_sym(symtab_section, value, size, info, other, sh_num, name);
} else {
esym = &((ElfW(Sym) *)symtab_section->data)[sym->c];
esym->st_value = value;
esym->st_size = size;
esym->st_shndx = sh_num;
}
}
ST_FUNC void put_extern_sym(Sym *sym, Section *section,
addr_t value, unsigned long size)
{
put_extern_sym2(sym, section, value, size, 1);
}
/* add a new relocation entry to symbol 'sym' in section 's' */
ST_FUNC void greloca(Section *s, Sym *sym, unsigned long offset, int type,
addr_t addend)
{
int c = 0;
if (nocode_wanted && s == cur_text_section)
return;
if (sym) {
if (0 == sym->c)
put_extern_sym(sym, NULL, 0, 0);
c = sym->c;
}
/* now we can add ELF relocation info */
put_elf_reloca(symtab_section, s, offset, type, c, addend);
}
ST_FUNC void greloc(Section *s, Sym *sym, unsigned long offset, int type)
{
greloca(s, sym, offset, type, 0);
}
/* ------------------------------------------------------------------------- */
/* symbol allocator */
static Sym *__sym_malloc(void)
{
Sym *sym_pool, *sym, *last_sym;
int i;
sym_pool = tcc_malloc(SYM_POOL_NB * sizeof(Sym));
dynarray_add(&sym_pools, &nb_sym_pools, sym_pool);
last_sym = sym_free_first;
sym = sym_pool;
for(i = 0; i < SYM_POOL_NB; i++) {
sym->next = last_sym;
last_sym = sym;
sym++;
}
sym_free_first = last_sym;
return last_sym;
}
static inline Sym *sym_malloc(void)
{
Sym *sym;
#ifndef SYM_DEBUG
sym = sym_free_first;
if (!sym)
sym = __sym_malloc();
sym_free_first = sym->next;
return sym;
#else
sym = tcc_malloc(sizeof(Sym));
return sym;
#endif
}
ST_INLN void sym_free(Sym *sym)
{
#ifndef SYM_DEBUG
sym->next = sym_free_first;
sym_free_first = sym;
#else
tcc_free(sym);
#endif
}
/* push, without hashing */
ST_FUNC Sym *sym_push2(Sym **ps, int v, int t, long c)
{
Sym *s;
s = sym_malloc();
s->scope = 0;
s->v = v;
s->type.t = t;
s->type.ref = NULL;
#ifdef _WIN64
s->d = NULL;
#endif
s->c = c;
s->next = NULL;
/* add in stack */
s->prev = *ps;
*ps = s;
return s;
}
/* find a symbol and return its associated structure. 's' is the top
of the symbol stack */
ST_FUNC Sym *sym_find2(Sym *s, int v)
{
while (s) {
if (s->v == v)
return s;
else if (s->v == -1)
return NULL;
s = s->prev;
}
return NULL;
}
/* structure lookup */
ST_INLN Sym *struct_find(int v)
{
v -= TOK_IDENT;
if ((unsigned)v >= (unsigned)(tok_ident - TOK_IDENT))
return NULL;
return table_ident[v]->sym_struct;
}
/* find an identifier */
ST_INLN Sym *sym_find(int v)
{
v -= TOK_IDENT;
if ((unsigned)v >= (unsigned)(tok_ident - TOK_IDENT))
return NULL;
return table_ident[v]->sym_identifier;
}
/* push a given symbol on the symbol stack */
ST_FUNC Sym *sym_push(int v, CType *type, int r, long c)
{
Sym *s, **ps;
TokenSym *ts;
if (local_stack)
ps = &local_stack;
else
ps = &global_stack;
s = sym_push2(ps, v, type->t, c);
s->type.ref = type->ref;
s->r = r;
/* don't record fields or anonymous symbols */
/* XXX: simplify */
if (!(v & SYM_FIELD) && (v & ~SYM_STRUCT) < SYM_FIRST_ANOM) {
/* record symbol in token array */
ts = table_ident[(v & ~SYM_STRUCT) - TOK_IDENT];
if (v & SYM_STRUCT)
ps = &ts->sym_struct;
else
ps = &ts->sym_identifier;
s->prev_tok = *ps;
*ps = s;
s->scope = local_scope;
if (s->prev_tok && s->prev_tok->scope == s->scope)
tcc_error("redeclaration of '%s'",
get_tok_str(v & ~SYM_STRUCT, NULL));
}
return s;
}
/* push a global identifier */
ST_FUNC Sym *global_identifier_push(int v, int t, long c)
{
Sym *s, **ps;
s = sym_push2(&global_stack, v, t, c);
/* don't record anonymous symbol */
if (v < SYM_FIRST_ANOM) {
ps = &table_ident[v - TOK_IDENT]->sym_identifier;
/* modify the top most local identifier, so that
sym_identifier will point to 's' when popped */
while (*ps != NULL)
ps = &(*ps)->prev_tok;
s->prev_tok = NULL;
*ps = s;
}
return s;
}
/* pop symbols until top reaches 'b'. If KEEP is non-zero don't really
pop them yet from the list, but do remove them from the token array. */
ST_FUNC void sym_pop(Sym **ptop, Sym *b, int keep)
{
Sym *s, *ss, **ps;
TokenSym *ts;
int v;
s = *ptop;
while(s != b) {
ss = s->prev;
v = s->v;
/* remove symbol in token array */
/* XXX: simplify */
if (!(v & SYM_FIELD) && (v & ~SYM_STRUCT) < SYM_FIRST_ANOM) {
ts = table_ident[(v & ~SYM_STRUCT) - TOK_IDENT];
if (v & SYM_STRUCT)
ps = &ts->sym_struct;
else
ps = &ts->sym_identifier;
*ps = s->prev_tok;
}
if (!keep)
sym_free(s);
s = ss;
}
if (!keep)
*ptop = b;
}
static void weaken_symbol(Sym *sym)
{
sym->type.t |= VT_WEAK;
if (sym->c > 0) {
int esym_type;
ElfW(Sym) *esym;
esym = &((ElfW(Sym) *)symtab_section->data)[sym->c];
esym_type = ELFW(ST_TYPE)(esym->st_info);
esym->st_info = ELFW(ST_INFO)(STB_WEAK, esym_type);
}
}
static void apply_visibility(Sym *sym, CType *type)
{
int vis = sym->type.t & VT_VIS_MASK;
int vis2 = type->t & VT_VIS_MASK;
if (vis == (STV_DEFAULT << VT_VIS_SHIFT))
vis = vis2;
else if (vis2 == (STV_DEFAULT << VT_VIS_SHIFT))
;
else
vis = (vis < vis2) ? vis : vis2;
sym->type.t &= ~VT_VIS_MASK;
sym->type.t |= vis;
if (sym->c > 0) {
ElfW(Sym) *esym;
esym = &((ElfW(Sym) *)symtab_section->data)[sym->c];
vis >>= VT_VIS_SHIFT;
esym->st_other = (esym->st_other & ~ELFW(ST_VISIBILITY)(-1)) | vis;
}
}
/* ------------------------------------------------------------------------- */
static void vsetc(CType *type, int r, CValue *vc)
{
int v;
if (vtop >= vstack + (VSTACK_SIZE - 1))
tcc_error("memory full (vstack)");
/* cannot let cpu flags if other instruction are generated. Also
avoid leaving VT_JMP anywhere except on the top of the stack
because it would complicate the code generator.
Don't do this when nocode_wanted. vtop might come from
!nocode_wanted regions (see 88_codeopt.c) and transforming
it to a register without actually generating code is wrong
as their value might still be used for real. All values
we push under nocode_wanted will eventually be popped
again, so that the VT_CMP/VT_JMP value will be in vtop
when code is unsuppressed again.
Same logic below in vswap(); */
if (vtop >= vstack && !nocode_wanted) {
v = vtop->r & VT_VALMASK;
if (v == VT_CMP || (v & ~1) == VT_JMP)
gv(RC_INT);
}
vtop++;
vtop->type = *type;
vtop->r = r;
vtop->r2 = VT_CONST;
vtop->c = *vc;
vtop->sym = NULL;
}
ST_FUNC void vswap(void)
{
SValue tmp;
/* cannot vswap cpu flags. See comment at vsetc() above */
if (vtop >= vstack && !nocode_wanted) {
int v = vtop->r & VT_VALMASK;
if (v == VT_CMP || (v & ~1) == VT_JMP)
gv(RC_INT);
}
tmp = vtop[0];
vtop[0] = vtop[-1];
vtop[-1] = tmp;
}
/* pop stack value */
ST_FUNC void vpop(void)
{
int v;
v = vtop->r & VT_VALMASK;
#if defined(TCC_TARGET_I386) || defined(TCC_TARGET_X86_64)
/* for x86, we need to pop the FP stack */
if (v == TREG_ST0) {
o(0xd8dd); /* fstp %st(0) */
} else
#endif
if (v == VT_JMP || v == VT_JMPI) {
/* need to put correct jump if && or || without test */
gsym(vtop->c.i);
}
vtop--;
}
/* push constant of type "type" with useless value */
ST_FUNC void vpush(CType *type)
{
CValue cval;
vsetc(type, VT_CONST, &cval);
}
/* push integer constant */
ST_FUNC void vpushi(int v)
{
CValue cval;
cval.i = v;
vsetc(&int_type, VT_CONST, &cval);
}
/* push a pointer sized constant */
static void vpushs(addr_t v)
{
CValue cval;
cval.i = v;
vsetc(&size_type, VT_CONST, &cval);
}
/* push arbitrary 64bit constant */
ST_FUNC void vpush64(int ty, unsigned long long v)
{
CValue cval;
CType ctype;
ctype.t = ty;
ctype.ref = NULL;
cval.i = v;
vsetc(&ctype, VT_CONST, &cval);
}
/* push long long constant */
static inline void vpushll(long long v)
{
vpush64(VT_LLONG, v);
}
ST_FUNC void vset(CType *type, int r, long v)
{
CValue cval;
cval.i = v;
vsetc(type, r, &cval);
}
static void vseti(int r, int v)
{
CType type;
type.t = VT_INT;
type.ref = 0;
vset(&type, r, v);
}
ST_FUNC void vpushv(SValue *v)
{
if (vtop >= vstack + (VSTACK_SIZE - 1))
tcc_error("memory full (vstack)");
vtop++;
*vtop = *v;
}
static void vdup(void)
{
vpushv(vtop);
}
/* rotate n first stack elements to the bottom
I1 ... In -> I2 ... In I1 [top is right]
*/
ST_FUNC void vrotb(int n)
{
int i;
SValue tmp;
tmp = vtop[-n + 1];
for(i=-n+1;i!=0;i++)
vtop[i] = vtop[i+1];
vtop[0] = tmp;
}
/* rotate the n elements before entry e towards the top
I1 ... In ... -> In I1 ... I(n-1) ... [top is right]
*/
ST_FUNC void vrote(SValue *e, int n)
{
int i;
SValue tmp;
tmp = *e;
for(i = 0;i < n - 1; i++)
e[-i] = e[-i - 1];
e[-n + 1] = tmp;
}
/* rotate n first stack elements to the top
I1 ... In -> In I1 ... I(n-1) [top is right]
*/
ST_FUNC void vrott(int n)
{
vrote(vtop, n);
}
/* push a symbol value of TYPE */
static inline void vpushsym(CType *type, Sym *sym)
{
CValue cval;
cval.i = 0;
vsetc(type, VT_CONST | VT_SYM, &cval);
vtop->sym = sym;
}
/* Return a static symbol pointing to a section */
ST_FUNC Sym *get_sym_ref(CType *type, Section *sec, unsigned long offset, unsigned long size)
{
int v;
Sym *sym;
v = anon_sym++;
sym = global_identifier_push(v, type->t | VT_STATIC, 0);
sym->type.ref = type->ref;
sym->r = VT_CONST | VT_SYM;
put_extern_sym(sym, sec, offset, size);
return sym;
}
/* push a reference to a section offset by adding a dummy symbol */
static void vpush_ref(CType *type, Section *sec, unsigned long offset, unsigned long size)
{
vpushsym(type, get_sym_ref(type, sec, offset, size));
}
/* define a new external reference to a symbol 'v' of type 'u' */
ST_FUNC Sym *external_global_sym(int v, CType *type, int r)
{
Sym *s;
s = sym_find(v);
if (!s) {
/* push forward reference */
s = global_identifier_push(v, type->t | VT_EXTERN, 0);
s->type.ref = type->ref;
s->r = r | VT_CONST | VT_SYM;
}
return s;
}
/* define a new external reference to a symbol 'v' */
static Sym *external_sym(int v, CType *type, int r)
{
Sym *s;
s = sym_find(v);
if (!s) {
/* push forward reference */
s = sym_push(v, type, r | VT_CONST | VT_SYM, 0);
s->type.t |= VT_EXTERN;
} else if (s->type.ref == func_old_type.ref) {
s->type.ref = type->ref;
s->r = r | VT_CONST | VT_SYM;
s->type.t |= VT_EXTERN;
} else if (!is_compatible_types(&s->type, type)) {
tcc_error("incompatible types for redefinition of '%s'",
get_tok_str(v, NULL));
}
/* Merge some storage attributes. */
if (type->t & VT_WEAK)
weaken_symbol(s);
if (type->t & VT_VIS_MASK)
apply_visibility(s, type);
return s;
}
/* push a reference to global symbol v */
ST_FUNC void vpush_global_sym(CType *type, int v)
{
vpushsym(type, external_global_sym(v, type, 0));
}
/* save registers up to (vtop - n) stack entry */
ST_FUNC void save_regs(int n)
{
SValue *p, *p1;
for(p = vstack, p1 = vtop - n; p <= p1; p++)
save_reg(p->r);
}
/* save r to the memory stack, and mark it as being free */
ST_FUNC void save_reg(int r)
{
save_reg_upstack(r, 0);
}
/* save r to the memory stack, and mark it as being free,
if seen up to (vtop - n) stack entry */
ST_FUNC void save_reg_upstack(int r, int n)
{
int l, saved, size, align;
SValue *p, *p1, sv;
CType *type;
if ((r &= VT_VALMASK) >= VT_CONST)
return;
if (nocode_wanted)
return;
/* modify all stack values */
saved = 0;
l = 0;
for(p = vstack, p1 = vtop - n; p <= p1; p++) {
if ((p->r & VT_VALMASK) == r ||
((p->type.t & VT_BTYPE) == VT_LLONG && (p->r2 & VT_VALMASK) == r)) {
/* must save value on stack if not already done */
if (!saved) {
/* NOTE: must reload 'r' because r might be equal to r2 */
r = p->r & VT_VALMASK;
/* store register in the stack */
type = &p->type;
if ((p->r & VT_LVAL) ||
(!is_float(type->t) && (type->t & VT_BTYPE) != VT_LLONG))
#if defined(TCC_TARGET_ARM64) || defined(TCC_TARGET_X86_64)
type = &char_pointer_type;
#else
type = &int_type;
#endif
if ((type->t & VT_BTYPE) == VT_FLOAT) {
/* cast to DOUBLE to avoid precision loss */
type->t = (type->t & ~VT_BTYPE) | VT_DOUBLE;
}
size = type_size(type, &align);
loc = (loc - size) & -align;
sv.type.t = type->t;
sv.r = VT_LOCAL | VT_LVAL;
sv.c.i = loc;
store(r, &sv);
#if defined(TCC_TARGET_I386) || defined(TCC_TARGET_X86_64)
/* x86 specific: need to pop fp register ST0 if saved */
if (r == TREG_ST0) {
o(0xd8dd); /* fstp %st(0) */
}
#endif
#if !defined(TCC_TARGET_ARM64) && !defined(TCC_TARGET_X86_64)
/* special long long case */
if ((type->t & VT_BTYPE) == VT_LLONG) {
sv.c.i += 4;
store(p->r2, &sv);
}
#endif
l = loc;
saved = 1;
}
/* mark that stack entry as being saved on the stack */
if (p->r & VT_LVAL) {
/* also clear the bounded flag because the
relocation address of the function was stored in
p->c.i */
p->r = (p->r & ~(VT_VALMASK | VT_BOUNDED)) | VT_LLOCAL;
} else {
p->r = lvalue_type(p->type.t) | VT_LOCAL;
}
p->r2 = VT_CONST;
p->c.i = l;
}
}
}
#ifdef TCC_TARGET_ARM
/* find a register of class 'rc2' with at most one reference on stack.
* If none, call get_reg(rc) */
ST_FUNC int get_reg_ex(int rc, int rc2)
{
int r;
SValue *p;
for(r=0;r<NB_REGS;r++) {
if (reg_classes[r] & rc2) {
int n;
n=0;
for(p = vstack; p <= vtop; p++) {
if ((p->r & VT_VALMASK) == r ||
(p->r2 & VT_VALMASK) == r)
n++;
}
if (n <= 1)
return r;
}
}
return get_reg(rc);
}
#endif
/* find a free register of class 'rc'. If none, save one register */
ST_FUNC int get_reg(int rc)
{
int r;
SValue *p;
/* find a free register */
for(r=0;r<NB_REGS;r++) {
if (reg_classes[r] & rc) {
if (nocode_wanted)
return r;
for(p=vstack;p<=vtop;p++) {
if ((p->r & VT_VALMASK) == r ||
(p->r2 & VT_VALMASK) == r)
goto notfound;
}
return r;
}
notfound: ;
}
/* no register left : free the first one on the stack (VERY
IMPORTANT to start from the bottom to ensure that we don't
spill registers used in gen_opi()) */
for(p=vstack;p<=vtop;p++) {
/* look at second register (if long long) */
r = p->r2 & VT_VALMASK;
if (r < VT_CONST && (reg_classes[r] & rc))
goto save_found;
r = p->r & VT_VALMASK;
if (r < VT_CONST && (reg_classes[r] & rc)) {
save_found:
save_reg(r);
return r;
}
}
/* Should never comes here */
return -1;
}
/* move register 's' (of type 't') to 'r', and flush previous value of r to memory
if needed */
static void move_reg(int r, int s, int t)
{
SValue sv;
if (r != s) {
save_reg(r);
sv.type.t = t;
sv.type.ref = NULL;
sv.r = s;
sv.c.i = 0;
load(r, &sv);
}
}
/* get address of vtop (vtop MUST BE an lvalue) */
ST_FUNC void gaddrof(void)
{
if (vtop->r & VT_REF)
gv(RC_INT);
vtop->r &= ~VT_LVAL;
/* tricky: if saved lvalue, then we can go back to lvalue */
if ((vtop->r & VT_VALMASK) == VT_LLOCAL)
vtop->r = (vtop->r & ~(VT_VALMASK | VT_LVAL_TYPE)) | VT_LOCAL | VT_LVAL;
}
#ifdef CONFIG_TCC_BCHECK
/* generate lvalue bound code */
static void gbound(void)
{
int lval_type;
CType type1;
vtop->r &= ~VT_MUSTBOUND;
/* if lvalue, then use checking code before dereferencing */
if (vtop->r & VT_LVAL) {
/* if not VT_BOUNDED value, then make one */
if (!(vtop->r & VT_BOUNDED)) {
lval_type = vtop->r & (VT_LVAL_TYPE | VT_LVAL);
/* must save type because we must set it to int to get pointer */
type1 = vtop->type;
vtop->type.t = VT_PTR;
gaddrof();
vpushi(0);
gen_bounded_ptr_add();
vtop->r |= lval_type;
vtop->type = type1;
}
/* then check for dereferencing */
gen_bounded_ptr_deref();
}
}
#endif
/* store vtop a register belonging to class 'rc'. lvalues are
converted to values. Cannot be used if cannot be converted to
register value (such as structures). */
ST_FUNC int gv(int rc)
{
int r, bit_pos, bit_size, size, align, i;
int rc2;
/* NOTE: get_reg can modify vstack[] */
if (vtop->type.t & VT_BITFIELD) {
CType type;
int bits = 32;
bit_pos = (vtop->type.t >> VT_STRUCT_SHIFT) & 0x3f;
bit_size = (vtop->type.t >> (VT_STRUCT_SHIFT + 6)) & 0x3f;
/* remove bit field info to avoid loops */
vtop->type.t &= ~VT_BITFIELD & ((1 << VT_STRUCT_SHIFT) - 1);
/* cast to int to propagate signedness in following ops */
if ((vtop->type.t & VT_BTYPE) == VT_LLONG) {
type.t = VT_LLONG;
bits = 64;
} else
type.t = VT_INT;
if((vtop->type.t & VT_UNSIGNED) ||
(vtop->type.t & VT_BTYPE) == VT_BOOL)
type.t |= VT_UNSIGNED;
gen_cast(&type);
/* generate shifts */
vpushi(bits - (bit_pos + bit_size));
gen_op(TOK_SHL);
vpushi(bits - bit_size);
/* NOTE: transformed to SHR if unsigned */
gen_op(TOK_SAR);
r = gv(rc);
} else {
if (is_float(vtop->type.t) &&
(vtop->r & (VT_VALMASK | VT_LVAL)) == VT_CONST) {
Sym *sym;
int *ptr;
unsigned long offset;
#if defined(TCC_TARGET_ARM) && !defined(TCC_ARM_VFP)
CValue check;
#endif
/* XXX: unify with initializers handling ? */
/* CPUs usually cannot use float constants, so we store them
generically in data segment */
size = type_size(&vtop->type, &align);
offset = (data_section->data_offset + align - 1) & -align;
data_section->data_offset = offset;
/* XXX: not portable yet */
#if defined(__i386__) || defined(__x86_64__)
/* Zero pad x87 tenbyte long doubles */
if (size == LDOUBLE_SIZE) {
vtop->c.tab[2] &= 0xffff;
#if LDOUBLE_SIZE == 16
vtop->c.tab[3] = 0;
#endif
}
#endif
ptr = section_ptr_add(data_section, size);
size = size >> 2;
#if defined(TCC_TARGET_ARM) && !defined(TCC_ARM_VFP)
check.d = 1;
if(check.tab[0])
for(i=0;i<size;i++)
ptr[i] = vtop->c.tab[size-1-i];
else
#endif
for(i=0;i<size;i++)
ptr[i] = vtop->c.tab[i];
sym = get_sym_ref(&vtop->type, data_section, offset, size << 2);
vtop->r |= VT_LVAL | VT_SYM;
vtop->sym = sym;
vtop->c.i = 0;
}
#ifdef CONFIG_TCC_BCHECK
if (vtop->r & VT_MUSTBOUND)
gbound();
#endif
r = vtop->r & VT_VALMASK;
rc2 = (rc & RC_FLOAT) ? RC_FLOAT : RC_INT;
#ifndef TCC_TARGET_ARM64
if (rc == RC_IRET)
rc2 = RC_LRET;
#ifdef TCC_TARGET_X86_64
else if (rc == RC_FRET)
rc2 = RC_QRET;
#endif
#endif
/* need to reload if:
- constant
- lvalue (need to dereference pointer)
- already a register, but not in the right class */
if (r >= VT_CONST
|| (vtop->r & VT_LVAL)
|| !(reg_classes[r] & rc)
#if defined(TCC_TARGET_ARM64) || defined(TCC_TARGET_X86_64)
|| ((vtop->type.t & VT_BTYPE) == VT_QLONG && !(reg_classes[vtop->r2] & rc2))
|| ((vtop->type.t & VT_BTYPE) == VT_QFLOAT && !(reg_classes[vtop->r2] & rc2))
#else
|| ((vtop->type.t & VT_BTYPE) == VT_LLONG && !(reg_classes[vtop->r2] & rc2))
#endif
)
{
r = get_reg(rc);
#if defined(TCC_TARGET_ARM64) || defined(TCC_TARGET_X86_64)
if (((vtop->type.t & VT_BTYPE) == VT_QLONG) || ((vtop->type.t & VT_BTYPE) == VT_QFLOAT)) {
int addr_type = VT_LLONG, load_size = 8, load_type = ((vtop->type.t & VT_BTYPE) == VT_QLONG) ? VT_LLONG : VT_DOUBLE;
#else
if ((vtop->type.t & VT_BTYPE) == VT_LLONG) {
int addr_type = VT_INT, load_size = 4, load_type = VT_INT;
unsigned long long ll;
#endif
int r2, original_type;
original_type = vtop->type.t;
/* two register type load : expand to two words
temporarily */
#if !defined(TCC_TARGET_ARM64) && !defined(TCC_TARGET_X86_64)
if ((vtop->r & (VT_VALMASK | VT_LVAL)) == VT_CONST) {
/* load constant */
ll = vtop->c.i;
vtop->c.i = ll; /* first word */
load(r, vtop);
vtop->r = r; /* save register value */
vpushi(ll >> 32); /* second word */
} else
#endif
if (vtop->r & VT_LVAL) {
/* We do not want to modifier the long long
pointer here, so the safest (and less
efficient) is to save all the other registers
in the stack. XXX: totally inefficient. */
#if 0
save_regs(1);
#else
/* lvalue_save: save only if used further down the stack */
save_reg_upstack(vtop->r, 1);
#endif
/* load from memory */
vtop->type.t = load_type;
load(r, vtop);
vdup();
vtop[-1].r = r; /* save register value */
/* increment pointer to get second word */
vtop->type.t = addr_type;
gaddrof();
vpushi(load_size);
gen_op('+');
vtop->r |= VT_LVAL;
vtop->type.t = load_type;
} else {
/* move registers */
load(r, vtop);
vdup();
vtop[-1].r = r; /* save register value */
vtop->r = vtop[-1].r2;
}
/* Allocate second register. Here we rely on the fact that
get_reg() tries first to free r2 of an SValue. */
r2 = get_reg(rc2);
load(r2, vtop);
vpop();
/* write second register */
vtop->r2 = r2;
vtop->type.t = original_type;
} else if ((vtop->r & VT_LVAL) && !is_float(vtop->type.t)) {
int t1, t;
/* lvalue of scalar type : need to use lvalue type
because of possible cast */
t = vtop->type.t;
t1 = t;
/* compute memory access type */
if (vtop->r & VT_REF)
#if defined(TCC_TARGET_ARM64) || defined(TCC_TARGET_X86_64)
t = VT_PTR;
#else
t = VT_INT;
#endif
else if (vtop->r & VT_LVAL_BYTE)
t = VT_BYTE;
else if (vtop->r & VT_LVAL_SHORT)
t = VT_SHORT;
if (vtop->r & VT_LVAL_UNSIGNED)
t |= VT_UNSIGNED;
vtop->type.t = t;
load(r, vtop);
/* restore wanted type */
vtop->type.t = t1;
} else {
/* one register type load */
load(r, vtop);
}
}
vtop->r = r;
#ifdef TCC_TARGET_C67
/* uses register pairs for doubles */
if ((vtop->type.t & VT_BTYPE) == VT_DOUBLE)
vtop->r2 = r+1;
#endif
}
return r;
}
/* generate vtop[-1] and vtop[0] in resp. classes rc1 and rc2 */
ST_FUNC void gv2(int rc1, int rc2)
{
int v;
/* generate more generic register first. But VT_JMP or VT_CMP
values must be generated first in all cases to avoid possible
reload errors */
v = vtop[0].r & VT_VALMASK;
if (v != VT_CMP && (v & ~1) != VT_JMP && rc1 <= rc2) {
vswap();
gv(rc1);
vswap();
gv(rc2);
/* test if reload is needed for first register */
if ((vtop[-1].r & VT_VALMASK) >= VT_CONST) {
vswap();
gv(rc1);
vswap();
}
} else {
gv(rc2);
vswap();
gv(rc1);
vswap();
/* test if reload is needed for first register */
if ((vtop[0].r & VT_VALMASK) >= VT_CONST) {
gv(rc2);
}
}
}
#ifndef TCC_TARGET_ARM64
/* wrapper around RC_FRET to return a register by type */
static int rc_fret(int t)
{
#ifdef TCC_TARGET_X86_64
if (t == VT_LDOUBLE) {
return RC_ST0;
}
#endif
return RC_FRET;
}
#endif
/* wrapper around REG_FRET to return a register by type */
static int reg_fret(int t)
{
#ifdef TCC_TARGET_X86_64
if (t == VT_LDOUBLE) {
return TREG_ST0;
}
#endif
return REG_FRET;
}
#if !defined(TCC_TARGET_ARM64) && !defined(TCC_TARGET_X86_64)
/* expand 64bit on stack in two ints */
static void lexpand(void)
{
int u, v;
u = vtop->type.t & (VT_DEFSIGN | VT_UNSIGNED);
v = vtop->r & (VT_VALMASK | VT_LVAL);
if (v == VT_CONST) {
vdup();
vtop[0].c.i >>= 32;
} else if (v == (VT_LVAL|VT_CONST) || v == (VT_LVAL|VT_LOCAL)) {
vdup();
vtop[0].c.i += 4;
} else {
gv(RC_INT);
vdup();
vtop[0].r = vtop[-1].r2;
vtop[0].r2 = vtop[-1].r2 = VT_CONST;
}
vtop[0].type.t = vtop[-1].type.t = VT_INT | u;
}
#endif
#ifdef TCC_TARGET_ARM
/* expand long long on stack */
ST_FUNC void lexpand_nr(void)
{
int u,v;
u = vtop->type.t & (VT_DEFSIGN | VT_UNSIGNED);
vdup();
vtop->r2 = VT_CONST;
vtop->type.t = VT_INT | u;
v=vtop[-1].r & (VT_VALMASK | VT_LVAL);
if (v == VT_CONST) {
vtop[-1].c.i = vtop->c.i;
vtop->c.i = vtop->c.i >> 32;
vtop->r = VT_CONST;
} else if (v == (VT_LVAL|VT_CONST) || v == (VT_LVAL|VT_LOCAL)) {
vtop->c.i += 4;
vtop->r = vtop[-1].r;
} else if (v > VT_CONST) {
vtop--;
lexpand();
} else
vtop->r = vtop[-1].r2;
vtop[-1].r2 = VT_CONST;
vtop[-1].type.t = VT_INT | u;
}
#endif
#if !defined(TCC_TARGET_X86_64) && !defined(TCC_TARGET_ARM64)
/* build a long long from two ints */
static void lbuild(int t)
{
gv2(RC_INT, RC_INT);
vtop[-1].r2 = vtop[0].r;
vtop[-1].type.t = t;
vpop();
}
#endif
/* convert stack entry to register and duplicate its value in another
register */
static void gv_dup(void)
{
int rc, t, r, r1;
SValue sv;
t = vtop->type.t;
#if !defined(TCC_TARGET_X86_64) && !defined(TCC_TARGET_ARM64)
if ((t & VT_BTYPE) == VT_LLONG) {
lexpand();
gv_dup();
vswap();
vrotb(3);
gv_dup();
vrotb(4);
/* stack: H L L1 H1 */
lbuild(t);
vrotb(3);
vrotb(3);
vswap();
lbuild(t);
vswap();
} else
#endif
{
/* duplicate value */
rc = RC_INT;
sv.type.t = VT_INT;
if (is_float(t)) {
rc = RC_FLOAT;
#ifdef TCC_TARGET_X86_64
if ((t & VT_BTYPE) == VT_LDOUBLE) {
rc = RC_ST0;
}
#endif
sv.type.t = t;
}
r = gv(rc);
r1 = get_reg(rc);
sv.r = r;
sv.c.i = 0;
load(r1, &sv); /* move r to r1 */
vdup();
/* duplicates value */
if (r != r1)
vtop->r = r1;
}
}
/* Generate value test
*
* Generate a test for any value (jump, comparison and integers) */
ST_FUNC int gvtst(int inv, int t)
{
int v = vtop->r & VT_VALMASK;
if (v != VT_CMP && v != VT_JMP && v != VT_JMPI) {
vpushi(0);
gen_op(TOK_NE);
}
if ((vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST) {
/* constant jmp optimization */
if ((vtop->c.i != 0) != inv)
t = gjmp(t);
vtop--;
return t;
}
return gtst(inv, t);
}
#if !defined(TCC_TARGET_ARM64) && !defined(TCC_TARGET_X86_64)
/* generate CPU independent (unsigned) long long operations */
static void gen_opl(int op)
{
int t, a, b, op1, c, i;
int func;
unsigned short reg_iret = REG_IRET;
unsigned short reg_lret = REG_LRET;
SValue tmp;
switch(op) {
case '/':
case TOK_PDIV:
func = TOK___divdi3;
goto gen_func;
case TOK_UDIV:
func = TOK___udivdi3;
goto gen_func;
case '%':
func = TOK___moddi3;
goto gen_mod_func;
case TOK_UMOD:
func = TOK___umoddi3;
gen_mod_func:
#ifdef TCC_ARM_EABI
reg_iret = TREG_R2;
reg_lret = TREG_R3;
#endif
gen_func:
/* call generic long long function */
vpush_global_sym(&func_old_type, func);
vrott(3);
gfunc_call(2);
vpushi(0);
vtop->r = reg_iret;
vtop->r2 = reg_lret;
break;
case '^':
case '&':
case '|':
case '*':
case '+':
case '-':
//pv("gen_opl A",0,2);
t = vtop->type.t;
vswap();
lexpand();
vrotb(3);
lexpand();
/* stack: L1 H1 L2 H2 */
tmp = vtop[0];
vtop[0] = vtop[-3];
vtop[-3] = tmp;
tmp = vtop[-2];
vtop[-2] = vtop[-3];
vtop[-3] = tmp;
vswap();
/* stack: H1 H2 L1 L2 */
//pv("gen_opl B",0,4);
if (op == '*') {
vpushv(vtop - 1);
vpushv(vtop - 1);
gen_op(TOK_UMULL);
lexpand();
/* stack: H1 H2 L1 L2 ML MH */
for(i=0;i<4;i++)
vrotb(6);
/* stack: ML MH H1 H2 L1 L2 */
tmp = vtop[0];
vtop[0] = vtop[-2];
vtop[-2] = tmp;
/* stack: ML MH H1 L2 H2 L1 */
gen_op('*');
vrotb(3);
vrotb(3);
gen_op('*');
/* stack: ML MH M1 M2 */
gen_op('+');
gen_op('+');
} else if (op == '+' || op == '-') {
/* XXX: add non carry method too (for MIPS or alpha) */
if (op == '+')
op1 = TOK_ADDC1;
else
op1 = TOK_SUBC1;
gen_op(op1);
/* stack: H1 H2 (L1 op L2) */
vrotb(3);
vrotb(3);
gen_op(op1 + 1); /* TOK_xxxC2 */
} else {
gen_op(op);
/* stack: H1 H2 (L1 op L2) */
vrotb(3);
vrotb(3);
/* stack: (L1 op L2) H1 H2 */
gen_op(op);
/* stack: (L1 op L2) (H1 op H2) */
}
/* stack: L H */
lbuild(t);
break;
case TOK_SAR:
case TOK_SHR:
case TOK_SHL:
if ((vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST) {
t = vtop[-1].type.t;
vswap();
lexpand();
vrotb(3);
/* stack: L H shift */
c = (int)vtop->c.i;
/* constant: simpler */
/* NOTE: all comments are for SHL. the other cases are
done by swaping words */
vpop();
if (op != TOK_SHL)
vswap();
if (c >= 32) {
/* stack: L H */
vpop();
if (c > 32) {
vpushi(c - 32);
gen_op(op);
}
if (op != TOK_SAR) {
vpushi(0);
} else {
gv_dup();
vpushi(31);
gen_op(TOK_SAR);
}
vswap();
} else {
vswap();
gv_dup();
/* stack: H L L */
vpushi(c);
gen_op(op);
vswap();
vpushi(32 - c);
if (op == TOK_SHL)
gen_op(TOK_SHR);
else
gen_op(TOK_SHL);
vrotb(3);
/* stack: L L H */
vpushi(c);
if (op == TOK_SHL)
gen_op(TOK_SHL);
else
gen_op(TOK_SHR);
gen_op('|');
}
if (op != TOK_SHL)
vswap();
lbuild(t);
} else {
/* XXX: should provide a faster fallback on x86 ? */
switch(op) {
case TOK_SAR:
func = TOK___ashrdi3;
goto gen_func;
case TOK_SHR:
func = TOK___lshrdi3;
goto gen_func;
case TOK_SHL:
func = TOK___ashldi3;
goto gen_func;
}
}
break;
default:
/* compare operations */
t = vtop->type.t;
vswap();
lexpand();
vrotb(3);
lexpand();
/* stack: L1 H1 L2 H2 */
tmp = vtop[-1];
vtop[-1] = vtop[-2];
vtop[-2] = tmp;
/* stack: L1 L2 H1 H2 */
/* compare high */
op1 = op;
/* when values are equal, we need to compare low words. since
the jump is inverted, we invert the test too. */
if (op1 == TOK_LT)
op1 = TOK_LE;
else if (op1 == TOK_GT)
op1 = TOK_GE;
else if (op1 == TOK_ULT)
op1 = TOK_ULE;
else if (op1 == TOK_UGT)
op1 = TOK_UGE;
a = 0;
b = 0;
gen_op(op1);
if (op == TOK_NE) {
b = gvtst(0, 0);
} else {
a = gvtst(1, 0);
if (op != TOK_EQ) {
/* generate non equal test */
vpushi(TOK_NE);
vtop->r = VT_CMP;
b = gvtst(0, 0);
}
}
/* compare low. Always unsigned */
op1 = op;
if (op1 == TOK_LT)
op1 = TOK_ULT;
else if (op1 == TOK_LE)
op1 = TOK_ULE;
else if (op1 == TOK_GT)
op1 = TOK_UGT;
else if (op1 == TOK_GE)
op1 = TOK_UGE;
gen_op(op1);
a = gvtst(1, a);
gsym(b);
vseti(VT_JMPI, a);
break;
}
}
#endif
static uint64_t gen_opic_sdiv(uint64_t a, uint64_t b)
{
uint64_t x = (a >> 63 ? -a : a) / (b >> 63 ? -b : b);
return (a ^ b) >> 63 ? -x : x;
}
static int gen_opic_lt(uint64_t a, uint64_t b)
{
return (a ^ (uint64_t)1 << 63) < (b ^ (uint64_t)1 << 63);
}
/* handle integer constant optimizations and various machine
independent opt */
static void gen_opic(int op)
{
SValue *v1 = vtop - 1;
SValue *v2 = vtop;
int t1 = v1->type.t & VT_BTYPE;
int t2 = v2->type.t & VT_BTYPE;
int c1 = (v1->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST;
int c2 = (v2->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST;
uint64_t l1 = c1 ? v1->c.i : 0;
uint64_t l2 = c2 ? v2->c.i : 0;
int shm = (t1 == VT_LLONG) ? 63 : 31;
if (t1 != VT_LLONG && (PTR_SIZE != 8 || t1 != VT_PTR))
l1 = ((uint32_t)l1 |
(v1->type.t & VT_UNSIGNED ? 0 : -(l1 & 0x80000000)));
if (t2 != VT_LLONG && (PTR_SIZE != 8 || t2 != VT_PTR))
l2 = ((uint32_t)l2 |
(v2->type.t & VT_UNSIGNED ? 0 : -(l2 & 0x80000000)));
if (c1 && c2) {
switch(op) {
case '+': l1 += l2; break;
case '-': l1 -= l2; break;
case '&': l1 &= l2; break;
case '^': l1 ^= l2; break;
case '|': l1 |= l2; break;
case '*': l1 *= l2; break;
case TOK_PDIV:
case '/':
case '%':
case TOK_UDIV:
case TOK_UMOD:
/* if division by zero, generate explicit division */
if (l2 == 0) {
if (const_wanted)
tcc_error("division by zero in constant");
goto general_case;
}
switch(op) {
default: l1 = gen_opic_sdiv(l1, l2); break;
case '%': l1 = l1 - l2 * gen_opic_sdiv(l1, l2); break;
case TOK_UDIV: l1 = l1 / l2; break;
case TOK_UMOD: l1 = l1 % l2; break;
}
break;
case TOK_SHL: l1 <<= (l2 & shm); break;
case TOK_SHR: l1 >>= (l2 & shm); break;
case TOK_SAR:
l1 = (l1 >> 63) ? ~(~l1 >> (l2 & shm)) : l1 >> (l2 & shm);
break;
/* tests */
case TOK_ULT: l1 = l1 < l2; break;
case TOK_UGE: l1 = l1 >= l2; break;
case TOK_EQ: l1 = l1 == l2; break;
case TOK_NE: l1 = l1 != l2; break;
case TOK_ULE: l1 = l1 <= l2; break;
case TOK_UGT: l1 = l1 > l2; break;
case TOK_LT: l1 = gen_opic_lt(l1, l2); break;
case TOK_GE: l1 = !gen_opic_lt(l1, l2); break;
case TOK_LE: l1 = !gen_opic_lt(l2, l1); break;
case TOK_GT: l1 = gen_opic_lt(l2, l1); break;
/* logical */
case TOK_LAND: l1 = l1 && l2; break;
case TOK_LOR: l1 = l1 || l2; break;
default:
goto general_case;
}
if (t1 != VT_LLONG && (PTR_SIZE != 8 || t1 != VT_PTR))
l1 = ((uint32_t)l1 |
(v1->type.t & VT_UNSIGNED ? 0 : -(l1 & 0x80000000)));
v1->c.i = l1;
vtop--;
} else {
/* if commutative ops, put c2 as constant */
if (c1 && (op == '+' || op == '&' || op == '^' ||
op == '|' || op == '*')) {
vswap();
c2 = c1; //c = c1, c1 = c2, c2 = c;
l2 = l1; //l = l1, l1 = l2, l2 = l;
}
if (!const_wanted &&
c1 && ((l1 == 0 &&
(op == TOK_SHL || op == TOK_SHR || op == TOK_SAR)) ||
(l1 == -1 && op == TOK_SAR))) {
/* treat (0 << x), (0 >> x) and (-1 >> x) as constant */
vtop--;
} else if (!const_wanted &&
c2 && ((l2 == 0 && (op == '&' || op == '*')) ||
(l2 == -1 && op == '|') ||
(l2 == 0xffffffff && t2 != VT_LLONG && op == '|') ||
(l2 == 1 && (op == '%' || op == TOK_UMOD)))) {
/* treat (x & 0), (x * 0), (x | -1) and (x % 1) as constant */
if (l2 == 1)
vtop->c.i = 0;
vswap();
vtop--;
} else if (c2 && (((op == '*' || op == '/' || op == TOK_UDIV ||
op == TOK_PDIV) &&
l2 == 1) ||
((op == '+' || op == '-' || op == '|' || op == '^' ||
op == TOK_SHL || op == TOK_SHR || op == TOK_SAR) &&
l2 == 0) ||
(op == '&' &&
l2 == -1))) {
/* filter out NOP operations like x*1, x-0, x&-1... */
vtop--;
} else if (c2 && (op == '*' || op == TOK_PDIV || op == TOK_UDIV)) {
/* try to use shifts instead of muls or divs */
if (l2 > 0 && (l2 & (l2 - 1)) == 0) {
int n = -1;
while (l2) {
l2 >>= 1;
n++;
}
vtop->c.i = n;
if (op == '*')
op = TOK_SHL;
else if (op == TOK_PDIV)
op = TOK_SAR;
else
op = TOK_SHR;
}
goto general_case;
} else if (c2 && (op == '+' || op == '-') &&
(((vtop[-1].r & (VT_VALMASK | VT_LVAL | VT_SYM)) == (VT_CONST | VT_SYM))
|| (vtop[-1].r & (VT_VALMASK | VT_LVAL)) == VT_LOCAL)) {
/* symbol + constant case */
if (op == '-')
l2 = -l2;
l2 += vtop[-1].c.i;
/* The backends can't always deal with addends to symbols
larger than +-1<<31. Don't construct such. */
if ((int)l2 != l2)
goto general_case;
vtop--;
vtop->c.i = l2;
} else {
general_case:
/* call low level op generator */
if (t1 == VT_LLONG || t2 == VT_LLONG ||
(PTR_SIZE == 8 && (t1 == VT_PTR || t2 == VT_PTR)))
gen_opl(op);
else
gen_opi(op);
}
}
}
/* generate a floating point operation with constant propagation */
static void gen_opif(int op)
{
int c1, c2;
SValue *v1, *v2;
long double f1, f2;
v1 = vtop - 1;
v2 = vtop;
/* currently, we cannot do computations with forward symbols */
c1 = (v1->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST;
c2 = (v2->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST;
if (c1 && c2) {
if (v1->type.t == VT_FLOAT) {
f1 = v1->c.f;
f2 = v2->c.f;
} else if (v1->type.t == VT_DOUBLE) {
f1 = v1->c.d;
f2 = v2->c.d;
} else {
f1 = v1->c.ld;
f2 = v2->c.ld;
}
/* NOTE: we only do constant propagation if finite number (not
NaN or infinity) (ANSI spec) */
if (!ieee_finite(f1) || !ieee_finite(f2))
goto general_case;
switch(op) {
case '+': f1 += f2; break;
case '-': f1 -= f2; break;
case '*': f1 *= f2; break;
case '/':
if (f2 == 0.0) {
if (const_wanted)
tcc_error("division by zero in constant");
goto general_case;
}
f1 /= f2;
break;
/* XXX: also handles tests ? */
default:
goto general_case;
}
/* XXX: overflow test ? */
if (v1->type.t == VT_FLOAT) {
v1->c.f = f1;
} else if (v1->type.t == VT_DOUBLE) {
v1->c.d = f1;
} else {
v1->c.ld = f1;
}
vtop--;
} else {
general_case:
gen_opf(op);
}
}
static int pointed_size(CType *type)
{
int align;
return type_size(pointed_type(type), &align);
}
static void vla_runtime_pointed_size(CType *type)
{
int align;
vla_runtime_type_size(pointed_type(type), &align);
}
static inline int is_null_pointer(SValue *p)
{
if ((p->r & (VT_VALMASK | VT_LVAL | VT_SYM)) != VT_CONST)
return 0;
return ((p->type.t & VT_BTYPE) == VT_INT && (uint32_t)p->c.i == 0) ||
((p->type.t & VT_BTYPE) == VT_LLONG && p->c.i == 0) ||
((p->type.t & VT_BTYPE) == VT_PTR &&
(PTR_SIZE == 4 ? (uint32_t)p->c.i == 0 : p->c.i == 0));
}
static inline int is_integer_btype(int bt)
{
return (bt == VT_BYTE || bt == VT_SHORT ||
bt == VT_INT || bt == VT_LLONG);
}
/* check types for comparison or subtraction of pointers */
static void check_comparison_pointer_types(SValue *p1, SValue *p2, int op)
{
CType *type1, *type2, tmp_type1, tmp_type2;
int bt1, bt2;
/* null pointers are accepted for all comparisons as gcc */
if (is_null_pointer(p1) || is_null_pointer(p2))
return;
type1 = &p1->type;
type2 = &p2->type;
bt1 = type1->t & VT_BTYPE;
bt2 = type2->t & VT_BTYPE;
/* accept comparison between pointer and integer with a warning */
if ((is_integer_btype(bt1) || is_integer_btype(bt2)) && op != '-') {
if (op != TOK_LOR && op != TOK_LAND )
tcc_warning("comparison between pointer and integer");
return;
}
/* both must be pointers or implicit function pointers */
if (bt1 == VT_PTR) {
type1 = pointed_type(type1);
} else if (bt1 != VT_FUNC)
goto invalid_operands;
if (bt2 == VT_PTR) {
type2 = pointed_type(type2);
} else if (bt2 != VT_FUNC) {
invalid_operands:
tcc_error("invalid operands to binary %s", get_tok_str(op, NULL));
}
if ((type1->t & VT_BTYPE) == VT_VOID ||
(type2->t & VT_BTYPE) == VT_VOID)
return;
tmp_type1 = *type1;
tmp_type2 = *type2;
tmp_type1.t &= ~(VT_DEFSIGN | VT_UNSIGNED | VT_CONSTANT | VT_VOLATILE);
tmp_type2.t &= ~(VT_DEFSIGN | VT_UNSIGNED | VT_CONSTANT | VT_VOLATILE);
if (!is_compatible_types(&tmp_type1, &tmp_type2)) {
/* gcc-like error if '-' is used */
if (op == '-')
goto invalid_operands;
else
tcc_warning("comparison of distinct pointer types lacks a cast");
}
}
/* generic gen_op: handles types problems */
ST_FUNC void gen_op(int op)
{
int u, t1, t2, bt1, bt2, t;
CType type1;
redo:
t1 = vtop[-1].type.t;
t2 = vtop[0].type.t;
bt1 = t1 & VT_BTYPE;
bt2 = t2 & VT_BTYPE;
if (bt1 == VT_STRUCT || bt2 == VT_STRUCT) {
tcc_error("operation on a struct");
} else if (bt1 == VT_FUNC || bt2 == VT_FUNC) {
if (bt2 == VT_FUNC) {
mk_pointer(&vtop->type);
gaddrof();
}
if (bt1 == VT_FUNC) {
vswap();
mk_pointer(&vtop->type);
gaddrof();
vswap();
}
goto redo;
} else if (bt1 == VT_PTR || bt2 == VT_PTR) {
/* at least one operand is a pointer */
/* relationnal op: must be both pointers */
if (op >= TOK_ULT && op <= TOK_LOR) {
check_comparison_pointer_types(vtop - 1, vtop, op);
/* pointers are handled are unsigned */
#if defined(TCC_TARGET_ARM64) || defined(TCC_TARGET_X86_64)
t = VT_LLONG | VT_UNSIGNED;
#else
t = VT_INT | VT_UNSIGNED;
#endif
goto std_op;
}
/* if both pointers, then it must be the '-' op */
if (bt1 == VT_PTR && bt2 == VT_PTR) {
if (op != '-')
tcc_error("cannot use pointers here");
check_comparison_pointer_types(vtop - 1, vtop, op);
/* XXX: check that types are compatible */
if (vtop[-1].type.t & VT_VLA) {
vla_runtime_pointed_size(&vtop[-1].type);
} else {
vpushi(pointed_size(&vtop[-1].type));
}
vrott(3);
gen_opic(op);
/* set to integer type */
#if defined(TCC_TARGET_ARM64) || defined(TCC_TARGET_X86_64)
vtop->type.t = VT_LLONG;
#else
vtop->type.t = VT_INT;
#endif
vswap();
gen_op(TOK_PDIV);
} else {
/* exactly one pointer : must be '+' or '-'. */
if (op != '-' && op != '+')
tcc_error("cannot use pointers here");
/* Put pointer as first operand */
if (bt2 == VT_PTR) {
vswap();
t = t1, t1 = t2, t2 = t;
}
#if PTR_SIZE == 4
if ((vtop[0].type.t & VT_BTYPE) == VT_LLONG)
/* XXX: truncate here because gen_opl can't handle ptr + long long */
gen_cast(&int_type);
#endif
type1 = vtop[-1].type;
type1.t &= ~VT_ARRAY;
if (vtop[-1].type.t & VT_VLA)
vla_runtime_pointed_size(&vtop[-1].type);
else {
u = pointed_size(&vtop[-1].type);
if (u < 0)
tcc_error("unknown array element size");
#if defined(TCC_TARGET_ARM64) || defined(TCC_TARGET_X86_64)
vpushll(u);
#else
/* XXX: cast to int ? (long long case) */
vpushi(u);
#endif
}
gen_op('*');
#if 0
/* #ifdef CONFIG_TCC_BCHECK
The main reason to removing this code:
#include <stdio.h>
int main ()
{
int v[10];
int i = 10;
int j = 9;
fprintf(stderr, "v+i-j = %p\n", v+i-j);
fprintf(stderr, "v+(i-j) = %p\n", v+(i-j));
}
When this code is on. then the output looks like
v+i-j = 0xfffffffe
v+(i-j) = 0xbff84000
*/
/* if evaluating constant expression, no code should be
generated, so no bound check */
if (tcc_state->do_bounds_check && !const_wanted) {
/* if bounded pointers, we generate a special code to
test bounds */
if (op == '-') {
vpushi(0);
vswap();
gen_op('-');
}
gen_bounded_ptr_add();
} else
#endif
{
gen_opic(op);
}
/* put again type if gen_opic() swaped operands */
vtop->type = type1;
}
} else if (is_float(bt1) || is_float(bt2)) {
/* compute bigger type and do implicit casts */
if (bt1 == VT_LDOUBLE || bt2 == VT_LDOUBLE) {
t = VT_LDOUBLE;
} else if (bt1 == VT_DOUBLE || bt2 == VT_DOUBLE) {
t = VT_DOUBLE;
} else {
t = VT_FLOAT;
}
/* floats can only be used for a few operations */
if (op != '+' && op != '-' && op != '*' && op != '/' &&
(op < TOK_ULT || op > TOK_GT))
tcc_error("invalid operands for binary operation");
goto std_op;
} else if (op == TOK_SHR || op == TOK_SAR || op == TOK_SHL) {
t = bt1 == VT_LLONG ? VT_LLONG : VT_INT;
if ((t1 & (VT_BTYPE | VT_UNSIGNED)) == (t | VT_UNSIGNED))
t |= VT_UNSIGNED;
goto std_op;
} else if (bt1 == VT_LLONG || bt2 == VT_LLONG) {
/* cast to biggest op */
t = VT_LLONG;
/* convert to unsigned if it does not fit in a long long */
if ((t1 & (VT_BTYPE | VT_UNSIGNED)) == (VT_LLONG | VT_UNSIGNED) ||
(t2 & (VT_BTYPE | VT_UNSIGNED)) == (VT_LLONG | VT_UNSIGNED))
t |= VT_UNSIGNED;
goto std_op;
} else {
/* integer operations */
t = VT_INT;
/* convert to unsigned if it does not fit in an integer */
if ((t1 & (VT_BTYPE | VT_UNSIGNED)) == (VT_INT | VT_UNSIGNED) ||
(t2 & (VT_BTYPE | VT_UNSIGNED)) == (VT_INT | VT_UNSIGNED))
t |= VT_UNSIGNED;
std_op:
/* XXX: currently, some unsigned operations are explicit, so
we modify them here */
if (t & VT_UNSIGNED) {
if (op == TOK_SAR)
op = TOK_SHR;
else if (op == '/')
op = TOK_UDIV;
else if (op == '%')
op = TOK_UMOD;
else if (op == TOK_LT)
op = TOK_ULT;
else if (op == TOK_GT)
op = TOK_UGT;
else if (op == TOK_LE)
op = TOK_ULE;
else if (op == TOK_GE)
op = TOK_UGE;
}
vswap();
type1.t = t;
gen_cast(&type1);
vswap();
/* special case for shifts and long long: we keep the shift as
an integer */
if (op == TOK_SHR || op == TOK_SAR || op == TOK_SHL)
type1.t = VT_INT;
gen_cast(&type1);
if (is_float(t))
gen_opif(op);
else
gen_opic(op);
if (op >= TOK_ULT && op <= TOK_GT) {
/* relationnal op: the result is an int */
vtop->type.t = VT_INT;
} else {
vtop->type.t = t;
}
}
// Make sure that we have converted to an rvalue:
if (vtop->r & VT_LVAL)
gv(is_float(vtop->type.t & VT_BTYPE) ? RC_FLOAT : RC_INT);
}
#ifndef TCC_TARGET_ARM
/* generic itof for unsigned long long case */
static void gen_cvt_itof1(int t)
{
#ifdef TCC_TARGET_ARM64
gen_cvt_itof(t);
#else
if ((vtop->type.t & (VT_BTYPE | VT_UNSIGNED)) ==
(VT_LLONG | VT_UNSIGNED)) {
if (t == VT_FLOAT)
vpush_global_sym(&func_old_type, TOK___floatundisf);
#if LDOUBLE_SIZE != 8
else if (t == VT_LDOUBLE)
vpush_global_sym(&func_old_type, TOK___floatundixf);
#endif
else
vpush_global_sym(&func_old_type, TOK___floatundidf);
vrott(2);
gfunc_call(1);
vpushi(0);
vtop->r = reg_fret(t);
} else {
gen_cvt_itof(t);
}
#endif
}
#endif
/* generic ftoi for unsigned long long case */
static void gen_cvt_ftoi1(int t)
{
#ifdef TCC_TARGET_ARM64
gen_cvt_ftoi(t);
#else
int st;
if (t == (VT_LLONG | VT_UNSIGNED)) {
/* not handled natively */
st = vtop->type.t & VT_BTYPE;
if (st == VT_FLOAT)
vpush_global_sym(&func_old_type, TOK___fixunssfdi);
#if LDOUBLE_SIZE != 8
else if (st == VT_LDOUBLE)
vpush_global_sym(&func_old_type, TOK___fixunsxfdi);
#endif
else
vpush_global_sym(&func_old_type, TOK___fixunsdfdi);
vrott(2);
gfunc_call(1);
vpushi(0);
vtop->r = REG_IRET;
vtop->r2 = REG_LRET;
} else {
gen_cvt_ftoi(t);
}
#endif
}
/* force char or short cast */
static void force_charshort_cast(int t)
{
int bits, dbt;
dbt = t & VT_BTYPE;
/* XXX: add optimization if lvalue : just change type and offset */
if (dbt == VT_BYTE)
bits = 8;
else
bits = 16;
if (t & VT_UNSIGNED) {
vpushi((1 << bits) - 1);
gen_op('&');
} else {
if ((vtop->type.t & VT_BTYPE) == VT_LLONG)
bits = 64 - bits;
else
bits = 32 - bits;
vpushi(bits);
gen_op(TOK_SHL);
/* result must be signed or the SAR is converted to an SHL
This was not the case when "t" was a signed short
and the last value on the stack was an unsigned int */
vtop->type.t &= ~VT_UNSIGNED;
vpushi(bits);
gen_op(TOK_SAR);
}
}
/* cast 'vtop' to 'type'. Casting to bitfields is forbidden. */
static void gen_cast(CType *type)
{
int sbt, dbt, sf, df, c, p;
/* special delayed cast for char/short */
/* XXX: in some cases (multiple cascaded casts), it may still
be incorrect */
if (vtop->r & VT_MUSTCAST) {
vtop->r &= ~VT_MUSTCAST;
force_charshort_cast(vtop->type.t);
}
/* bitfields first get cast to ints */
if (vtop->type.t & VT_BITFIELD) {
gv(RC_INT);
}
dbt = type->t & (VT_BTYPE | VT_UNSIGNED);
sbt = vtop->type.t & (VT_BTYPE | VT_UNSIGNED);
if (sbt != dbt) {
sf = is_float(sbt);
df = is_float(dbt);
c = (vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST;
p = (vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == (VT_CONST | VT_SYM);
if (c) {
/* constant case: we can do it now */
/* XXX: in ISOC, cannot do it if error in convert */
if (sbt == VT_FLOAT)
vtop->c.ld = vtop->c.f;
else if (sbt == VT_DOUBLE)
vtop->c.ld = vtop->c.d;
if (df) {
if ((sbt & VT_BTYPE) == VT_LLONG) {
if ((sbt & VT_UNSIGNED) || !(vtop->c.i >> 63))
vtop->c.ld = vtop->c.i;
else
vtop->c.ld = -(long double)-vtop->c.i;
} else if(!sf) {
if ((sbt & VT_UNSIGNED) || !(vtop->c.i >> 31))
vtop->c.ld = (uint32_t)vtop->c.i;
else
vtop->c.ld = -(long double)-(uint32_t)vtop->c.i;
}
if (dbt == VT_FLOAT)
vtop->c.f = (float)vtop->c.ld;
else if (dbt == VT_DOUBLE)
vtop->c.d = (double)vtop->c.ld;
} else if (sf && dbt == (VT_LLONG|VT_UNSIGNED)) {
vtop->c.i = vtop->c.ld;
} else if (sf && dbt == VT_BOOL) {
vtop->c.i = (vtop->c.ld != 0);
} else {
if(sf)
vtop->c.i = vtop->c.ld;
else if (sbt == (VT_LLONG|VT_UNSIGNED))
;
else if (sbt & VT_UNSIGNED)
vtop->c.i = (uint32_t)vtop->c.i;
#if defined(TCC_TARGET_ARM64) || defined(TCC_TARGET_X86_64)
else if (sbt == VT_PTR)
;
#endif
else if (sbt != VT_LLONG)
vtop->c.i = ((uint32_t)vtop->c.i |
-(vtop->c.i & 0x80000000));
if (dbt == (VT_LLONG|VT_UNSIGNED))
;
else if (dbt == VT_BOOL)
vtop->c.i = (vtop->c.i != 0);
#if defined(TCC_TARGET_ARM64) || defined(TCC_TARGET_X86_64)
else if (dbt == VT_PTR)
;
#endif
else if (dbt != VT_LLONG) {
uint32_t m = ((dbt & VT_BTYPE) == VT_BYTE ? 0xff :
(dbt & VT_BTYPE) == VT_SHORT ? 0xffff :
0xffffffff);
vtop->c.i &= m;
if (!(dbt & VT_UNSIGNED))
vtop->c.i |= -(vtop->c.i & ((m >> 1) + 1));
}
}
} else if (p && dbt == VT_BOOL) {
vtop->r = VT_CONST;
vtop->c.i = 1;
} else {
/* non constant case: generate code */
if (sf && df) {
/* convert from fp to fp */
gen_cvt_ftof(dbt);
} else if (df) {
/* convert int to fp */
gen_cvt_itof1(dbt);
} else if (sf) {
/* convert fp to int */
if (dbt == VT_BOOL) {
vpushi(0);
gen_op(TOK_NE);
} else {
if (sbt == VT_FLOAT) {
/* cast to DOUBLE to avoid precision loss */
gen_cvt_ftof(VT_DOUBLE);
vtop->type.t = (vtop->type.t & ~VT_BTYPE) | VT_DOUBLE;
}
/* we handle char/short/etc... with generic code */
if (dbt != (VT_INT | VT_UNSIGNED) &&
dbt != (VT_LLONG | VT_UNSIGNED) &&
dbt != VT_LLONG)
dbt = VT_INT;
gen_cvt_ftoi1(dbt);
if (dbt == VT_INT && (type->t & (VT_BTYPE | VT_UNSIGNED)) != dbt) {
/* additional cast for char/short... */
vtop->type.t = dbt;
gen_cast(type);
}
}
#if !defined(TCC_TARGET_ARM64) && !defined(TCC_TARGET_X86_64)
} else if ((dbt & VT_BTYPE) == VT_LLONG) {
if ((sbt & VT_BTYPE) != VT_LLONG) {
/* scalar to long long */
/* machine independent conversion */
gv(RC_INT);
/* generate high word */
if (sbt == (VT_INT | VT_UNSIGNED)) {
vpushi(0);
gv(RC_INT);
} else {
if (sbt == VT_PTR) {
/* cast from pointer to int before we apply
shift operation, which pointers don't support*/
gen_cast(&int_type);
}
gv_dup();
vpushi(31);
gen_op(TOK_SAR);
}
/* patch second register */
vtop[-1].r2 = vtop->r;
vpop();
}
#else
} else if ((dbt & VT_BTYPE) == VT_LLONG ||
(dbt & VT_BTYPE) == VT_PTR ||
(dbt & VT_BTYPE) == VT_FUNC) {
if ((sbt & VT_BTYPE) != VT_LLONG &&
(sbt & VT_BTYPE) != VT_PTR &&
(sbt & VT_BTYPE) != VT_FUNC) {
/* need to convert from 32bit to 64bit */
gv(RC_INT);
if (sbt != (VT_INT | VT_UNSIGNED)) {
#if defined(TCC_TARGET_ARM64)
gen_cvt_sxtw();
#elif defined(TCC_TARGET_X86_64)
int r = gv(RC_INT);
/* x86_64 specific: movslq */
o(0x6348);
o(0xc0 + (REG_VALUE(r) << 3) + REG_VALUE(r));
#else
#error
#endif
}
}
#endif
} else if (dbt == VT_BOOL) {
/* scalar to bool */
vpushi(0);
gen_op(TOK_NE);
} else if ((dbt & VT_BTYPE) == VT_BYTE ||
(dbt & VT_BTYPE) == VT_SHORT) {
if (sbt == VT_PTR) {
vtop->type.t = VT_INT;
tcc_warning("nonportable conversion from pointer to char/short");
}
force_charshort_cast(dbt);
#if !defined(TCC_TARGET_ARM64) && !defined(TCC_TARGET_X86_64)
} else if ((dbt & VT_BTYPE) == VT_INT) {
/* scalar to int */
if ((sbt & VT_BTYPE) == VT_LLONG) {
/* from long long: just take low order word */
lexpand();
vpop();
}
/* if lvalue and single word type, nothing to do because
the lvalue already contains the real type size (see
VT_LVAL_xxx constants) */
#endif
}
}
} else if ((dbt & VT_BTYPE) == VT_PTR && !(vtop->r & VT_LVAL)) {
/* if we are casting between pointer types,
we must update the VT_LVAL_xxx size */
vtop->r = (vtop->r & ~VT_LVAL_TYPE)
| (lvalue_type(type->ref->type.t) & VT_LVAL_TYPE);
}
vtop->type = *type;
}
/* return type size as known at compile time. Put alignment at 'a' */
ST_FUNC int type_size(CType *type, int *a)
{
Sym *s;
int bt;
bt = type->t & VT_BTYPE;
if (bt == VT_STRUCT) {
/* struct/union */
s = type->ref;
*a = s->r;
return s->c;
} else if (bt == VT_PTR) {
if (type->t & VT_ARRAY) {
int ts;
s = type->ref;
ts = type_size(&s->type, a);
if (ts < 0 && s->c < 0)
ts = -ts;
return ts * s->c;
} else {
*a = PTR_SIZE;
return PTR_SIZE;
}
} else if (bt == VT_LDOUBLE) {
*a = LDOUBLE_ALIGN;
return LDOUBLE_SIZE;
} else if (bt == VT_DOUBLE || bt == VT_LLONG) {
#ifdef TCC_TARGET_I386
#ifdef TCC_TARGET_PE
*a = 8;
#else
*a = 4;
#endif
#elif defined(TCC_TARGET_ARM)
#ifdef TCC_ARM_EABI
*a = 8;
#else
*a = 4;
#endif
#else
*a = 8;
#endif
return 8;
} else if (bt == VT_INT || bt == VT_FLOAT) {
*a = 4;
return 4;
} else if (bt == VT_SHORT) {
*a = 2;
return 2;
} else if (bt == VT_QLONG || bt == VT_QFLOAT) {
*a = 8;
return 16;
} else if (bt == VT_ENUM) {
*a = 4;
/* Enums might be incomplete, so don't just return '4' here. */
return type->ref->c;
} else {
/* char, void, function, _Bool */
*a = 1;
return 1;
}
}
/* push type size as known at runtime time on top of value stack. Put
alignment at 'a' */
ST_FUNC void vla_runtime_type_size(CType *type, int *a)
{
if (type->t & VT_VLA) {
type_size(&type->ref->type, a);
vset(&int_type, VT_LOCAL|VT_LVAL, type->ref->c);
} else {
vpushi(type_size(type, a));
}
}
static void vla_sp_restore(void) {
if (vlas_in_scope) {
gen_vla_sp_restore(vla_sp_loc);
}
}
static void vla_sp_restore_root(void) {
if (vlas_in_scope) {
gen_vla_sp_restore(vla_sp_root_loc);
}
}
/* return the pointed type of t */
static inline CType *pointed_type(CType *type)
{
return &type->ref->type;
}
/* modify type so that its it is a pointer to type. */
ST_FUNC void mk_pointer(CType *type)
{
Sym *s;
s = sym_push(SYM_FIELD, type, 0, -1);
type->t = VT_PTR | (type->t & ~VT_TYPE);
type->ref = s;
}
/* compare function types. OLD functions match any new functions */
static int is_compatible_func(CType *type1, CType *type2)
{
Sym *s1, *s2;
s1 = type1->ref;
s2 = type2->ref;
if (!is_compatible_types(&s1->type, &s2->type))
return 0;
/* check func_call */
if (s1->a.func_call != s2->a.func_call)
return 0;
/* XXX: not complete */
if (s1->c == FUNC_OLD || s2->c == FUNC_OLD)
return 1;
if (s1->c != s2->c)
return 0;
while (s1 != NULL) {
if (s2 == NULL)
return 0;
if (!is_compatible_parameter_types(&s1->type, &s2->type))
return 0;
s1 = s1->next;
s2 = s2->next;
}
if (s2)
return 0;
return 1;
}
/* return true if type1 and type2 are the same. If unqualified is
true, qualifiers on the types are ignored.
- enums are not checked as gcc __builtin_types_compatible_p ()
*/
static int compare_types(CType *type1, CType *type2, int unqualified)
{
int bt1, t1, t2;
t1 = type1->t & VT_TYPE;
t2 = type2->t & VT_TYPE;
if (unqualified) {
/* strip qualifiers before comparing */
t1 &= ~(VT_CONSTANT | VT_VOLATILE);
t2 &= ~(VT_CONSTANT | VT_VOLATILE);
}
/* Default Vs explicit signedness only matters for char */
if ((t1 & VT_BTYPE) != VT_BYTE) {
t1 &= ~VT_DEFSIGN;
t2 &= ~VT_DEFSIGN;
}
/* An enum is compatible with (unsigned) int. Ideally we would
store the enums signedness in type->ref.a.<some_bit> and
only accept unsigned enums with unsigned int and vice versa.
But one of our callers (gen_assign_cast) always strips VT_UNSIGNED
from pointer target types, so we can't add it here either. */
if ((t1 & VT_BTYPE) == VT_ENUM) {
t1 = VT_INT;
if (type1->ref->a.unsigned_enum)
t1 |= VT_UNSIGNED;
}
if ((t2 & VT_BTYPE) == VT_ENUM) {
t2 = VT_INT;
if (type2->ref->a.unsigned_enum)
t2 |= VT_UNSIGNED;
}
/* XXX: bitfields ? */
if (t1 != t2)
return 0;
/* test more complicated cases */
bt1 = t1 & VT_BTYPE;
if (bt1 == VT_PTR) {
type1 = pointed_type(type1);
type2 = pointed_type(type2);
return is_compatible_types(type1, type2);
} else if (bt1 == VT_STRUCT) {
return (type1->ref == type2->ref);
} else if (bt1 == VT_FUNC) {
return is_compatible_func(type1, type2);
} else {
return 1;
}
}
/* return true if type1 and type2 are exactly the same (including
qualifiers).
*/
static int is_compatible_types(CType *type1, CType *type2)
{
return compare_types(type1,type2,0);
}
/* return true if type1 and type2 are the same (ignoring qualifiers).
*/
static int is_compatible_parameter_types(CType *type1, CType *type2)
{
return compare_types(type1,type2,1);
}
/* print a type. If 'varstr' is not NULL, then the variable is also
printed in the type */
/* XXX: union */
/* XXX: add array and function pointers */
static void type_to_str(char *buf, int buf_size,
CType *type, const char *varstr)
{
int bt, v, t;
Sym *s, *sa;
char buf1[256];
const char *tstr;
t = type->t & VT_TYPE;
bt = t & VT_BTYPE;
buf[0] = '\0';
if (t & VT_CONSTANT)
pstrcat(buf, buf_size, "const ");
if (t & VT_VOLATILE)
pstrcat(buf, buf_size, "volatile ");
if ((t & (VT_DEFSIGN | VT_UNSIGNED)) == (VT_DEFSIGN | VT_UNSIGNED))
pstrcat(buf, buf_size, "unsigned ");
else if (t & VT_DEFSIGN)
pstrcat(buf, buf_size, "signed ");
switch(bt) {
case VT_VOID:
tstr = "void";
goto add_tstr;
case VT_BOOL:
tstr = "_Bool";
goto add_tstr;
case VT_BYTE:
tstr = "char";
goto add_tstr;
case VT_SHORT:
tstr = "short";
goto add_tstr;
case VT_INT:
tstr = "int";
goto add_tstr;
case VT_LONG:
tstr = "long";
goto add_tstr;
case VT_LLONG:
tstr = "long long";
goto add_tstr;
case VT_FLOAT:
tstr = "float";
goto add_tstr;
case VT_DOUBLE:
tstr = "double";
goto add_tstr;
case VT_LDOUBLE:
tstr = "long double";
add_tstr:
pstrcat(buf, buf_size, tstr);
break;
case VT_ENUM:
case VT_STRUCT:
if (bt == VT_STRUCT)
tstr = "struct ";
else
tstr = "enum ";
pstrcat(buf, buf_size, tstr);
v = type->ref->v & ~SYM_STRUCT;
if (v >= SYM_FIRST_ANOM)
pstrcat(buf, buf_size, "<anonymous>");
else
pstrcat(buf, buf_size, get_tok_str(v, NULL));
break;
case VT_FUNC:
s = type->ref;
type_to_str(buf, buf_size, &s->type, varstr);
pstrcat(buf, buf_size, "(");
sa = s->next;
while (sa != NULL) {
type_to_str(buf1, sizeof(buf1), &sa->type, NULL);
pstrcat(buf, buf_size, buf1);
sa = sa->next;
if (sa)
pstrcat(buf, buf_size, ", ");
}
pstrcat(buf, buf_size, ")");
goto no_var;
case VT_PTR:
s = type->ref;
if (t & VT_ARRAY) {
snprintf(buf1, sizeof(buf1), "%s[%ld]", varstr ? varstr : "", s->c);
type_to_str(buf, buf_size, &s->type, buf1);
goto no_var;
}
pstrcpy(buf1, sizeof(buf1), "*");
if (t & VT_CONSTANT)
pstrcat(buf1, buf_size, "const ");
if (t & VT_VOLATILE)
pstrcat(buf1, buf_size, "volatile ");
if (varstr)
pstrcat(buf1, sizeof(buf1), varstr);
type_to_str(buf, buf_size, &s->type, buf1);
goto no_var;
}
if (varstr) {
pstrcat(buf, buf_size, " ");
pstrcat(buf, buf_size, varstr);
}
no_var: ;
}
/* verify type compatibility to store vtop in 'dt' type, and generate
casts if needed. */
static void gen_assign_cast(CType *dt)
{
CType *st, *type1, *type2, tmp_type1, tmp_type2;
char buf1[256], buf2[256];
int dbt, sbt;
st = &vtop->type; /* source type */
dbt = dt->t & VT_BTYPE;
sbt = st->t & VT_BTYPE;
if (sbt == VT_VOID || dbt == VT_VOID) {
if (sbt == VT_VOID && dbt == VT_VOID)
; /*
It is Ok if both are void
A test program:
void func1() {}
void func2() {
return func1();
}
gcc accepts this program
*/
else
tcc_error("cannot cast from/to void");
}
if (dt->t & VT_CONSTANT)
tcc_warning("assignment of read-only location");
switch(dbt) {
case VT_PTR:
/* special cases for pointers */
/* '0' can also be a pointer */
if (is_null_pointer(vtop))
goto type_ok;
/* accept implicit pointer to integer cast with warning */
if (is_integer_btype(sbt)) {
tcc_warning("assignment makes pointer from integer without a cast");
goto type_ok;
}
type1 = pointed_type(dt);
/* a function is implicitely a function pointer */
if (sbt == VT_FUNC) {
if ((type1->t & VT_BTYPE) != VT_VOID &&
!is_compatible_types(pointed_type(dt), st))
tcc_warning("assignment from incompatible pointer type");
goto type_ok;
}
if (sbt != VT_PTR)
goto error;
type2 = pointed_type(st);
if ((type1->t & VT_BTYPE) == VT_VOID ||
(type2->t & VT_BTYPE) == VT_VOID) {
/* void * can match anything */
} else {
/* exact type match, except for qualifiers */
tmp_type1 = *type1;
tmp_type2 = *type2;
tmp_type1.t &= ~(VT_CONSTANT | VT_VOLATILE);
tmp_type2.t &= ~(VT_CONSTANT | VT_VOLATILE);
if (!is_compatible_types(&tmp_type1, &tmp_type2)) {
/* Like GCC don't warn by default for merely changes
in pointer target signedness. Do warn for different
base types, though, in particular for unsigned enums
and signed int targets. */
if ((tmp_type1.t & (VT_DEFSIGN | VT_UNSIGNED)) !=
(tmp_type2.t & (VT_DEFSIGN | VT_UNSIGNED)) &&
(tmp_type1.t & VT_BTYPE) == (tmp_type2.t & VT_BTYPE))
;
else
tcc_warning("assignment from incompatible pointer type");
}
}
/* check const and volatile */
if ((!(type1->t & VT_CONSTANT) && (type2->t & VT_CONSTANT)) ||
(!(type1->t & VT_VOLATILE) && (type2->t & VT_VOLATILE)))
tcc_warning("assignment discards qualifiers from pointer target type");
break;
case VT_BYTE:
case VT_SHORT:
case VT_INT:
case VT_LLONG:
if (sbt == VT_PTR || sbt == VT_FUNC) {
tcc_warning("assignment makes integer from pointer without a cast");
} else if (sbt == VT_STRUCT) {
goto case_VT_STRUCT;
}
/* XXX: more tests */
break;
case VT_STRUCT:
case_VT_STRUCT:
tmp_type1 = *dt;
tmp_type2 = *st;
tmp_type1.t &= ~(VT_CONSTANT | VT_VOLATILE);
tmp_type2.t &= ~(VT_CONSTANT | VT_VOLATILE);
if (!is_compatible_types(&tmp_type1, &tmp_type2)) {
error:
type_to_str(buf1, sizeof(buf1), st, NULL);
type_to_str(buf2, sizeof(buf2), dt, NULL);
tcc_error("cannot cast '%s' to '%s'", buf1, buf2);
}
break;
}
type_ok:
gen_cast(dt);
}
/* store vtop in lvalue pushed on stack */
ST_FUNC void vstore(void)
{
int sbt, dbt, ft, r, t, size, align, bit_size, bit_pos, rc, delayed_cast;
ft = vtop[-1].type.t;
sbt = vtop->type.t & VT_BTYPE;
dbt = ft & VT_BTYPE;
if ((((sbt == VT_INT || sbt == VT_SHORT) && dbt == VT_BYTE) ||
(sbt == VT_INT && dbt == VT_SHORT))
&& !(vtop->type.t & VT_BITFIELD)) {
/* optimize char/short casts */
delayed_cast = VT_MUSTCAST;
vtop->type.t = (ft & VT_TYPE & ~VT_BITFIELD &
((1 << VT_STRUCT_SHIFT) - 1));
/* XXX: factorize */
if (ft & VT_CONSTANT)
tcc_warning("assignment of read-only location");
} else {
delayed_cast = 0;
if (!(ft & VT_BITFIELD))
gen_assign_cast(&vtop[-1].type);
}
if (sbt == VT_STRUCT) {
/* if structure, only generate pointer */
/* structure assignment : generate memcpy */
/* XXX: optimize if small size */
size = type_size(&vtop->type, &align);
/* destination */
vswap();
vtop->type.t = VT_PTR;
gaddrof();
/* address of memcpy() */
#ifdef TCC_ARM_EABI
if(!(align & 7))
vpush_global_sym(&func_old_type, TOK_memcpy8);
else if(!(align & 3))
vpush_global_sym(&func_old_type, TOK_memcpy4);
else
#endif
/* Use memmove, rather than memcpy, as dest and src may be same: */
vpush_global_sym(&func_old_type, TOK_memmove);
vswap();
/* source */
vpushv(vtop - 2);
vtop->type.t = VT_PTR;
gaddrof();
/* type size */
vpushi(size);
gfunc_call(3);
/* leave source on stack */
} else if (ft & VT_BITFIELD) {
/* bitfield store handling */
/* save lvalue as expression result (example: s.b = s.a = n;) */
vdup(), vtop[-1] = vtop[-2];
bit_pos = (ft >> VT_STRUCT_SHIFT) & 0x3f;
bit_size = (ft >> (VT_STRUCT_SHIFT + 6)) & 0x3f;
/* remove bit field info to avoid loops */
vtop[-1].type.t = ft & ~VT_BITFIELD & ((1 << VT_STRUCT_SHIFT) - 1);
if((ft & VT_BTYPE) == VT_BOOL) {
gen_cast(&vtop[-1].type);
vtop[-1].type.t = (vtop[-1].type.t & ~VT_BTYPE) | (VT_BYTE | VT_UNSIGNED);
}
/* duplicate destination */
vdup();
vtop[-1] = vtop[-2];
/* mask and shift source */
if((ft & VT_BTYPE) != VT_BOOL) {
if((ft & VT_BTYPE) == VT_LLONG) {
vpushll((1ULL << bit_size) - 1ULL);
} else {
vpushi((1 << bit_size) - 1);
}
gen_op('&');
}
vpushi(bit_pos);
gen_op(TOK_SHL);
/* load destination, mask and or with source */
vswap();
if((ft & VT_BTYPE) == VT_LLONG) {
vpushll(~(((1ULL << bit_size) - 1ULL) << bit_pos));
} else {
vpushi(~(((1 << bit_size) - 1) << bit_pos));
}
gen_op('&');
gen_op('|');
/* store result */
vstore();
/* ... and discard */
vpop();
} else {
#ifdef CONFIG_TCC_BCHECK
/* bound check case */
if (vtop[-1].r & VT_MUSTBOUND) {
vswap();
gbound();
vswap();
}
#endif
rc = RC_INT;
if (is_float(ft)) {
rc = RC_FLOAT;
#ifdef TCC_TARGET_X86_64
if ((ft & VT_BTYPE) == VT_LDOUBLE) {
rc = RC_ST0;
} else if ((ft & VT_BTYPE) == VT_QFLOAT) {
rc = RC_FRET;
}
#endif
}
r = gv(rc); /* generate value */
/* if lvalue was saved on stack, must read it */
if ((vtop[-1].r & VT_VALMASK) == VT_LLOCAL) {
SValue sv;
t = get_reg(RC_INT);
#if defined(TCC_TARGET_ARM64) || defined(TCC_TARGET_X86_64)
sv.type.t = VT_PTR;
#else
sv.type.t = VT_INT;
#endif
sv.r = VT_LOCAL | VT_LVAL;
sv.c.i = vtop[-1].c.i;
load(t, &sv);
vtop[-1].r = t | VT_LVAL;
}
/* two word case handling : store second register at word + 4 (or +8 for x86-64) */
#if defined(TCC_TARGET_ARM64) || defined(TCC_TARGET_X86_64)
if (((ft & VT_BTYPE) == VT_QLONG) || ((ft & VT_BTYPE) == VT_QFLOAT)) {
int addr_type = VT_LLONG, load_size = 8, load_type = ((vtop->type.t & VT_BTYPE) == VT_QLONG) ? VT_LLONG : VT_DOUBLE;
#else
if ((ft & VT_BTYPE) == VT_LLONG) {
int addr_type = VT_INT, load_size = 4, load_type = VT_INT;
#endif
vtop[-1].type.t = load_type;
store(r, vtop - 1);
vswap();
/* convert to int to increment easily */
vtop->type.t = addr_type;
gaddrof();
vpushi(load_size);
gen_op('+');
vtop->r |= VT_LVAL;
vswap();
vtop[-1].type.t = load_type;
/* XXX: it works because r2 is spilled last ! */
store(vtop->r2, vtop - 1);
} else {
store(r, vtop - 1);
}
vswap();
vtop--; /* NOT vpop() because on x86 it would flush the fp stack */
vtop->r |= delayed_cast;
}
}
/* post defines POST/PRE add. c is the token ++ or -- */
ST_FUNC void inc(int post, int c)
{
test_lvalue();
vdup(); /* save lvalue */
if (post) {
gv_dup(); /* duplicate value */
vrotb(3);
vrotb(3);
}
/* add constant */
vpushi(c - TOK_MID);
gen_op('+');
vstore(); /* store value */
if (post)
vpop(); /* if post op, return saved value */
}
ST_FUNC void parse_mult_str (CString *astr, const char *msg)
{
/* read the string */
if (tok != TOK_STR)
expect(msg);
cstr_new(astr);
while (tok == TOK_STR) {
/* XXX: add \0 handling too ? */
cstr_cat(astr, tokc.str.data, -1);
next();
}
cstr_ccat(astr, '\0');
}
/* If I is >= 1 and a power of two, returns log2(i)+1.
If I is 0 returns 0. */
static int exact_log2p1(int i)
{
int ret;
if (!i)
return 0;
for (ret = 1; i >= 1 << 8; ret += 8)
i >>= 8;
if (i >= 1 << 4)
ret += 4, i >>= 4;
if (i >= 1 << 2)
ret += 2, i >>= 2;
if (i >= 1 << 1)
ret++;
return ret;
}
/* Parse GNUC __attribute__ extension. Currently, the following
extensions are recognized:
- aligned(n) : set data/function alignment.
- packed : force data alignment to 1
- section(x) : generate data/code in this section.
- unused : currently ignored, but may be used someday.
- regparm(n) : pass function parameters in registers (i386 only)
*/
static void parse_attribute(AttributeDef *ad)
{
int t, n;
CString astr;
while (tok == TOK_ATTRIBUTE1 || tok == TOK_ATTRIBUTE2) {
next();
skip('(');
skip('(');
while (tok != ')') {
if (tok < TOK_IDENT)
expect("attribute name");
t = tok;
next();
switch(t) {
case TOK_SECTION1:
case TOK_SECTION2:
skip('(');
parse_mult_str(&astr, "section name");
ad->section = find_section(tcc_state, (char *)astr.data);
skip(')');
cstr_free(&astr);
break;
case TOK_ALIAS1:
case TOK_ALIAS2:
skip('(');
parse_mult_str(&astr, "alias(\"target\")");
ad->alias_target = /* save string as token, for later */
tok_alloc((char*)astr.data, astr.size-1)->tok;
skip(')');
cstr_free(&astr);
break;
case TOK_VISIBILITY1:
case TOK_VISIBILITY2:
skip('(');
parse_mult_str(&astr,
"visibility(\"default|hidden|internal|protected\")");
if (!strcmp (astr.data, "default"))
ad->a.visibility = STV_DEFAULT;
else if (!strcmp (astr.data, "hidden"))
ad->a.visibility = STV_HIDDEN;
else if (!strcmp (astr.data, "internal"))
ad->a.visibility = STV_INTERNAL;
else if (!strcmp (astr.data, "protected"))
ad->a.visibility = STV_PROTECTED;
else
expect("visibility(\"default|hidden|internal|protected\")");
skip(')');
cstr_free(&astr);
break;
case TOK_ALIGNED1:
case TOK_ALIGNED2:
if (tok == '(') {
next();
n = expr_const();
if (n <= 0 || (n & (n - 1)) != 0)
tcc_error("alignment must be a positive power of two");
skip(')');
} else {
n = MAX_ALIGN;
}
ad->a.aligned = exact_log2p1(n);
if (n != 1 << (ad->a.aligned - 1))
tcc_error("alignment of %d is larger than implemented", n);
break;
case TOK_PACKED1:
case TOK_PACKED2:
ad->a.packed = 1;
break;
case TOK_WEAK1:
case TOK_WEAK2:
ad->a.weak = 1;
break;
case TOK_UNUSED1:
case TOK_UNUSED2:
/* currently, no need to handle it because tcc does not
track unused objects */
break;
case TOK_NORETURN1:
case TOK_NORETURN2:
/* currently, no need to handle it because tcc does not
track unused objects */
break;
case TOK_CDECL1:
case TOK_CDECL2:
case TOK_CDECL3:
ad->a.func_call = FUNC_CDECL;
break;
case TOK_STDCALL1:
case TOK_STDCALL2:
case TOK_STDCALL3:
ad->a.func_call = FUNC_STDCALL;
break;
#ifdef TCC_TARGET_I386
case TOK_REGPARM1:
case TOK_REGPARM2:
skip('(');
n = expr_const();
if (n > 3)
n = 3;
else if (n < 0)
n = 0;
if (n > 0)
ad->a.func_call = FUNC_FASTCALL1 + n - 1;
skip(')');
break;
case TOK_FASTCALL1:
case TOK_FASTCALL2:
case TOK_FASTCALL3:
ad->a.func_call = FUNC_FASTCALLW;
break;
#endif
case TOK_MODE:
skip('(');
switch(tok) {
case TOK_MODE_DI:
ad->a.mode = VT_LLONG + 1;
break;
case TOK_MODE_QI:
ad->a.mode = VT_BYTE + 1;
break;
case TOK_MODE_HI:
ad->a.mode = VT_SHORT + 1;
break;
case TOK_MODE_SI:
case TOK_MODE_word:
ad->a.mode = VT_INT + 1;
break;
default:
tcc_warning("__mode__(%s) not supported\n", get_tok_str(tok, NULL));
break;
}
next();
skip(')');
break;
case TOK_DLLEXPORT:
ad->a.func_export = 1;
break;
case TOK_DLLIMPORT:
ad->a.func_import = 1;
break;
default:
if (tcc_state->warn_unsupported)
tcc_warning("'%s' attribute ignored", get_tok_str(t, NULL));
/* skip parameters */
if (tok == '(') {
int parenthesis = 0;
do {
if (tok == '(')
parenthesis++;
else if (tok == ')')
parenthesis--;
next();
} while (parenthesis && tok != -1);
}
break;
}
if (tok != ',')
break;
next();
}
skip(')');
skip(')');
}
}
static Sym * find_field (CType *type, int v)
{
Sym *s = type->ref;
v |= SYM_FIELD;
while ((s = s->next) != NULL) {
if ((s->v & SYM_FIELD) &&
(s->type.t & VT_BTYPE) == VT_STRUCT &&
(s->v & ~SYM_FIELD) >= SYM_FIRST_ANOM) {
Sym *ret = find_field (&s->type, v);
if (ret)
return ret;
}
if (s->v == v)
break;
}
return s;
}
static void struct_add_offset (Sym *s, int offset)
{
while ((s = s->next) != NULL) {
if ((s->v & SYM_FIELD) &&
(s->type.t & VT_BTYPE) == VT_STRUCT &&
(s->v & ~SYM_FIELD) >= SYM_FIRST_ANOM) {
struct_add_offset(s->type.ref, offset);
} else
s->c += offset;
}
}
static void struct_layout(CType *type, AttributeDef *ad)
{
int align, maxalign, offset, c, bit_pos, bt, prevbt, prev_bit_size;
int pcc = !tcc_state->ms_bitfields;
Sym *f;
if (ad->a.aligned)
maxalign = 1 << (ad->a.aligned - 1);
else
maxalign = 1;
offset = 0;
c = 0;
bit_pos = 0;
prevbt = VT_STRUCT; /* make it never match */
prev_bit_size = 0;
for (f = type->ref->next; f; f = f->next) {
int typealign, bit_size;
int size = type_size(&f->type, &typealign);
if (f->type.t & VT_BITFIELD)
bit_size = (f->type.t >> (VT_STRUCT_SHIFT + 6)) & 0x3f;
else
bit_size = -1;
if (bit_size == 0 && pcc) {
/* Zero-width bit-fields in PCC mode aren't affected
by any packing (attribute or pragma). */
align = typealign;
} else if (f->r > 1) {
align = f->r;
} else if (ad->a.packed || f->r == 1) {
align = 1;
/* Packed fields or packed records don't let the base type
influence the records type alignment. */
typealign = 1;
} else {
align = typealign;
}
if (type->ref->type.t != TOK_STRUCT) {
if (pcc && bit_size >= 0)
size = (bit_size + 7) >> 3;
/* Bit position is already zero from our caller. */
offset = 0;
if (size > c)
c = size;
} else if (bit_size < 0) {
int addbytes = pcc ? (bit_pos + 7) >> 3 : 0;
prevbt = VT_STRUCT;
prev_bit_size = 0;
c = (c + addbytes + align - 1) & -align;
offset = c;
if (size > 0)
c += size;
bit_pos = 0;
} else {
/* A bit-field. Layout is more complicated. There are two
options TCC implements: PCC compatible and MS compatible
(PCC compatible is what GCC uses for almost all targets).
In PCC layout the overall size of the struct (in c) is
_excluding_ the current run of bit-fields (that is,
there's at least additional bit_pos bits after c). In
MS layout c does include the current run of bit-fields.
This matters for calculating the natural alignment buckets
in PCC mode. */
/* 'align' will be used to influence records alignment,
so it's the max of specified and type alignment, except
in certain cases that depend on the mode. */
if (align < typealign)
align = typealign;
if (pcc) {
/* In PCC layout a non-packed bit-field is placed adjacent
to the preceding bit-fields, except if it would overflow
its container (depending on base type) or it's a zero-width
bit-field. Packed non-zero-width bit-fields always are
placed adjacent. */
int ofs = (c * 8 + bit_pos) % (typealign * 8);
int ofs2 = ofs + bit_size + (typealign * 8) - 1;
if (bit_size == 0 ||
(typealign != 1 &&
(ofs2 / (typealign * 8)) > (size/typealign))) {
c = (c + ((bit_pos + 7) >> 3) + typealign - 1) & -typealign;
bit_pos = 0;
}
offset = c;
/* In PCC layout named bit-fields influence the alignment
of the containing struct using the base types alignment,
except for packed fields (which here have correct
align/typealign). */
if ((f->v & SYM_FIRST_ANOM))
align = 1;
} else {
bt = f->type.t & VT_BTYPE;
if ((bit_pos + bit_size > size * 8) ||
(bit_size > 0) == (bt != prevbt)) {
c = (c + typealign - 1) & -typealign;
offset = c;
bit_pos = 0;
/* In MS bitfield mode a bit-field run always uses
at least as many bits as the underlying type.
To start a new run it's also required that this
or the last bit-field had non-zero width. */
if (bit_size || prev_bit_size)
c += size;
}
/* In MS layout the records alignment is normally
influenced by the field, except for a zero-width
field at the start of a run (but by further zero-width
fields it is again). */
if (bit_size == 0 && prevbt != bt)
align = 1;
prevbt = bt;
prev_bit_size = bit_size;
}
f->type.t = (f->type.t & ~(0x3f << VT_STRUCT_SHIFT))
| (bit_pos << VT_STRUCT_SHIFT);
bit_pos += bit_size;
if (pcc && bit_pos >= size * 8) {
c += size;
bit_pos -= size * 8;
}
}
if (align > maxalign)
maxalign = align;
#if 0
printf("set field %s offset=%d c=%d",
get_tok_str(f->v & ~SYM_FIELD, NULL), offset, c);
if (f->type.t & VT_BITFIELD) {
printf(" pos=%d size=%d",
(f->type.t >> VT_STRUCT_SHIFT) & 0x3f,
(f->type.t >> (VT_STRUCT_SHIFT + 6)) & 0x3f);
}
printf("\n");
#endif
if (f->v & SYM_FIRST_ANOM && (f->type.t & VT_BTYPE) == VT_STRUCT) {
Sym *ass;
/* An anonymous struct/union. Adjust member offsets
to reflect the real offset of our containing struct.
Also set the offset of this anon member inside
the outer struct to be zero. Via this it
works when accessing the field offset directly
(from base object), as well as when recursing
members in initializer handling. */
int v2 = f->type.ref->v;
if (!(v2 & SYM_FIELD) &&
(v2 & ~SYM_STRUCT) < SYM_FIRST_ANOM) {
Sym **pps;
/* This happens only with MS extensions. The
anon member has a named struct type, so it
potentially is shared with other references.
We need to unshare members so we can modify
them. */
ass = f->type.ref;
f->type.ref = sym_push(anon_sym++ | SYM_FIELD,
&f->type.ref->type, 0,
f->type.ref->c);
pps = &f->type.ref->next;
while ((ass = ass->next) != NULL) {
*pps = sym_push(ass->v, &ass->type, 0, ass->c);
pps = &((*pps)->next);
}
*pps = NULL;
}
struct_add_offset(f->type.ref, offset);
f->c = 0;
} else {
f->c = offset;
}
f->r = 0;
}
/* store size and alignment */
type->ref->c = (c + (pcc ? (bit_pos + 7) >> 3 : 0)
+ maxalign - 1) & -maxalign;
type->ref->r = maxalign;
}
/* enum/struct/union declaration. u is either VT_ENUM or VT_STRUCT */
static void struct_decl(CType *type, AttributeDef *ad, int u)
{
int a, v, size, align, flexible, alignoverride;
long c;
int bit_size, bsize, bt;
Sym *s, *ss, **ps;
AttributeDef ad1;
CType type1, btype;
a = tok; /* save decl type */
next();
if (tok == TOK_ATTRIBUTE1 || tok == TOK_ATTRIBUTE2)
parse_attribute(ad);
if (tok != '{') {
v = tok;
next();
/* struct already defined ? return it */
if (v < TOK_IDENT)
expect("struct/union/enum name");
s = struct_find(v);
if (s && (s->scope == local_scope || (tok != '{' && tok != ';'))) {
if (s->type.t != a)
tcc_error("redefinition of '%s'", get_tok_str(v, NULL));
goto do_decl;
}
} else {
v = anon_sym++;
}
/* Record the original enum/struct/union token. */
type1.t = a;
type1.ref = NULL;
/* we put an undefined size for struct/union */
s = sym_push(v | SYM_STRUCT, &type1, 0, -1);
s->r = 0; /* default alignment is zero as gcc */
/* put struct/union/enum name in type */
do_decl:
type->t = u;
type->ref = s;
if (tok == '{') {
next();
if (s->c != -1)
tcc_error("struct/union/enum already defined");
/* cannot be empty */
c = 0;
/* non empty enums are not allowed */
if (a == TOK_ENUM) {
int seen_neg = 0;
int seen_wide = 0;
for(;;) {
CType *t = &int_type;
v = tok;
if (v < TOK_UIDENT)
expect("identifier");
ss = sym_find(v);
if (ss && !local_stack)
tcc_error("redefinition of enumerator '%s'",
get_tok_str(v, NULL));
next();
if (tok == '=') {
next();
#if defined(TCC_TARGET_ARM64) || defined(TCC_TARGET_X86_64)
c = expr_const64();
#else
/* We really want to support long long enums
on i386 as well, but the Sym structure only
holds a 'long' for associated constants,
and enlarging it would bump its size (no
available padding). So punt for now. */
c = expr_const();
#endif
}
if (c < 0)
seen_neg = 1;
if (c != (int)c && (unsigned long)c != (unsigned int)c)
seen_wide = 1, t = &size_type;
/* enum symbols have static storage */
ss = sym_push(v, t, VT_CONST, c);
ss->type.t |= VT_STATIC;
if (tok != ',')
break;
next();
c++;
/* NOTE: we accept a trailing comma */
if (tok == '}')
break;
}
if (!seen_neg)
s->a.unsigned_enum = 1;
s->c = type_size(seen_wide ? &size_type : &int_type, &align);
skip('}');
} else {
ps = &s->next;
flexible = 0;
while (tok != '}') {
if (!parse_btype(&btype, &ad1)) {
skip(';');
continue;
}
while (1) {
if (flexible)
tcc_error("flexible array member '%s' not at the end of struct",
get_tok_str(v, NULL));
bit_size = -1;
v = 0;
type1 = btype;
if (tok != ':') {
type_decl(&type1, &ad1, &v, TYPE_DIRECT | TYPE_ABSTRACT);
if (v == 0) {
if ((type1.t & VT_BTYPE) != VT_STRUCT)
expect("identifier");
else {
int v = btype.ref->v;
if (!(v & SYM_FIELD) && (v & ~SYM_STRUCT) < SYM_FIRST_ANOM) {
if (tcc_state->ms_extensions == 0)
expect("identifier");
}
}
}
if (type_size(&type1, &align) < 0) {
if ((a == TOK_STRUCT) && (type1.t & VT_ARRAY) && c)
flexible = 1;
else
tcc_error("field '%s' has incomplete type",
get_tok_str(v, NULL));
}
if ((type1.t & VT_BTYPE) == VT_FUNC ||
(type1.t & (VT_TYPEDEF | VT_STATIC | VT_EXTERN | VT_INLINE)))
tcc_error("invalid type for '%s'",
get_tok_str(v, NULL));
}
if (tok == ':') {
next();
bit_size = expr_const();
/* XXX: handle v = 0 case for messages */
if (bit_size < 0)
tcc_error("negative width in bit-field '%s'",
get_tok_str(v, NULL));
if (v && bit_size == 0)
tcc_error("zero width for bit-field '%s'",
get_tok_str(v, NULL));
if (tok == TOK_ATTRIBUTE1 || tok == TOK_ATTRIBUTE2)
parse_attribute(&ad1);
}
size = type_size(&type1, &align);
/* Only remember non-default alignment. */
alignoverride = 0;
if (ad1.a.aligned) {
int speca = 1 << (ad1.a.aligned - 1);
alignoverride = speca;
} else if (ad1.a.packed || ad->a.packed) {
alignoverride = 1;
} else if (*tcc_state->pack_stack_ptr) {
if (align > *tcc_state->pack_stack_ptr)
alignoverride = *tcc_state->pack_stack_ptr;
}
if (bit_size >= 0) {
bt = type1.t & VT_BTYPE;
if (bt != VT_INT &&
bt != VT_BYTE &&
bt != VT_SHORT &&
bt != VT_BOOL &&
bt != VT_ENUM &&
bt != VT_LLONG)
tcc_error("bitfields must have scalar type");
bsize = size * 8;
if (bit_size > bsize) {
tcc_error("width of '%s' exceeds its type",
get_tok_str(v, NULL));
} else if (bit_size == bsize) {
/* no need for bit fields */
;
} else {
type1.t |= VT_BITFIELD |
(0 << VT_STRUCT_SHIFT) |
(bit_size << (VT_STRUCT_SHIFT + 6));
}
}
if (v != 0 || (type1.t & VT_BTYPE) == VT_STRUCT) {
/* Remember we've seen a real field to check
for placement of flexible array member. */
c = 1;
}
/* If member is a struct or bit-field, enforce
placing into the struct (as anonymous). */
if (v == 0 &&
((type1.t & VT_BTYPE) == VT_STRUCT ||
bit_size >= 0)) {
v = anon_sym++;
}
if (v) {
ss = sym_push(v | SYM_FIELD, &type1, alignoverride, 0);
*ps = ss;
ps = &ss->next;
}
if (tok == ';' || tok == TOK_EOF)
break;
skip(',');
}
skip(';');
}
skip('}');
if (tok == TOK_ATTRIBUTE1 || tok == TOK_ATTRIBUTE2)
parse_attribute(ad);
struct_layout(type, ad);
}
}
}
/* return 1 if basic type is a type size (short, long, long long) */
ST_FUNC int is_btype_size(int bt)
{
return bt == VT_SHORT || bt == VT_LONG || bt == VT_LLONG;
}
/* Add type qualifiers to a type. If the type is an array then the qualifiers
are added to the element type, copied because it could be a typedef. */
static void parse_btype_qualify(CType *type, int qualifiers)
{
while (type->t & VT_ARRAY) {
type->ref = sym_push(SYM_FIELD, &type->ref->type, 0, type->ref->c);
type = &type->ref->type;
}
type->t |= qualifiers;
}
/* return 0 if no type declaration. otherwise, return the basic type
and skip it.
*/
static int parse_btype(CType *type, AttributeDef *ad)
{
int t, u, bt_size, complete, type_found, typespec_found;
Sym *s;
CType type1;
memset(ad, 0, sizeof(AttributeDef));
complete = 0;
type_found = 0;
typespec_found = 0;
t = 0;
while(1) {
switch(tok) {
case TOK_EXTENSION:
/* currently, we really ignore extension */
next();
continue;
/* basic types */
case TOK_CHAR:
u = VT_BYTE;
basic_type:
next();
basic_type1:
if (complete)
tcc_error("too many basic types");
t |= u;
bt_size = is_btype_size (u & VT_BTYPE);
if (u == VT_INT || (!bt_size && !(t & VT_TYPEDEF)))
complete = 1;
typespec_found = 1;
break;
case TOK_VOID:
u = VT_VOID;
goto basic_type;
case TOK_SHORT:
u = VT_SHORT;
goto basic_type;
case TOK_INT:
u = VT_INT;
goto basic_type;
case TOK_LONG:
next();
if ((t & VT_BTYPE) == VT_DOUBLE) {
#ifndef TCC_TARGET_PE
t = (t & ~VT_BTYPE) | VT_LDOUBLE;
#endif
} else if ((t & VT_BTYPE) == VT_LONG) {
t = (t & ~VT_BTYPE) | VT_LLONG;
} else {
u = VT_LONG;
goto basic_type1;
}
break;
#ifdef TCC_TARGET_ARM64
case TOK_UINT128:
/* GCC's __uint128_t appears in some Linux header files. Make it a
synonym for long double to get the size and alignment right. */
u = VT_LDOUBLE;
goto basic_type;
#endif
case TOK_BOOL:
u = VT_BOOL;
goto basic_type;
case TOK_FLOAT:
u = VT_FLOAT;
goto basic_type;
case TOK_DOUBLE:
next();
if ((t & VT_BTYPE) == VT_LONG) {
#ifdef TCC_TARGET_PE
t = (t & ~VT_BTYPE) | VT_DOUBLE;
#else
t = (t & ~VT_BTYPE) | VT_LDOUBLE;
#endif
} else {
u = VT_DOUBLE;
goto basic_type1;
}
break;
case TOK_ENUM:
struct_decl(&type1, ad, VT_ENUM);
basic_type2:
u = type1.t;
type->ref = type1.ref;
goto basic_type1;
case TOK_STRUCT:
case TOK_UNION:
struct_decl(&type1, ad, VT_STRUCT);
goto basic_type2;
/* type modifiers */
case TOK_CONST1:
case TOK_CONST2:
case TOK_CONST3:
type->t = t;
parse_btype_qualify(type, VT_CONSTANT);
t = type->t;
next();
break;
case TOK_VOLATILE1:
case TOK_VOLATILE2:
case TOK_VOLATILE3:
type->t = t;
parse_btype_qualify(type, VT_VOLATILE);
t = type->t;
next();
break;
case TOK_SIGNED1:
case TOK_SIGNED2:
case TOK_SIGNED3:
if ((t & (VT_DEFSIGN|VT_UNSIGNED)) == (VT_DEFSIGN|VT_UNSIGNED))
tcc_error("signed and unsigned modifier");
typespec_found = 1;
t |= VT_DEFSIGN;
next();
break;
case TOK_REGISTER:
case TOK_AUTO:
case TOK_RESTRICT1:
case TOK_RESTRICT2:
case TOK_RESTRICT3:
next();
break;
case TOK_UNSIGNED:
if ((t & (VT_DEFSIGN|VT_UNSIGNED)) == VT_DEFSIGN)
tcc_error("signed and unsigned modifier");
t |= VT_DEFSIGN | VT_UNSIGNED;
next();
typespec_found = 1;
break;
/* storage */
case TOK_EXTERN:
t |= VT_EXTERN;
next();
break;
case TOK_STATIC:
t |= VT_STATIC;
next();
break;
case TOK_TYPEDEF:
t |= VT_TYPEDEF;
next();
break;
case TOK_INLINE1:
case TOK_INLINE2:
case TOK_INLINE3:
t |= VT_INLINE;
next();
break;
/* GNUC attribute */
case TOK_ATTRIBUTE1:
case TOK_ATTRIBUTE2:
parse_attribute(ad);
if (ad->a.mode) {
u = ad->a.mode -1;
t = (t & ~VT_BTYPE) | u;
}
break;
/* GNUC typeof */
case TOK_TYPEOF1:
case TOK_TYPEOF2:
case TOK_TYPEOF3:
next();
parse_expr_type(&type1);
/* remove all storage modifiers except typedef */
type1.t &= ~(VT_STORAGE&~VT_TYPEDEF);
goto basic_type2;
default:
if (typespec_found)
goto the_end;
s = sym_find(tok);
if (!s || !(s->type.t & VT_TYPEDEF))
goto the_end;
type->t = ((s->type.t & ~VT_TYPEDEF) |
(t & ~(VT_CONSTANT | VT_VOLATILE)));
type->ref = s->type.ref;
if (t & (VT_CONSTANT | VT_VOLATILE))
parse_btype_qualify(type, t & (VT_CONSTANT | VT_VOLATILE));
t = type->t;
if (s->r) {
/* get attributes from typedef */
if (0 == ad->a.aligned)
ad->a.aligned = s->a.aligned;
if (0 == ad->a.func_call)
ad->a.func_call = s->a.func_call;
ad->a.packed |= s->a.packed;
}
next();
typespec_found = 1;
break;
}
type_found = 1;
}
the_end:
if (tcc_state->char_is_unsigned) {
if ((t & (VT_DEFSIGN|VT_BTYPE)) == VT_BYTE)
t |= VT_UNSIGNED;
}
/* long is never used as type */
if ((t & VT_BTYPE) == VT_LONG)
#if (!defined TCC_TARGET_X86_64 && !defined TCC_TARGET_ARM64) || \
defined TCC_TARGET_PE
t = (t & ~VT_BTYPE) | VT_INT;
#else
t = (t & ~VT_BTYPE) | VT_LLONG;
#endif
type->t = t;
return type_found;
}
/* convert a function parameter type (array to pointer and function to
function pointer) */
static inline void convert_parameter_type(CType *pt)
{
/* remove const and volatile qualifiers (XXX: const could be used
to indicate a const function parameter */
pt->t &= ~(VT_CONSTANT | VT_VOLATILE);
/* array must be transformed to pointer according to ANSI C */
pt->t &= ~VT_ARRAY;
if ((pt->t & VT_BTYPE) == VT_FUNC) {
mk_pointer(pt);
}
}
ST_FUNC void parse_asm_str(CString *astr)
{
skip('(');
parse_mult_str(astr, "string constant");
}
/* Parse an asm label and return the token */
static int asm_label_instr(void)
{
int v;
CString astr;
next();
parse_asm_str(&astr);
skip(')');
#ifdef ASM_DEBUG
printf("asm_alias: \"%s\"\n", (char *)astr.data);
#endif
v = tok_alloc(astr.data, astr.size - 1)->tok;
cstr_free(&astr);
return v;
}
static void post_type(CType *type, AttributeDef *ad, int storage)
{
int n, l, t1, arg_size, align;
Sym **plast, *s, *first;
AttributeDef ad1;
CType pt;
if (tok == '(') {
/* function declaration */
next();
l = 0;
first = NULL;
plast = &first;
arg_size = 0;
if (tok != ')') {
for(;;) {
/* read param name and compute offset */
if (l != FUNC_OLD) {
if (!parse_btype(&pt, &ad1)) {
if (l) {
tcc_error("invalid type");
} else {
l = FUNC_OLD;
goto old_proto;
}
}
l = FUNC_NEW;
if ((pt.t & VT_BTYPE) == VT_VOID && tok == ')')
break;
type_decl(&pt, &ad1, &n, TYPE_DIRECT | TYPE_ABSTRACT);
if ((pt.t & VT_BTYPE) == VT_VOID)
tcc_error("parameter declared as void");
arg_size += (type_size(&pt, &align) + PTR_SIZE - 1) / PTR_SIZE;
} else {
old_proto:
n = tok;
if (n < TOK_UIDENT)
expect("identifier");
pt.t = VT_INT;
next();
}
convert_parameter_type(&pt);
s = sym_push(n | SYM_FIELD, &pt, 0, 0);
*plast = s;
plast = &s->next;
if (tok == ')')
break;
skip(',');
if (l == FUNC_NEW && tok == TOK_DOTS) {
l = FUNC_ELLIPSIS;
next();
break;
}
}
}
/* if no parameters, then old type prototype */
if (l == 0)
l = FUNC_OLD;
skip(')');
/* NOTE: const is ignored in returned type as it has a special
meaning in gcc / C++ */
type->t &= ~VT_CONSTANT;
/* some ancient pre-K&R C allows a function to return an array
and the array brackets to be put after the arguments, such
that "int c()[]" means something like "int[] c()" */
if (tok == '[') {
next();
skip(']'); /* only handle simple "[]" */
type->t |= VT_PTR;
}
/* we push a anonymous symbol which will contain the function prototype */
ad->a.func_args = arg_size;
s = sym_push(SYM_FIELD, type, 0, l);
s->a = ad->a;
s->next = first;
type->t = VT_FUNC;
type->ref = s;
} else if (tok == '[') {
int saved_nocode_wanted = nocode_wanted;
/* array definition */
next();
if (tok == TOK_RESTRICT1)
next();
n = -1;
t1 = 0;
if (tok != ']') {
if (!local_stack || (storage & VT_STATIC))
vpushi(expr_const());
else {
/* VLAs (which can only happen with local_stack && !VT_STATIC)
length must always be evaluated, even under nocode_wanted,
so that its size slot is initialized (e.g. under sizeof
or typeof). */
nocode_wanted = 0;
gexpr();
}
if ((vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST) {
n = vtop->c.i;
if (n < 0)
tcc_error("invalid array size");
} else {
if (!is_integer_btype(vtop->type.t & VT_BTYPE))
tcc_error("size of variable length array should be an integer");
t1 = VT_VLA;
}
}
skip(']');
/* parse next post type */
post_type(type, ad, storage);
if (type->t == VT_FUNC)
tcc_error("declaration of an array of functions");
t1 |= type->t & VT_VLA;
if (t1 & VT_VLA) {
loc -= type_size(&int_type, &align);
loc &= -align;
n = loc;
vla_runtime_type_size(type, &align);
gen_op('*');
vset(&int_type, VT_LOCAL|VT_LVAL, n);
vswap();
vstore();
}
if (n != -1)
vpop();
nocode_wanted = saved_nocode_wanted;
/* we push an anonymous symbol which will contain the array
element type */
s = sym_push(SYM_FIELD, type, 0, n);
type->t = (t1 ? VT_VLA : VT_ARRAY) | VT_PTR;
type->ref = s;
}
}
/* Parse a type declaration (except basic type), and return the type
in 'type'. 'td' is a bitmask indicating which kind of type decl is
expected. 'type' should contain the basic type. 'ad' is the
attribute definition of the basic type. It can be modified by
type_decl().
*/
static void type_decl(CType *type, AttributeDef *ad, int *v, int td)
{
Sym *s;
CType type1, *type2;
int qualifiers, storage;
while (tok == '*') {
qualifiers = 0;
redo:
next();
switch(tok) {
case TOK_CONST1:
case TOK_CONST2:
case TOK_CONST3:
qualifiers |= VT_CONSTANT;
goto redo;
case TOK_VOLATILE1:
case TOK_VOLATILE2:
case TOK_VOLATILE3:
qualifiers |= VT_VOLATILE;
goto redo;
case TOK_RESTRICT1:
case TOK_RESTRICT2:
case TOK_RESTRICT3:
goto redo;
/* XXX: clarify attribute handling */
case TOK_ATTRIBUTE1:
case TOK_ATTRIBUTE2:
parse_attribute(ad);
break;
}
mk_pointer(type);
type->t |= qualifiers;
}
/* recursive type */
/* XXX: incorrect if abstract type for functions (e.g. 'int ()') */
type1.t = 0; /* XXX: same as int */
if (tok == '(') {
next();
/* XXX: this is not correct to modify 'ad' at this point, but
the syntax is not clear */
if (tok == TOK_ATTRIBUTE1 || tok == TOK_ATTRIBUTE2)
parse_attribute(ad);
type_decl(&type1, ad, v, td);
skip(')');
} else {
/* type identifier */
if (tok >= TOK_IDENT && (td & TYPE_DIRECT)) {
*v = tok;
next();
} else {
if (!(td & TYPE_ABSTRACT))
expect("identifier");
*v = 0;
}
}
storage = type->t & VT_STORAGE;
type->t &= ~VT_STORAGE;
post_type(type, ad, storage);
type->t |= storage;
if (tok == TOK_ATTRIBUTE1 || tok == TOK_ATTRIBUTE2)
parse_attribute(ad);
if (!type1.t)
return;
/* append type at the end of type1 */
type2 = &type1;
for(;;) {
s = type2->ref;
type2 = &s->type;
if (!type2->t) {
*type2 = *type;
break;
}
}
*type = type1;
}
/* compute the lvalue VT_LVAL_xxx needed to match type t. */
ST_FUNC int lvalue_type(int t)
{
int bt, r;
r = VT_LVAL;
bt = t & VT_BTYPE;
if (bt == VT_BYTE || bt == VT_BOOL)
r |= VT_LVAL_BYTE;
else if (bt == VT_SHORT)
r |= VT_LVAL_SHORT;
else
return r;
if (t & VT_UNSIGNED)
r |= VT_LVAL_UNSIGNED;
return r;
}
/* indirection with full error checking and bound check */
ST_FUNC void indir(void)
{
if ((vtop->type.t & VT_BTYPE) != VT_PTR) {
if ((vtop->type.t & VT_BTYPE) == VT_FUNC)
return;
expect("pointer");
}
if (vtop->r & VT_LVAL)
gv(RC_INT);
vtop->type = *pointed_type(&vtop->type);
/* Arrays and functions are never lvalues */
if (!(vtop->type.t & VT_ARRAY) && !(vtop->type.t & VT_VLA)
&& (vtop->type.t & VT_BTYPE) != VT_FUNC) {
vtop->r |= lvalue_type(vtop->type.t);
/* if bound checking, the referenced pointer must be checked */
#ifdef CONFIG_TCC_BCHECK
if (tcc_state->do_bounds_check)
vtop->r |= VT_MUSTBOUND;
#endif
}
}
/* pass a parameter to a function and do type checking and casting */
static void gfunc_param_typed(Sym *func, Sym *arg)
{
int func_type;
CType type;
func_type = func->c;
if (func_type == FUNC_OLD ||
(func_type == FUNC_ELLIPSIS && arg == NULL)) {
/* default casting : only need to convert float to double */
if ((vtop->type.t & VT_BTYPE) == VT_FLOAT) {
type.t = VT_DOUBLE;
gen_cast(&type);
} else if (vtop->type.t & VT_BITFIELD) {
type.t = vtop->type.t & (VT_BTYPE | VT_UNSIGNED);
type.ref = vtop->type.ref;
gen_cast(&type);
}
} else if (arg == NULL) {
tcc_error("too many arguments to function");
} else {
type = arg->type;
type.t &= ~VT_CONSTANT; /* need to do that to avoid false warning */
gen_assign_cast(&type);
}
}
/* parse an expression of the form '(type)' or '(expr)' and return its
type */
static void parse_expr_type(CType *type)
{
int n;
AttributeDef ad;
skip('(');
if (parse_btype(type, &ad)) {
type_decl(type, &ad, &n, TYPE_ABSTRACT);
} else {
expr_type(type);
}
skip(')');
}
static void parse_type(CType *type)
{
AttributeDef ad;
int n;
if (!parse_btype(type, &ad)) {
expect("type");
}
type_decl(type, &ad, &n, TYPE_ABSTRACT);
}
static void vpush_tokc(int t)
{
CType type;
type.t = t;
type.ref = 0;
vsetc(&type, VT_CONST, &tokc);
}
ST_FUNC void unary(void)
{
int n, t, align, size, r, sizeof_caller;
CType type;
Sym *s;
AttributeDef ad;
sizeof_caller = in_sizeof;
in_sizeof = 0;
/* XXX: GCC 2.95.3 does not generate a table although it should be
better here */
tok_next:
switch(tok) {
case TOK_EXTENSION:
next();
goto tok_next;
case TOK_CINT:
case TOK_CCHAR:
case TOK_LCHAR:
vpushi(tokc.i);
next();
break;
case TOK_CUINT:
vpush_tokc(VT_INT | VT_UNSIGNED);
next();
break;
case TOK_CLLONG:
vpush_tokc(VT_LLONG);
next();
break;
case TOK_CULLONG:
vpush_tokc(VT_LLONG | VT_UNSIGNED);
next();
break;
case TOK_CFLOAT:
vpush_tokc(VT_FLOAT);
next();
break;
case TOK_CDOUBLE:
vpush_tokc(VT_DOUBLE);
next();
break;
case TOK_CLDOUBLE:
vpush_tokc(VT_LDOUBLE);
next();
break;
case TOK___FUNCTION__:
if (!gnu_ext)
goto tok_identifier;
/* fall thru */
case TOK___FUNC__:
{
void *ptr;
int len;
/* special function name identifier */
len = strlen(funcname) + 1;
/* generate char[len] type */
type.t = VT_BYTE;
mk_pointer(&type);
type.t |= VT_ARRAY;
type.ref->c = len;
vpush_ref(&type, data_section, data_section->data_offset, len);
ptr = section_ptr_add(data_section, len);
memcpy(ptr, funcname, len);
next();
}
break;
case TOK_LSTR:
#ifdef TCC_TARGET_PE
t = VT_SHORT | VT_UNSIGNED;
#else
t = VT_INT;
#endif
goto str_init;
case TOK_STR:
/* string parsing */
t = VT_BYTE;
str_init:
if (tcc_state->warn_write_strings)
t |= VT_CONSTANT;
type.t = t;
mk_pointer(&type);
type.t |= VT_ARRAY;
memset(&ad, 0, sizeof(AttributeDef));
decl_initializer_alloc(&type, &ad, VT_CONST, 2, 0, 0);
break;
case '(':
next();
/* cast ? */
if (parse_btype(&type, &ad)) {
type_decl(&type, &ad, &n, TYPE_ABSTRACT);
skip(')');
/* check ISOC99 compound literal */
if (tok == '{') {
/* data is allocated locally by default */
if (global_expr)
r = VT_CONST;
else
r = VT_LOCAL;
/* all except arrays are lvalues */
if (!(type.t & VT_ARRAY))
r |= lvalue_type(type.t);
memset(&ad, 0, sizeof(AttributeDef));
decl_initializer_alloc(&type, &ad, r, 1, 0, 0);
} else {
if (sizeof_caller) {
vpush(&type);
return;
}
unary();
gen_cast(&type);
}
} else if (tok == '{') {
int saved_nocode_wanted = nocode_wanted;
if (const_wanted)
tcc_error("expected constant");
/* save all registers */
save_regs(0);
/* statement expression : we do not accept break/continue
inside as GCC does. We do retain the nocode_wanted state,
as statement expressions can't ever be entered from the
outside, so any reactivation of code emission (from labels
or loop heads) can be disabled again after the end of it. */
block(NULL, NULL, 1);
nocode_wanted = saved_nocode_wanted;
skip(')');
} else {
gexpr();
skip(')');
}
break;
case '*':
next();
unary();
indir();
break;
case '&':
next();
unary();
/* functions names must be treated as function pointers,
except for unary '&' and sizeof. Since we consider that
functions are not lvalues, we only have to handle it
there and in function calls. */
/* arrays can also be used although they are not lvalues */
if ((vtop->type.t & VT_BTYPE) != VT_FUNC &&
!(vtop->type.t & VT_ARRAY) && !(vtop->type.t & VT_LLOCAL))
test_lvalue();
mk_pointer(&vtop->type);
gaddrof();
break;
case '!':
next();
unary();
if ((vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST) {
CType boolean;
boolean.t = VT_BOOL;
gen_cast(&boolean);
vtop->c.i = !vtop->c.i;
} else if ((vtop->r & VT_VALMASK) == VT_CMP)
vtop->c.i ^= 1;
else {
save_regs(1);
vseti(VT_JMP, gvtst(1, 0));
}
break;
case '~':
next();
unary();
vpushi(-1);
gen_op('^');
break;
case '+':
next();
unary();
if ((vtop->type.t & VT_BTYPE) == VT_PTR)
tcc_error("pointer not accepted for unary plus");
/* In order to force cast, we add zero, except for floating point
where we really need an noop (otherwise -0.0 will be transformed
into +0.0). */
if (!is_float(vtop->type.t)) {
vpushi(0);
gen_op('+');
}
break;
case TOK_SIZEOF:
case TOK_ALIGNOF1:
case TOK_ALIGNOF2:
t = tok;
next();
in_sizeof++;
unary_type(&type); // Perform a in_sizeof = 0;
size = type_size(&type, &align);
if (t == TOK_SIZEOF) {
if (!(type.t & VT_VLA)) {
if (size < 0)
tcc_error("sizeof applied to an incomplete type");
vpushs(size);
} else {
vla_runtime_type_size(&type, &align);
}
} else {
vpushs(align);
}
vtop->type.t |= VT_UNSIGNED;
break;
case TOK_builtin_expect:
{
/* __builtin_expect is a no-op for now */
next();
skip('(');
expr_eq();
skip(',');
nocode_wanted++;
expr_lor_const();
vpop();
nocode_wanted--;
skip(')');
}
break;
case TOK_builtin_types_compatible_p:
{
CType type1, type2;
next();
skip('(');
parse_type(&type1);
skip(',');
parse_type(&type2);
skip(')');
type1.t &= ~(VT_CONSTANT | VT_VOLATILE);
type2.t &= ~(VT_CONSTANT | VT_VOLATILE);
vpushi(is_compatible_types(&type1, &type2));
}
break;
case TOK_builtin_choose_expr:
{
int64_t c;
next();
skip('(');
c = expr_const64();
skip(',');
if (!c) {
nocode_wanted++;
}
expr_eq();
if (!c) {
vpop();
nocode_wanted--;
}
skip(',');
if (c) {
nocode_wanted++;
}
expr_eq();
if (c) {
vpop();
nocode_wanted--;
}
skip(')');
}
break;
case TOK_builtin_constant_p:
{
int res;
next();
skip('(');
nocode_wanted++;
gexpr();
res = (vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST;
vpop();
nocode_wanted--;
skip(')');
vpushi(res);
}
break;
case TOK_builtin_frame_address:
case TOK_builtin_return_address:
{
int tok1 = tok;
int level;
CType type;
next();
skip('(');
if (tok != TOK_CINT) {
tcc_error("%s only takes positive integers",
tok1 == TOK_builtin_return_address ?
"__builtin_return_address" :
"__builtin_frame_address");
}
level = (uint32_t)tokc.i;
next();
skip(')');
type.t = VT_VOID;
mk_pointer(&type);
vset(&type, VT_LOCAL, 0); /* local frame */
while (level--) {
mk_pointer(&vtop->type);
indir(); /* -> parent frame */
}
if (tok1 == TOK_builtin_return_address) {
// assume return address is just above frame pointer on stack
vpushi(PTR_SIZE);
gen_op('+');
mk_pointer(&vtop->type);
indir();
}
}
break;
#ifdef TCC_TARGET_X86_64
#ifdef TCC_TARGET_PE
case TOK_builtin_va_start:
{
next();
skip('(');
expr_eq();
skip(',');
expr_eq();
skip(')');
if ((vtop->r & VT_VALMASK) != VT_LOCAL)
tcc_error("__builtin_va_start expects a local variable");
vtop->r &= ~(VT_LVAL | VT_REF);
vtop->type = char_pointer_type;
vtop->c.i += 8;
vstore();
}
break;
#else
case TOK_builtin_va_arg_types:
{
CType type;
next();
skip('(');
parse_type(&type);
skip(')');
vpushi(classify_x86_64_va_arg(&type));
}
break;
#endif
#endif
#ifdef TCC_TARGET_ARM64
case TOK___va_start: {
next();
skip('(');
expr_eq();
skip(',');
expr_eq();
skip(')');
//xx check types
gen_va_start();
vpushi(0);
vtop->type.t = VT_VOID;
break;
}
case TOK___va_arg: {
CType type;
next();
skip('(');
expr_eq();
skip(',');
parse_type(&type);
skip(')');
//xx check types
gen_va_arg(&type);
vtop->type = type;
break;
}
case TOK___arm64_clear_cache: {
next();
skip('(');
expr_eq();
skip(',');
expr_eq();
skip(')');
gen_clear_cache();
vpushi(0);
vtop->type.t = VT_VOID;
break;
}
#endif
/* pre operations */
case TOK_INC:
case TOK_DEC:
t = tok;
next();
unary();
inc(0, t);
break;
case '-':
next();
unary();
t = vtop->type.t & VT_BTYPE;
if (is_float(t)) {
/* In IEEE negate(x) isn't subtract(0,x), but rather
subtract(-0, x). */
vpush(&vtop->type);
if (t == VT_FLOAT)
vtop->c.f = -1.0 * 0.0;
else if (t == VT_DOUBLE)
vtop->c.d = -1.0 * 0.0;
else
vtop->c.ld = -1.0 * 0.0;
} else
vpushi(0);
vswap();
gen_op('-');
break;
case TOK_LAND:
if (!gnu_ext)
goto tok_identifier;
next();
/* allow to take the address of a label */
if (tok < TOK_UIDENT)
expect("label identifier");
s = label_find(tok);
if (!s) {
s = label_push(&global_label_stack, tok, LABEL_FORWARD);
} else {
if (s->r == LABEL_DECLARED)
s->r = LABEL_FORWARD;
}
if (!s->type.t) {
s->type.t = VT_VOID;
mk_pointer(&s->type);
s->type.t |= VT_STATIC;
}
vpushsym(&s->type, s);
next();
break;
// special qnan , snan and infinity values
case TOK___NAN__:
vpush64(VT_DOUBLE, 0x7ff8000000000000ULL);
next();
break;
case TOK___SNAN__:
vpush64(VT_DOUBLE, 0x7ff0000000000001ULL);
next();
break;
case TOK___INF__:
vpush64(VT_DOUBLE, 0x7ff0000000000000ULL);
next();
break;
default:
tok_identifier:
t = tok;
next();
if (t < TOK_UIDENT)
expect("identifier");
s = sym_find(t);
if (!s) {
const char *name = get_tok_str(t, NULL);
if (tok != '(')
tcc_error("'%s' undeclared", name);
/* for simple function calls, we tolerate undeclared
external reference to int() function */
if (tcc_state->warn_implicit_function_declaration
#ifdef TCC_TARGET_PE
/* people must be warned about using undeclared WINAPI functions
(which usually start with uppercase letter) */
|| (name[0] >= 'A' && name[0] <= 'Z')
#endif
)
tcc_warning("implicit declaration of function '%s'", name);
s = external_global_sym(t, &func_old_type, 0);
}
r = s->r;
/* A symbol that has a register is a local register variable,
which starts out as VT_LOCAL value. */
if ((r & VT_VALMASK) < VT_CONST)
r = (r & ~VT_VALMASK) | VT_LOCAL;
vset(&s->type, r, s->c);
/* Point to s as backpointer (even without r&VT_SYM).
Will be used by at least the x86 inline asm parser for
regvars. */
vtop->sym = s;
if (vtop->r & VT_SYM) {
vtop->c.i = 0;
}
break;
}
/* post operations */
while (1) {
if (tok == TOK_INC || tok == TOK_DEC) {
inc(1, tok);
next();
} else if (tok == '.' || tok == TOK_ARROW || tok == TOK_CDOUBLE) {
int qualifiers;
/* field */
if (tok == TOK_ARROW)
indir();
qualifiers = vtop->type.t & (VT_CONSTANT | VT_VOLATILE);
test_lvalue();
gaddrof();
/* expect pointer on structure */
if ((vtop->type.t & VT_BTYPE) != VT_STRUCT)
expect("struct or union");
if (tok == TOK_CDOUBLE)
expect("field name");
next();
if (tok == TOK_CINT || tok == TOK_CUINT)
expect("field name");
s = find_field(&vtop->type, tok);
if (!s)
tcc_error("field not found: %s", get_tok_str(tok & ~SYM_FIELD, &tokc));
/* add field offset to pointer */
vtop->type = char_pointer_type; /* change type to 'char *' */
vpushi(s->c);
gen_op('+');
/* change type to field type, and set to lvalue */
vtop->type = s->type;
vtop->type.t |= qualifiers;
/* an array is never an lvalue */
if (!(vtop->type.t & VT_ARRAY)) {
vtop->r |= lvalue_type(vtop->type.t);
#ifdef CONFIG_TCC_BCHECK
/* if bound checking, the referenced pointer must be checked */
if (tcc_state->do_bounds_check && (vtop->r & VT_VALMASK) != VT_LOCAL)
vtop->r |= VT_MUSTBOUND;
#endif
}
next();
} else if (tok == '[') {
next();
gexpr();
gen_op('+');
indir();
skip(']');
} else if (tok == '(') {
SValue ret;
Sym *sa;
int nb_args, ret_nregs, ret_align, regsize, variadic;
/* function call */
if ((vtop->type.t & VT_BTYPE) != VT_FUNC) {
/* pointer test (no array accepted) */
if ((vtop->type.t & (VT_BTYPE | VT_ARRAY)) == VT_PTR) {
vtop->type = *pointed_type(&vtop->type);
if ((vtop->type.t & VT_BTYPE) != VT_FUNC)
goto error_func;
} else {
error_func:
expect("function pointer");
}
} else {
vtop->r &= ~VT_LVAL; /* no lvalue */
}
/* get return type */
s = vtop->type.ref;
next();
sa = s->next; /* first parameter */
nb_args = regsize = 0;
ret.r2 = VT_CONST;
/* compute first implicit argument if a structure is returned */
if ((s->type.t & VT_BTYPE) == VT_STRUCT) {
variadic = (s->c == FUNC_ELLIPSIS);
ret_nregs = gfunc_sret(&s->type, variadic, &ret.type,
&ret_align, &regsize);
if (!ret_nregs) {
/* get some space for the returned structure */
size = type_size(&s->type, &align);
#ifdef TCC_TARGET_ARM64
/* On arm64, a small struct is return in registers.
It is much easier to write it to memory if we know
that we are allowed to write some extra bytes, so
round the allocated space up to a power of 2: */
if (size < 16)
while (size & (size - 1))
size = (size | (size - 1)) + 1;
#endif
loc = (loc - size) & -align;
ret.type = s->type;
ret.r = VT_LOCAL | VT_LVAL;
/* pass it as 'int' to avoid structure arg passing
problems */
vseti(VT_LOCAL, loc);
ret.c = vtop->c;
nb_args++;
}
} else {
ret_nregs = 1;
ret.type = s->type;
}
if (ret_nregs) {
/* return in register */
if (is_float(ret.type.t)) {
ret.r = reg_fret(ret.type.t);
#ifdef TCC_TARGET_X86_64
if ((ret.type.t & VT_BTYPE) == VT_QFLOAT)
ret.r2 = REG_QRET;
#endif
} else {
#ifndef TCC_TARGET_ARM64
#ifdef TCC_TARGET_X86_64
if ((ret.type.t & VT_BTYPE) == VT_QLONG)
#else
if ((ret.type.t & VT_BTYPE) == VT_LLONG)
#endif
ret.r2 = REG_LRET;
#endif
ret.r = REG_IRET;
}
ret.c.i = 0;
}
if (tok != ')') {
for(;;) {
expr_eq();
gfunc_param_typed(s, sa);
nb_args++;
if (sa)
sa = sa->next;
if (tok == ')')
break;
skip(',');
}
}
if (sa)
tcc_error("too few arguments to function");
skip(')');
gfunc_call(nb_args);
/* return value */
for (r = ret.r + ret_nregs + !ret_nregs; r-- > ret.r;) {
vsetc(&ret.type, r, &ret.c);
vtop->r2 = ret.r2; /* Loop only happens when r2 is VT_CONST */
}
/* handle packed struct return */
if (((s->type.t & VT_BTYPE) == VT_STRUCT) && ret_nregs) {
int addr, offset;
size = type_size(&s->type, &align);
/* We're writing whole regs often, make sure there's enough
space. Assume register size is power of 2. */
if (regsize > align)
align = regsize;
loc = (loc - size) & -align;
addr = loc;
offset = 0;
for (;;) {
vset(&ret.type, VT_LOCAL | VT_LVAL, addr + offset);
vswap();
vstore();
vtop--;
if (--ret_nregs == 0)
break;
offset += regsize;
}
vset(&s->type, VT_LOCAL | VT_LVAL, addr);
}
} else {
break;
}
}
}
ST_FUNC void expr_prod(void)
{
int t;
unary();
while (tok == '*' || tok == '/' || tok == '%') {
t = tok;
next();
unary();
gen_op(t);
}
}
ST_FUNC void expr_sum(void)
{
int t;
expr_prod();
while (tok == '+' || tok == '-') {
t = tok;
next();
expr_prod();
gen_op(t);
}
}
static void expr_shift(void)
{
int t;
expr_sum();
while (tok == TOK_SHL || tok == TOK_SAR) {
t = tok;
next();
expr_sum();
gen_op(t);
}
}
static void expr_cmp(void)
{
int t;
expr_shift();
while ((tok >= TOK_ULE && tok <= TOK_GT) ||
tok == TOK_ULT || tok == TOK_UGE) {
t = tok;
next();
expr_shift();
gen_op(t);
}
}
static void expr_cmpeq(void)
{
int t;
expr_cmp();
while (tok == TOK_EQ || tok == TOK_NE) {
t = tok;
next();
expr_cmp();
gen_op(t);
}
}
static void expr_and(void)
{
expr_cmpeq();
while (tok == '&') {
next();
expr_cmpeq();
gen_op('&');
}
}
static void expr_xor(void)
{
expr_and();
while (tok == '^') {
next();
expr_and();
gen_op('^');
}
}
static void expr_or(void)
{
expr_xor();
while (tok == '|') {
next();
expr_xor();
gen_op('|');
}
}
/* XXX: fix this mess */
static void expr_land_const(void)
{
expr_or();
while (tok == TOK_LAND) {
next();
expr_or();
gen_op(TOK_LAND);
}
}
static void expr_lor_const(void)
{
expr_land_const();
while (tok == TOK_LOR) {
next();
expr_land_const();
gen_op(TOK_LOR);
}
}
static void expr_land(void)
{
expr_or();
if (tok == TOK_LAND) {
int t = 0;
for(;;) {
if ((vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST) {
CType ctb;
ctb.t = VT_BOOL;
gen_cast(&ctb);
if (vtop->c.i) {
vpop();
} else {
nocode_wanted++;
while (tok == TOK_LAND) {
next();
expr_or();
vpop();
}
nocode_wanted--;
if (t)
gsym(t);
gen_cast(&int_type);
break;
}
} else {
if (!t)
save_regs(1);
t = gvtst(1, t);
}
if (tok != TOK_LAND) {
if (t)
vseti(VT_JMPI, t);
else
vpushi(1);
break;
}
next();
expr_or();
}
}
}
static void expr_lor(void)
{
expr_land();
if (tok == TOK_LOR) {
int t = 0;
for(;;) {
if ((vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) == VT_CONST) {
CType ctb;
ctb.t = VT_BOOL;
gen_cast(&ctb);
if (!vtop->c.i) {
vpop();
} else {
nocode_wanted++;
while (tok == TOK_LOR) {
next();
expr_land();
vpop();
}
nocode_wanted--;
if (t)
gsym(t);
gen_cast(&int_type);
break;
}
} else {
if (!t)
save_regs(1);
t = gvtst(0, t);
}
if (tok != TOK_LOR) {
if (t)
vseti(VT_JMP, t);
else
vpushi(0);
break;
}
next();
expr_land();
}
}
}
/* Assuming vtop is a value used in a conditional context
(i.e. compared with zero) return 0 if it's false, 1 if
true and -1 if it can't be statically determined. */
static int condition_3way(void)
{
int c = -1;
if ((vtop->r & (VT_VALMASK | VT_LVAL)) == VT_CONST &&
(!(vtop->r & VT_SYM) ||
!(vtop->sym->type.t & VT_WEAK))) {
CType boolean;
boolean.t = VT_BOOL;
vdup();
gen_cast(&boolean);
c = vtop->c.i;
vpop();
}
return c;
}
static void expr_cond(void)
{
int tt, u, r1, r2, rc, t1, t2, bt1, bt2, islv, c, g;
SValue sv;
CType type, type1, type2;
expr_lor();
if (tok == '?') {
next();
c = condition_3way();
g = (tok == ':' && gnu_ext);
if (c < 0) {
/* needed to avoid having different registers saved in
each branch */
if (is_float(vtop->type.t)) {
rc = RC_FLOAT;
#ifdef TCC_TARGET_X86_64
if ((vtop->type.t & VT_BTYPE) == VT_LDOUBLE) {
rc = RC_ST0;
}
#endif
} else
rc = RC_INT;
gv(rc);
save_regs(1);
if (g)
gv_dup();
tt = gvtst(1, 0);
} else {
if (!g)
vpop();
tt = 0;
}
if (1) {
if (c == 0)
nocode_wanted++;
if (!g)
gexpr();
type1 = vtop->type;
sv = *vtop; /* save value to handle it later */
vtop--; /* no vpop so that FP stack is not flushed */
skip(':');
u = 0;
if (c < 0)
u = gjmp(0);
gsym(tt);
if (c == 0)
nocode_wanted--;
if (c == 1)
nocode_wanted++;
expr_cond();
if (c == 1)
nocode_wanted--;
type2 = vtop->type;
t1 = type1.t;
bt1 = t1 & VT_BTYPE;
t2 = type2.t;
bt2 = t2 & VT_BTYPE;
/* cast operands to correct type according to ISOC rules */
if (is_float(bt1) || is_float(bt2)) {
if (bt1 == VT_LDOUBLE || bt2 == VT_LDOUBLE) {
type.t = VT_LDOUBLE;
} else if (bt1 == VT_DOUBLE || bt2 == VT_DOUBLE) {
type.t = VT_DOUBLE;
} else {
type.t = VT_FLOAT;
}
} else if (bt1 == VT_LLONG || bt2 == VT_LLONG) {
/* cast to biggest op */
type.t = VT_LLONG;
/* convert to unsigned if it does not fit in a long long */
if ((t1 & (VT_BTYPE | VT_UNSIGNED)) == (VT_LLONG | VT_UNSIGNED) ||
(t2 & (VT_BTYPE | VT_UNSIGNED)) == (VT_LLONG | VT_UNSIGNED))
type.t |= VT_UNSIGNED;
} else if (bt1 == VT_PTR || bt2 == VT_PTR) {
/* If one is a null ptr constant the result type
is the other. */
if (is_null_pointer (vtop))
type = type1;
else if (is_null_pointer (&sv))
type = type2;
/* XXX: test pointer compatibility, C99 has more elaborate
rules here. */
else
type = type1;
} else if (bt1 == VT_FUNC || bt2 == VT_FUNC) {
/* XXX: test function pointer compatibility */
type = bt1 == VT_FUNC ? type1 : type2;
} else if (bt1 == VT_STRUCT || bt2 == VT_STRUCT) {
/* XXX: test structure compatibility */
type = bt1 == VT_STRUCT ? type1 : type2;
} else if (bt1 == VT_VOID || bt2 == VT_VOID) {
/* NOTE: as an extension, we accept void on only one side */
type.t = VT_VOID;
} else {
/* integer operations */
type.t = VT_INT;
/* convert to unsigned if it does not fit in an integer */
if ((t1 & (VT_BTYPE | VT_UNSIGNED)) == (VT_INT | VT_UNSIGNED) ||
(t2 & (VT_BTYPE | VT_UNSIGNED)) == (VT_INT | VT_UNSIGNED))
type.t |= VT_UNSIGNED;
}
/* keep structs lvalue by transforming `(expr ? a : b)` to `*(expr ? &a : &b)` so
that `(expr ? a : b).mem` does not error with "lvalue expected" */
islv = (vtop->r & VT_LVAL) && (sv.r & VT_LVAL) && VT_STRUCT == (type.t & VT_BTYPE);
islv &= c < 0;
/* now we convert second operand */
if (c != 1) {
gen_cast(&type);
if (islv) {
mk_pointer(&vtop->type);
gaddrof();
} else if (VT_STRUCT == (vtop->type.t & VT_BTYPE))
gaddrof();
}
rc = RC_INT;
if (is_float(type.t)) {
rc = RC_FLOAT;
#ifdef TCC_TARGET_X86_64
if ((type.t & VT_BTYPE) == VT_LDOUBLE) {
rc = RC_ST0;
}
#endif
} else if ((type.t & VT_BTYPE) == VT_LLONG) {
/* for long longs, we use fixed registers to avoid having
to handle a complicated move */
rc = RC_IRET;
}
tt = r2 = 0;
if (c < 0) {
r2 = gv(rc);
tt = gjmp(0);
}
gsym(u);
/* this is horrible, but we must also convert first
operand */
if (c != 0) {
*vtop = sv;
gen_cast(&type);
if (islv) {
mk_pointer(&vtop->type);
gaddrof();
} else if (VT_STRUCT == (vtop->type.t & VT_BTYPE))
gaddrof();
}
if (c < 0) {
r1 = gv(rc);
move_reg(r2, r1, type.t);
vtop->r = r2;
gsym(tt);
if (islv)
indir();
}
}
}
}
static void expr_eq(void)
{
int t;
expr_cond();
if (tok == '=' ||
(tok >= TOK_A_MOD && tok <= TOK_A_DIV) ||
tok == TOK_A_XOR || tok == TOK_A_OR ||
tok == TOK_A_SHL || tok == TOK_A_SAR) {
test_lvalue();
t = tok;
next();
if (t == '=') {
expr_eq();
} else {
vdup();
expr_eq();
gen_op(t & 0x7f);
}
vstore();
}
}
ST_FUNC void gexpr(void)
{
while (1) {
expr_eq();
if (tok != ',')
break;
vpop();
next();
}
}
/* parse an expression and return its type without any side effect. */
static void expr_type(CType *type)
{
nocode_wanted++;
gexpr();
*type = vtop->type;
vpop();
nocode_wanted--;
}
/* parse a unary expression and return its type without any side
effect. */
static void unary_type(CType *type)
{
nocode_wanted++;
unary();
*type = vtop->type;
vpop();
nocode_wanted--;
}
/* parse a constant expression and return value in vtop. */
static void expr_const1(void)
{
const_wanted++;
expr_cond();
const_wanted--;
}
/* parse an integer constant and return its value. */
static inline int64_t expr_const64(void)
{
int64_t c;
expr_const1();
if ((vtop->r & (VT_VALMASK | VT_LVAL | VT_SYM)) != VT_CONST)
expect("constant expression");
c = vtop->c.i;
vpop();
return c;
}
/* parse an integer constant and return its value.
Complain if it doesn't fit 32bit (signed or unsigned). */
ST_FUNC int expr_const(void)
{
int c;
int64_t wc = expr_const64();
c = wc;
if (c != wc && (unsigned)c != wc)
tcc_error("constant exceeds 32 bit");
return c;
}
/* return the label token if current token is a label, otherwise
return zero */
static int is_label(void)
{
int last_tok;
/* fast test first */
if (tok < TOK_UIDENT)
return 0;
/* no need to save tokc because tok is an identifier */
last_tok = tok;
next();
if (tok == ':') {
next();
return last_tok;
} else {
unget_tok(last_tok);
return 0;
}
}
static void label_or_decl(int l)
{
int last_tok;
/* fast test first */
if (tok >= TOK_UIDENT)
{
/* no need to save tokc because tok is an identifier */
last_tok = tok;
next();
if (tok == ':') {
unget_tok(last_tok);
return;
}
unget_tok(last_tok);
}
decl(l);
}
#ifndef TCC_TARGET_ARM64
static void gfunc_return(CType *func_type)
{
if ((func_type->t & VT_BTYPE) == VT_STRUCT) {
CType type, ret_type;
int ret_align, ret_nregs, regsize;
ret_nregs = gfunc_sret(func_type, func_var, &ret_type,
&ret_align, &regsize);
if (0 == ret_nregs) {
/* if returning structure, must copy it to implicit
first pointer arg location */
type = *func_type;
mk_pointer(&type);
vset(&type, VT_LOCAL | VT_LVAL, func_vc);
indir();
vswap();
/* copy structure value to pointer */
vstore();
} else {
/* returning structure packed into registers */
int r, size, addr, align;
size = type_size(func_type,&align);
if ((vtop->r != (VT_LOCAL | VT_LVAL) ||
(vtop->c.i & (ret_align-1)))
&& (align & (ret_align-1))) {
loc = (loc - size) & -ret_align;
addr = loc;
type = *func_type;
vset(&type, VT_LOCAL | VT_LVAL, addr);
vswap();
vstore();
vpop();
vset(&ret_type, VT_LOCAL | VT_LVAL, addr);
}
vtop->type = ret_type;
if (is_float(ret_type.t))
r = rc_fret(ret_type.t);
else
r = RC_IRET;
if (ret_nregs == 1)
gv(r);
else {
for (;;) {
vdup();
gv(r);
vpop();
if (--ret_nregs == 0)
break;
/* We assume that when a structure is returned in multiple
registers, their classes are consecutive values of the
suite s(n) = 2^n */
r <<= 1;
vtop->c.i += regsize;
}
}
}
} else if (is_float(func_type->t)) {
gv(rc_fret(func_type->t));
} else {
gv(RC_IRET);
}
vtop--; /* NOT vpop() because on x86 it would flush the fp stack */
}
#endif
static int case_cmp(const void *pa, const void *pb)
{
int64_t a = (*(struct case_t**) pa)->v1;
int64_t b = (*(struct case_t**) pb)->v1;
return a < b ? -1 : a > b;
}
static void gcase(struct case_t **base, int len, int *bsym)
{
struct case_t *p;
int e;
int ll = (vtop->type.t & VT_BTYPE) == VT_LLONG;
gv(RC_INT);
while (len > 4) {
/* binary search */
p = base[len/2];
vdup();
if (ll)
vpushll(p->v2);
else
vpushi(p->v2);
gen_op(TOK_LE);
e = gtst(1, 0);
vdup();
if (ll)
vpushll(p->v1);
else
vpushi(p->v1);
gen_op(TOK_GE);
gtst_addr(0, p->sym); /* v1 <= x <= v2 */
/* x < v1 */
gcase(base, len/2, bsym);
if (cur_switch->def_sym)
gjmp_addr(cur_switch->def_sym);
else
*bsym = gjmp(*bsym);
/* x > v2 */
gsym(e);
e = len/2 + 1;
base += e; len -= e;
}
/* linear scan */
while (len--) {
p = *base++;
vdup();
if (ll)
vpushll(p->v2);
else
vpushi(p->v2);
if (p->v1 == p->v2) {
gen_op(TOK_EQ);
gtst_addr(0, p->sym);
} else {
gen_op(TOK_LE);
e = gtst(1, 0);
vdup();
if (ll)
vpushll(p->v1);
else
vpushi(p->v1);
gen_op(TOK_GE);
gtst_addr(0, p->sym);
gsym(e);
}
}
}
static void block(int *bsym, int *csym, int is_expr)
{
int a, b, c, d, cond;
Sym *s;
/* generate line number info */
if (tcc_state->do_debug &&
(last_line_num != file->line_num || last_ind != ind)) {
put_stabn(N_SLINE, 0, file->line_num, ind - func_ind);
last_ind = ind;
last_line_num = file->line_num;
}
if (is_expr) {
/* default return value is (void) */
vpushi(0);
vtop->type.t = VT_VOID;
}
if (tok == TOK_IF) {
/* if test */
int saved_nocode_wanted = nocode_wanted;
next();
skip('(');
gexpr();
skip(')');
cond = condition_3way();
if (cond == 1)
a = 0, vpop();
else
a = gvtst(1, 0);
if (cond == 0)
nocode_wanted |= 0x20000000;
block(bsym, csym, 0);
if (cond != 1)
nocode_wanted = saved_nocode_wanted;
c = tok;
if (c == TOK_ELSE) {
next();
d = gjmp(0);
gsym(a);
if (cond == 1)
nocode_wanted |= 0x20000000;
block(bsym, csym, 0);
gsym(d); /* patch else jmp */
if (cond != 0)
nocode_wanted = saved_nocode_wanted;
} else
gsym(a);
} else if (tok == TOK_WHILE) {
int saved_nocode_wanted;
nocode_wanted &= ~0x20000000;
next();
d = ind;
vla_sp_restore();
skip('(');
gexpr();
skip(')');
a = gvtst(1, 0);
b = 0;
++local_scope;
saved_nocode_wanted = nocode_wanted;
block(&a, &b, 0);
nocode_wanted = saved_nocode_wanted;
--local_scope;
gjmp_addr(d);
gsym(a);
gsym_addr(b, d);
} else if (tok == '{') {
Sym *llabel;
int block_vla_sp_loc = vla_sp_loc, saved_vlas_in_scope = vlas_in_scope;
next();
/* record local declaration stack position */
s = local_stack;
llabel = local_label_stack;
++local_scope;
/* handle local labels declarations */
if (tok == TOK_LABEL) {
next();
for(;;) {
if (tok < TOK_UIDENT)
expect("label identifier");
label_push(&local_label_stack, tok, LABEL_DECLARED);
next();
if (tok == ',') {
next();
} else {
skip(';');
break;
}
}
}
while (tok != '}') {
label_or_decl(VT_LOCAL);
if (tok != '}') {
if (is_expr)
vpop();
block(bsym, csym, is_expr);
}
}
/* pop locally defined labels */
label_pop(&local_label_stack, llabel);
/* pop locally defined symbols */
--local_scope;
/* In the is_expr case (a statement expression is finished here),
vtop might refer to symbols on the local_stack. Either via the
type or via vtop->sym. We can't pop those nor any that in turn
might be referred to. To make it easier we don't roll back
any symbols in that case; some upper level call to block() will
do that. We do have to remove such symbols from the lookup
tables, though. sym_pop will do that. */
sym_pop(&local_stack, s, is_expr);
/* Pop VLA frames and restore stack pointer if required */
if (vlas_in_scope > saved_vlas_in_scope) {
vla_sp_loc = saved_vlas_in_scope ? block_vla_sp_loc : vla_sp_root_loc;
vla_sp_restore();
}
vlas_in_scope = saved_vlas_in_scope;
next();
} else if (tok == TOK_RETURN) {
next();
if (tok != ';') {
gexpr();
gen_assign_cast(&func_vt);
gfunc_return(&func_vt);
}
skip(';');
/* jump unless last stmt in top-level block */
if (tok != '}' || local_scope != 1)
rsym = gjmp(rsym);
nocode_wanted |= 0x20000000;
} else if (tok == TOK_BREAK) {
/* compute jump */
if (!bsym)
tcc_error("cannot break");
*bsym = gjmp(*bsym);
next();
skip(';');
nocode_wanted |= 0x20000000;
} else if (tok == TOK_CONTINUE) {
/* compute jump */
if (!csym)
tcc_error("cannot continue");
vla_sp_restore_root();
*csym = gjmp(*csym);
next();
skip(';');
} else if (tok == TOK_FOR) {
int e;
int saved_nocode_wanted;
nocode_wanted &= ~0x20000000;
next();
skip('(');
s = local_stack;
++local_scope;
if (tok != ';') {
/* c99 for-loop init decl? */
if (!decl0(VT_LOCAL, 1)) {
/* no, regular for-loop init expr */
gexpr();
vpop();
}
}
skip(';');
d = ind;
c = ind;
vla_sp_restore();
a = 0;
b = 0;
if (tok != ';') {
gexpr();
a = gvtst(1, 0);
}
skip(';');
if (tok != ')') {
e = gjmp(0);
c = ind;
vla_sp_restore();
gexpr();
vpop();
gjmp_addr(d);
gsym(e);
}
skip(')');
saved_nocode_wanted = nocode_wanted;
block(&a, &b, 0);
nocode_wanted = saved_nocode_wanted;
gjmp_addr(c);
gsym(a);
gsym_addr(b, c);
--local_scope;
sym_pop(&local_stack, s, 0);
} else
if (tok == TOK_DO) {
int saved_nocode_wanted;
nocode_wanted &= ~0x20000000;
next();
a = 0;
b = 0;
d = ind;
vla_sp_restore();
saved_nocode_wanted = nocode_wanted;
block(&a, &b, 0);
skip(TOK_WHILE);
skip('(');
gsym(b);
gexpr();
c = gvtst(0, 0);
gsym_addr(c, d);
nocode_wanted = saved_nocode_wanted;
skip(')');
gsym(a);
skip(';');
} else
if (tok == TOK_SWITCH) {
struct switch_t *saved, sw;
int saved_nocode_wanted = nocode_wanted;
SValue switchval;
next();
skip('(');
gexpr();
skip(')');
switchval = *vtop--;
a = 0;
b = gjmp(0); /* jump to first case */
sw.p = NULL; sw.n = 0; sw.def_sym = 0;
saved = cur_switch;
cur_switch = &sw;
block(&a, csym, 0);
nocode_wanted = saved_nocode_wanted;
a = gjmp(a); /* add implicit break */
/* case lookup */
gsym(b);
qsort(sw.p, sw.n, sizeof(void*), case_cmp);
for (b = 1; b < sw.n; b++)
if (sw.p[b - 1]->v2 >= sw.p[b]->v1)
tcc_error("duplicate case value");
/* Our switch table sorting is signed, so the compared
value needs to be as well when it's 64bit. */
if ((switchval.type.t & VT_BTYPE) == VT_LLONG)
switchval.type.t &= ~VT_UNSIGNED;
vpushv(&switchval);
gcase(sw.p, sw.n, &a);
vpop();
if (sw.def_sym)
gjmp_addr(sw.def_sym);
dynarray_reset(&sw.p, &sw.n);
cur_switch = saved;
/* break label */
gsym(a);
} else
if (tok == TOK_CASE) {
struct case_t *cr = tcc_malloc(sizeof(struct case_t));
if (!cur_switch)
expect("switch");
nocode_wanted &= ~0x20000000;
next();
cr->v1 = cr->v2 = expr_const64();
if (gnu_ext && tok == TOK_DOTS) {
next();
cr->v2 = expr_const64();
if (cr->v2 < cr->v1)
tcc_warning("empty case range");
}
cr->sym = ind;
dynarray_add(&cur_switch->p, &cur_switch->n, cr);
skip(':');
is_expr = 0;
goto block_after_label;
} else
if (tok == TOK_DEFAULT) {
next();
skip(':');
if (!cur_switch)
expect("switch");
if (cur_switch->def_sym)
tcc_error("too many 'default'");
cur_switch->def_sym = ind;
is_expr = 0;
goto block_after_label;
} else
if (tok == TOK_GOTO) {
next();
if (tok == '*' && gnu_ext) {
/* computed goto */
next();
gexpr();
if ((vtop->type.t & VT_BTYPE) != VT_PTR)
expect("pointer");
ggoto();
} else if (tok >= TOK_UIDENT) {
s = label_find(tok);
/* put forward definition if needed */
if (!s) {
s = label_push(&global_label_stack, tok, LABEL_FORWARD);
} else {
if (s->r == LABEL_DECLARED)
s->r = LABEL_FORWARD;
}
vla_sp_restore_root();
if (s->r & LABEL_FORWARD)
s->jnext = gjmp(s->jnext);
else
gjmp_addr(s->jnext);
next();
} else {
expect("label identifier");
}
skip(';');
} else if (tok == TOK_ASM1 || tok == TOK_ASM2 || tok == TOK_ASM3) {
asm_instr();
} else {
b = is_label();
if (b) {
/* label case */
s = label_find(b);
if (s) {
if (s->r == LABEL_DEFINED)
tcc_error("duplicate label '%s'", get_tok_str(s->v, NULL));
gsym(s->jnext);
s->r = LABEL_DEFINED;
} else {
s = label_push(&global_label_stack, b, LABEL_DEFINED);
}
s->jnext = ind;
vla_sp_restore();
/* we accept this, but it is a mistake */
block_after_label:
nocode_wanted &= ~0x20000000;
if (tok == '}') {
tcc_warning("deprecated use of label at end of compound statement");
} else {
if (is_expr)
vpop();
block(bsym, csym, is_expr);
}
} else {
/* expression case */
if (tok != ';') {
if (is_expr) {
vpop();
gexpr();
} else {
gexpr();
vpop();
}
}
skip(';');
}
}
}
#define EXPR_CONST 1
#define EXPR_ANY 2
static void parse_init_elem(int expr_type)
{
int saved_global_expr;
switch(expr_type) {
case EXPR_CONST:
/* compound literals must be allocated globally in this case */
saved_global_expr = global_expr;
global_expr = 1;
expr_const1();
global_expr = saved_global_expr;
/* NOTE: symbols are accepted */
if ((vtop->r & (VT_VALMASK | VT_LVAL)) != VT_CONST)
tcc_error("initializer element is not constant");
break;
case EXPR_ANY:
expr_eq();
break;
}
}
/* t is the array or struct type. c is the array or struct
address. cur_field is the pointer to the current
value, for arrays the 'c' member contains the current start
index and the 'r' contains the end index (in case of range init).
'size_only' is true if only size info is needed (only used
in arrays) */
static void decl_designator(CType *type, Section *sec, unsigned long c,
Sym **cur_field, int size_only)
{
Sym *s, *f;
int notfirst, index, index_last, align, l, nb_elems, elem_size;
CType type1;
notfirst = 0;
elem_size = 0;
nb_elems = 1;
if (gnu_ext && (l = is_label()) != 0)
goto struct_field;
while (tok == '[' || tok == '.') {
if (tok == '[') {
if (!(type->t & VT_ARRAY))
expect("array type");
s = type->ref;
next();
index = expr_const();
if (index < 0 || (s->c >= 0 && index >= s->c))
tcc_error("invalid index");
if (tok == TOK_DOTS && gnu_ext) {
next();
index_last = expr_const();
if (index_last < 0 ||
(s->c >= 0 && index_last >= s->c) ||
index_last < index)
tcc_error("invalid index");
} else {
index_last = index;
}
skip(']');
if (!notfirst) {
(*cur_field)->c = index;
(*cur_field)->r = index_last;
}
type = pointed_type(type);
elem_size = type_size(type, &align);
c += index * elem_size;
/* NOTE: we only support ranges for last designator */
nb_elems = index_last - index + 1;
if (nb_elems != 1) {
notfirst = 1;
break;
}
} else {
next();
l = tok;
next();
struct_field:
if ((type->t & VT_BTYPE) != VT_STRUCT)
expect("struct/union type");
f = find_field(type, l);
if (!f)
expect("field");
if (!notfirst)
*cur_field = f;
/* XXX: fix this mess by using explicit storage field */
type1 = f->type;
type1.t |= (type->t & ~VT_TYPE);
type = &type1;
c += f->c;
}
notfirst = 1;
}
if (notfirst) {
if (tok == '=') {
next();
} else {
if (!gnu_ext)
expect("=");
}
} else {
if (type->t & VT_ARRAY) {
index = (*cur_field)->c;
if (type->ref->c >= 0 && index >= type->ref->c)
tcc_error("index too large");
type = pointed_type(type);
c += index * type_size(type, &align);
} else {
f = *cur_field;
if (!f)
tcc_error("too many field init");
/* XXX: fix this mess by using explicit storage field */
type1 = f->type;
type1.t |= (type->t & ~VT_TYPE);
type = &type1;
c += f->c;
}
}
decl_initializer(type, sec, c, 0, size_only);
/* XXX: make it more general */
if (!size_only && nb_elems > 1) {
unsigned long c_end;
uint8_t *src, *dst;
int i;
if (!sec) {
vset(type, VT_LOCAL|VT_LVAL, c);
for (i = 1; i < nb_elems; i++) {
vset(type, VT_LOCAL|VT_LVAL, c + elem_size * i);
vswap();
vstore();
}
vpop();
} else {
c_end = c + nb_elems * elem_size;
if (c_end > sec->data_allocated)
section_realloc(sec, c_end);
src = sec->data + c;
dst = src;
for(i = 1; i < nb_elems; i++) {
dst += elem_size;
memcpy(dst, src, elem_size);
}
}
}
}
/* store a value or an expression directly in global data or in local array */
static void init_putv(CType *type, Section *sec, unsigned long c)
{
int bt, bit_pos, bit_size;
void *ptr;
unsigned long long bit_mask;
CType dtype;
dtype = *type;
dtype.t &= ~VT_CONSTANT; /* need to do that to avoid false warning */
if (sec) {
int size, align;
/* XXX: not portable */
/* XXX: generate error if incorrect relocation */
gen_assign_cast(&dtype);
bt = type->t & VT_BTYPE;
size = type_size(type, &align);
if (c + size > sec->data_allocated) {
section_realloc(sec, c + size);
}
ptr = sec->data + c;
/* XXX: make code faster ? */
if (!(type->t & VT_BITFIELD)) {
bit_pos = 0;
bit_size = PTR_SIZE * 8;
bit_mask = -1LL;
} else {
bit_pos = (vtop->type.t >> VT_STRUCT_SHIFT) & 0x3f;
bit_size = (vtop->type.t >> (VT_STRUCT_SHIFT + 6)) & 0x3f;
bit_mask = (1LL << bit_size) - 1;
}
if ((vtop->r & (VT_SYM|VT_CONST)) == (VT_SYM|VT_CONST) &&
vtop->sym->v >= SYM_FIRST_ANOM &&
/* XXX This rejects compount literals like
'(void *){ptr}'. The problem is that '&sym' is
represented the same way, which would be ruled out
by the SYM_FIRST_ANOM check above, but also '"string"'
in 'char *p = "string"' is represented the same
with the type being VT_PTR and the symbol being an
anonymous one. That is, there's no difference in vtop
between '(void *){x}' and '&(void *){x}'. Ignore
pointer typed entities here. Hopefully no real code
will every use compound literals with scalar type. */
(vtop->type.t & VT_BTYPE) != VT_PTR) {
/* These come from compound literals, memcpy stuff over. */
Section *ssec;
ElfW(Sym) *esym;
ElfW_Rel *rel;
esym = &((ElfW(Sym) *)symtab_section->data)[vtop->sym->c];
ssec = tcc_state->sections[esym->st_shndx];
memmove (ptr, ssec->data + esym->st_value, size);
if (ssec->reloc) {
/* We need to copy over all memory contents, and that
includes relocations. Use the fact that relocs are
created it order, so look from the end of relocs
until we hit one before the copied region. */
int num_relocs = ssec->reloc->data_offset / sizeof(*rel);
rel = (ElfW_Rel*)(ssec->reloc->data + ssec->reloc->data_offset);
while (num_relocs--) {
rel--;
if (rel->r_offset >= esym->st_value + size)
continue;
if (rel->r_offset < esym->st_value)
break;
/* Note: if the same fields are initialized multiple
times (possible with designators) then we possibly
add multiple relocations for the same offset here.
That would lead to wrong code, the last reloc needs
to win. We clean this up later after the whole
initializer is parsed. */
put_elf_reloca(symtab_section, sec,
c + rel->r_offset - esym->st_value,
ELFW(R_TYPE)(rel->r_info),
ELFW(R_SYM)(rel->r_info),
#if defined(TCC_TARGET_ARM64) || defined(TCC_TARGET_X86_64)
rel->r_addend
#else
0
#endif
);
}
}
} else {
if ((vtop->r & VT_SYM) &&
(bt == VT_BYTE ||
bt == VT_SHORT ||
bt == VT_DOUBLE ||
bt == VT_LDOUBLE ||
#if PTR_SIZE == 8
(bt == VT_LLONG && bit_size != 64) ||
bt == VT_INT
#else
bt == VT_LLONG ||
(bt == VT_INT && bit_size != 32)
#endif
))
tcc_error("initializer element is not computable at load time");
switch(bt) {
/* XXX: when cross-compiling we assume that each type has the
same representation on host and target, which is likely to
be wrong in the case of long double */
case VT_BOOL:
vtop->c.i = (vtop->c.i != 0);
case VT_BYTE:
*(char *)ptr |= (vtop->c.i & bit_mask) << bit_pos;
break;
case VT_SHORT:
*(short *)ptr |= (vtop->c.i & bit_mask) << bit_pos;
break;
case VT_DOUBLE:
*(double *)ptr = vtop->c.d;
break;
case VT_LDOUBLE:
if (sizeof(long double) == LDOUBLE_SIZE)
*(long double *)ptr = vtop->c.ld;
else if (sizeof(double) == LDOUBLE_SIZE)
*(double *)ptr = vtop->c.ld;
else
tcc_error("can't cross compile long double constants");
break;
#if PTR_SIZE != 8
case VT_LLONG:
*(long long *)ptr |= (vtop->c.i & bit_mask) << bit_pos;
break;
#else
case VT_LLONG:
#endif
case VT_PTR:
{
addr_t val = (vtop->c.i & bit_mask) << bit_pos;
#if defined(TCC_TARGET_ARM64) || defined(TCC_TARGET_X86_64)
if (vtop->r & VT_SYM)
greloca(sec, vtop->sym, c, R_DATA_PTR, val);
else
*(addr_t *)ptr |= val;
#else
if (vtop->r & VT_SYM)
greloc(sec, vtop->sym, c, R_DATA_PTR);
*(addr_t *)ptr |= val;
#endif
break;
}
default:
{
int val = (vtop->c.i & bit_mask) << bit_pos;
#if defined(TCC_TARGET_ARM64) || defined(TCC_TARGET_X86_64)
if (vtop->r & VT_SYM)
greloca(sec, vtop->sym, c, R_DATA_PTR, val);
else
*(int *)ptr |= val;
#else
if (vtop->r & VT_SYM)
greloc(sec, vtop->sym, c, R_DATA_PTR);
*(int *)ptr |= val;
#endif
break;
}
}
}
vtop--;
} else {
vset(&dtype, VT_LOCAL|VT_LVAL, c);
vswap();
vstore();
vpop();
}
}
/* put zeros for variable based init */
static void init_putz(Section *sec, unsigned long c, int size)
{
if (sec) {
/* nothing to do because globals are already set to zero */
} else {
vpush_global_sym(&func_old_type, TOK_memset);
vseti(VT_LOCAL, c);
#ifdef TCC_TARGET_ARM
vpushs(size);
vpushi(0);
#else
vpushi(0);
vpushs(size);
#endif
gfunc_call(3);
}
}
/* 't' contains the type and storage info. 'c' is the offset of the
object in section 'sec'. If 'sec' is NULL, it means stack based
allocation. 'first' is true if array '{' must be read (multi
dimension implicit array init handling). 'size_only' is true if
size only evaluation is wanted (only for arrays). */
static void decl_initializer(CType *type, Section *sec, unsigned long c,
int first, int size_only)
{
int index, array_length, n, no_oblock, nb, parlevel, parlevel1, i;
int size1, align1;
int have_elem;
Sym *s, *f;
Sym indexsym;
CType *t1;
/* If we currently are at an '}' or ',' we have read an initializer
element in one of our callers, and not yet consumed it. */
have_elem = tok == '}' || tok == ',';
if (!have_elem && tok != '{' &&
/* In case of strings we have special handling for arrays, so
don't consume them as initializer value (which would commit them
to some anonymous symbol). */
tok != TOK_LSTR && tok != TOK_STR &&
!size_only) {
parse_init_elem(!sec ? EXPR_ANY : EXPR_CONST);
have_elem = 1;
}
if (have_elem &&
!(type->t & VT_ARRAY) &&
/* Use i_c_parameter_t, to strip toplevel qualifiers.
The source type might have VT_CONSTANT set, which is
of course assignable to non-const elements. */
is_compatible_parameter_types(type, &vtop->type)) {
init_putv(type, sec, c);
} else if (type->t & VT_ARRAY) {
s = type->ref;
n = s->c;
array_length = 0;
t1 = pointed_type(type);
size1 = type_size(t1, &align1);
no_oblock = 1;
if ((first && tok != TOK_LSTR && tok != TOK_STR) ||
tok == '{') {
if (tok != '{')
tcc_error("character array initializer must be a literal,"
" optionally enclosed in braces");
skip('{');
no_oblock = 0;
}
/* only parse strings here if correct type (otherwise: handle
them as ((w)char *) expressions */
if ((tok == TOK_LSTR &&
#ifdef TCC_TARGET_PE
(t1->t & VT_BTYPE) == VT_SHORT && (t1->t & VT_UNSIGNED)
#else
(t1->t & VT_BTYPE) == VT_INT
#endif
) || (tok == TOK_STR && (t1->t & VT_BTYPE) == VT_BYTE)) {
while (tok == TOK_STR || tok == TOK_LSTR) {
int cstr_len, ch;
/* compute maximum number of chars wanted */
if (tok == TOK_STR)
cstr_len = tokc.str.size;
else
cstr_len = tokc.str.size / sizeof(nwchar_t);
cstr_len--;
nb = cstr_len;
if (n >= 0 && nb > (n - array_length))
nb = n - array_length;
if (!size_only) {
if (cstr_len > nb)
tcc_warning("initializer-string for array is too long");
/* in order to go faster for common case (char
string in global variable, we handle it
specifically */
if (sec && tok == TOK_STR && size1 == 1) {
memcpy(sec->data + c + array_length, tokc.str.data, nb);
} else {
for(i=0;i<nb;i++) {
if (tok == TOK_STR)
ch = ((unsigned char *)tokc.str.data)[i];
else
ch = ((nwchar_t *)tokc.str.data)[i];
vpushi(ch);
init_putv(t1, sec, c + (array_length + i) * size1);
}
}
}
array_length += nb;
next();
}
/* only add trailing zero if enough storage (no
warning in this case since it is standard) */
if (n < 0 || array_length < n) {
if (!size_only) {
vpushi(0);
init_putv(t1, sec, c + (array_length * size1));
}
array_length++;
}
} else {
indexsym.c = 0;
indexsym.r = 0;
f = &indexsym;
do_init_list:
while (tok != '}' || have_elem) {
decl_designator(type, sec, c, &f, size_only);
have_elem = 0;
index = f->c;
/* must put zero in holes (note that doing it that way
ensures that it even works with designators) */
if (!size_only && array_length < index) {
init_putz(sec, c + array_length * size1,
(index - array_length) * size1);
}
if (type->t & VT_ARRAY) {
index = indexsym.c = ++indexsym.r;
} else {
index = index + type_size(&f->type, &align1);
if (s->type.t == TOK_UNION)
f = NULL;
else
f = f->next;
}
if (index > array_length)
array_length = index;
if (type->t & VT_ARRAY) {
/* special test for multi dimensional arrays (may not
be strictly correct if designators are used at the
same time) */
if (no_oblock && index >= n)
break;
} else {
if (no_oblock && f == NULL)
break;
}
if (tok == '}')
break;
skip(',');
}
}
/* put zeros at the end */
if (!size_only && array_length < n) {
init_putz(sec, c + array_length * size1,
(n - array_length) * size1);
}
if (!no_oblock)
skip('}');
/* patch type size if needed, which happens only for array types */
if (n < 0)
s->c = array_length;
} else if ((type->t & VT_BTYPE) == VT_STRUCT) {
size1 = 1;
no_oblock = 1;
if (first || tok == '{') {
skip('{');
no_oblock = 0;
}
s = type->ref;
f = s->next;
array_length = 0;
n = s->c;
goto do_init_list;
} else if (tok == '{') {
next();
decl_initializer(type, sec, c, first, size_only);
skip('}');
} else if (size_only) {
/* If we supported only ISO C we wouldn't have to accept calling
this on anything than an array size_only==1 (and even then
only on the outermost level, so no recursion would be needed),
because initializing a flex array member isn't supported.
But GNU C supports it, so we need to recurse even into
subfields of structs and arrays when size_only is set. */
/* just skip expression */
parlevel = parlevel1 = 0;
while ((parlevel > 0 || parlevel1 > 0 ||
(tok != '}' && tok != ',')) && tok != -1) {
if (tok == '(')
parlevel++;
else if (tok == ')') {
if (parlevel == 0 && parlevel1 == 0)
break;
parlevel--;
}
else if (tok == '{')
parlevel1++;
else if (tok == '}') {
if (parlevel == 0 && parlevel1 == 0)
break;
parlevel1--;
}
next();
}
} else {
if (!have_elem) {
/* This should happen only when we haven't parsed
the init element above for fear of committing a
string constant to memory too early. */
if (tok != TOK_STR && tok != TOK_LSTR)
expect("string constant");
parse_init_elem(!sec ? EXPR_ANY : EXPR_CONST);
}
init_putv(type, sec, c);
}
}
/* parse an initializer for type 't' if 'has_init' is non zero, and
allocate space in local or global data space ('r' is either
VT_LOCAL or VT_CONST). If 'v' is non zero, then an associated
variable 'v' of scope 'scope' is declared before initializers
are parsed. If 'v' is zero, then a reference to the new object
is put in the value stack. If 'has_init' is 2, a special parsing
is done to handle string constants. */
static void decl_initializer_alloc(CType *type, AttributeDef *ad, int r,
int has_init, int v, int scope)
{
int size, align, addr, data_offset;
int level;
ParseState saved_parse_state = {0};
TokenString *init_str = NULL;
Section *sec;
Sym *flexible_array;
flexible_array = NULL;
if ((type->t & VT_BTYPE) == VT_STRUCT) {
Sym *field = type->ref->next;
if (field) {
while (field->next)
field = field->next;
if (field->type.t & VT_ARRAY && field->type.ref->c < 0)
flexible_array = field;
}
}
size = type_size(type, &align);
/* If unknown size, we must evaluate it before
evaluating initializers because
initializers can generate global data too
(e.g. string pointers or ISOC99 compound
literals). It also simplifies local
initializers handling */
if (size < 0 || (flexible_array && has_init)) {
if (!has_init)
tcc_error("unknown type size");
/* get all init string */
init_str = tok_str_alloc();
if (has_init == 2) {
/* only get strings */
while (tok == TOK_STR || tok == TOK_LSTR) {
tok_str_add_tok(init_str);
next();
}
} else {
level = 0;
while (level > 0 || (tok != ',' && tok != ';')) {
if (tok < 0)
tcc_error("unexpected end of file in initializer");
tok_str_add_tok(init_str);
if (tok == '{')
level++;
else if (tok == '}') {
level--;
if (level <= 0) {
next();
break;
}
}
next();
}
}
tok_str_add(init_str, -1);
tok_str_add(init_str, 0);
/* compute size */
save_parse_state(&saved_parse_state);
begin_macro(init_str, 1);
next();
decl_initializer(type, NULL, 0, 1, 1);
/* prepare second initializer parsing */
macro_ptr = init_str->str;
next();
/* if still unknown size, error */
size = type_size(type, &align);
if (size < 0)
tcc_error("unknown type size");
}
/* If there's a flex member and it was used in the initializer
adjust size. */
if (flexible_array &&
flexible_array->type.ref->c > 0)
size += flexible_array->type.ref->c
* pointed_size(&flexible_array->type);
/* take into account specified alignment if bigger */
if (ad->a.aligned) {
int speca = 1 << (ad->a.aligned - 1);
if (speca > align)
align = speca;
} else if (ad->a.packed) {
align = 1;
}
if ((r & VT_VALMASK) == VT_LOCAL) {
sec = NULL;
#ifdef CONFIG_TCC_BCHECK
if (tcc_state->do_bounds_check && (type->t & VT_ARRAY)) {
loc--;
}
#endif
loc = (loc - size) & -align;
addr = loc;
#ifdef CONFIG_TCC_BCHECK
/* handles bounds */
/* XXX: currently, since we do only one pass, we cannot track
'&' operators, so we add only arrays */
if (tcc_state->do_bounds_check && (type->t & VT_ARRAY)) {
addr_t *bounds_ptr;
/* add padding between regions */
loc--;
/* then add local bound info */
bounds_ptr = section_ptr_add(lbounds_section, 2 * sizeof(addr_t));
bounds_ptr[0] = addr;
bounds_ptr[1] = size;
}
#endif
if (v) {
/* local variable */
#ifdef CONFIG_TCC_ASM
if (ad->asm_label) {
int reg = asm_parse_regvar(ad->asm_label);
if (reg >= 0)
r = (r & ~VT_VALMASK) | reg;
}
#endif
sym_push(v, type, r, addr);
} else {
/* push local reference */
vset(type, r, addr);
}
} else {
Sym *sym;
sym = NULL;
if (v && scope == VT_CONST) {
/* see if the symbol was already defined */
sym = sym_find(v);
if (sym) {
if (!is_compatible_types(&sym->type, type))
tcc_error("incompatible types for redefinition of '%s'",
get_tok_str(v, NULL));
if (sym->type.t & VT_EXTERN) {
/* if the variable is extern, it was not allocated */
sym->type.t &= ~VT_EXTERN;
/* set array size if it was omitted in extern
declaration */
if ((sym->type.t & VT_ARRAY) &&
sym->type.ref->c < 0 &&
type->ref->c >= 0)
sym->type.ref->c = type->ref->c;
} else {
/* we accept several definitions of the same
global variable. this is tricky, because we
must play with the SHN_COMMON type of the symbol */
/* XXX: should check if the variable was already
initialized. It is incorrect to initialized it
twice */
/* no init data, we won't add more to the symbol */
if (!has_init)
goto no_alloc;
}
}
}
/* allocate symbol in corresponding section */
sec = ad->section;
if (!sec) {
if (has_init)
sec = data_section;
else if (tcc_state->nocommon)
sec = bss_section;
}
if (sec) {
data_offset = sec->data_offset;
data_offset = (data_offset + align - 1) & -align;
addr = data_offset;
/* very important to increment global pointer at this time
because initializers themselves can create new initializers */
data_offset += size;
#ifdef CONFIG_TCC_BCHECK
/* add padding if bound check */
if (tcc_state->do_bounds_check)
data_offset++;
#endif
sec->data_offset = data_offset;
/* allocate section space to put the data */
if (sec->sh_type != SHT_NOBITS &&
data_offset > sec->data_allocated)
section_realloc(sec, data_offset);
/* align section if needed */
if (align > sec->sh_addralign)
sec->sh_addralign = align;
} else {
addr = 0; /* avoid warning */
}
if (v) {
if (scope != VT_CONST || !sym) {
sym = sym_push(v, type, r | VT_SYM, 0);
sym->asm_label = ad->asm_label;
}
/* update symbol definition */
if (sec) {
put_extern_sym(sym, sec, addr, size);
} else {
ElfW(Sym) *esym;
/* put a common area */
put_extern_sym(sym, NULL, align, size);
/* XXX: find a nicer way */
esym = &((ElfW(Sym) *)symtab_section->data)[sym->c];
esym->st_shndx = SHN_COMMON;
}
} else {
/* push global reference */
sym = get_sym_ref(type, sec, addr, size);
vpushsym(type, sym);
}
/* patch symbol weakness */
if (type->t & VT_WEAK)
weaken_symbol(sym);
apply_visibility(sym, type);
#ifdef CONFIG_TCC_BCHECK
/* handles bounds now because the symbol must be defined
before for the relocation */
if (tcc_state->do_bounds_check) {
addr_t *bounds_ptr;
greloc(bounds_section, sym, bounds_section->data_offset, R_DATA_PTR);
/* then add global bound info */
bounds_ptr = section_ptr_add(bounds_section, 2 * sizeof(addr_t));
bounds_ptr[0] = 0; /* relocated */
bounds_ptr[1] = size;
}
#endif
}
if (type->t & VT_VLA) {
int a;
/* save current stack pointer */
if (vlas_in_scope == 0) {
if (vla_sp_root_loc == -1)
vla_sp_root_loc = (loc -= PTR_SIZE);
gen_vla_sp_save(vla_sp_root_loc);
}
vla_runtime_type_size(type, &a);
gen_vla_alloc(type, a);
gen_vla_sp_save(addr);
vla_sp_loc = addr;
vlas_in_scope++;
} else if (has_init) {
size_t oldreloc_offset = 0;
if (sec && sec->reloc)
oldreloc_offset = sec->reloc->data_offset;
decl_initializer(type, sec, addr, 1, 0);
if (sec && sec->reloc)
squeeze_multi_relocs(sec, oldreloc_offset);
/* patch flexible array member size back to -1, */
/* for possible subsequent similar declarations */
if (flexible_array)
flexible_array->type.ref->c = -1;
}
no_alloc: ;
/* restore parse state if needed */
if (init_str) {
end_macro();
restore_parse_state(&saved_parse_state);
}
}
static void put_func_debug(Sym *sym)
{
char buf[512];
/* stabs info */
/* XXX: we put here a dummy type */
snprintf(buf, sizeof(buf), "%s:%c1",
funcname, sym->type.t & VT_STATIC ? 'f' : 'F');
put_stabs_r(buf, N_FUN, 0, file->line_num, 0,
cur_text_section, sym->c);
/* //gr gdb wants a line at the function */
put_stabn(N_SLINE, 0, file->line_num, 0);
last_ind = 0;
last_line_num = 0;
}
/* parse an old style function declaration list */
/* XXX: check multiple parameter */
static void func_decl_list(Sym *func_sym)
{
AttributeDef ad;
int v;
Sym *s;
CType btype, type;
/* parse each declaration */
while (tok != '{' && tok != ';' && tok != ',' && tok != TOK_EOF &&
tok != TOK_ASM1 && tok != TOK_ASM2 && tok != TOK_ASM3) {
if (!parse_btype(&btype, &ad))
expect("declaration list");
if (((btype.t & VT_BTYPE) == VT_ENUM ||
(btype.t & VT_BTYPE) == VT_STRUCT) &&
tok == ';') {
/* we accept no variable after */
} else {
for(;;) {
type = btype;
type_decl(&type, &ad, &v, TYPE_DIRECT);
/* find parameter in function parameter list */
s = func_sym->next;
while (s != NULL) {
if ((s->v & ~SYM_FIELD) == v)
goto found;
s = s->next;
}
tcc_error("declaration for parameter '%s' but no such parameter",
get_tok_str(v, NULL));
found:
/* check that no storage specifier except 'register' was given */
if (type.t & VT_STORAGE)
tcc_error("storage class specified for '%s'", get_tok_str(v, NULL));
convert_parameter_type(&type);
/* we can add the type (NOTE: it could be local to the function) */
s->type = type;
/* accept other parameters */
if (tok == ',')
next();
else
break;
}
}
skip(';');
}
}
/* parse a function defined by symbol 'sym' and generate its code in
'cur_text_section' */
static void gen_function(Sym *sym)
{
nocode_wanted = 0;
ind = cur_text_section->data_offset;
/* NOTE: we patch the symbol size later */
put_extern_sym(sym, cur_text_section, ind, 0);
funcname = get_tok_str(sym->v, NULL);
func_ind = ind;
/* Initialize VLA state */
vla_sp_loc = -1;
vla_sp_root_loc = -1;
/* put debug symbol */
if (tcc_state->do_debug)
put_func_debug(sym);
/* push a dummy symbol to enable local sym storage */
sym_push2(&local_stack, SYM_FIELD, 0, 0);
local_scope = 1; /* for function parameters */
gfunc_prolog(&sym->type);
local_scope = 0;
rsym = 0;
block(NULL, NULL, 0);
nocode_wanted = 0;
gsym(rsym);
gfunc_epilog();
cur_text_section->data_offset = ind;
label_pop(&global_label_stack, NULL);
/* reset local stack */
local_scope = 0;
sym_pop(&local_stack, NULL, 0);
/* end of function */
/* patch symbol size */
((ElfW(Sym) *)symtab_section->data)[sym->c].st_size =
ind - func_ind;
/* patch symbol weakness (this definition overrules any prototype) */
if (sym->type.t & VT_WEAK)
weaken_symbol(sym);
apply_visibility(sym, &sym->type);
if (tcc_state->do_debug) {
put_stabn(N_FUN, 0, 0, ind - func_ind);
}
/* It's better to crash than to generate wrong code */
cur_text_section = NULL;
funcname = ""; /* for safety */
func_vt.t = VT_VOID; /* for safety */
func_var = 0; /* for safety */
ind = 0; /* for safety */
nocode_wanted = 1;
check_vstack();
}
static void gen_inline_functions(TCCState *s)
{
Sym *sym;
int inline_generated, i, ln;
struct InlineFunc *fn;
ln = file->line_num;
/* iterate while inline function are referenced */
for(;;) {
inline_generated = 0;
for (i = 0; i < s->nb_inline_fns; ++i) {
fn = s->inline_fns[i];
sym = fn->sym;
if (sym && sym->c) {
/* the function was used: generate its code and
convert it to a normal function */
fn->sym = NULL;
if (file)
pstrcpy(file->filename, sizeof file->filename, fn->filename);
sym->type.t &= ~VT_INLINE;
begin_macro(fn->func_str, 1);
next();
cur_text_section = text_section;
gen_function(sym);
end_macro();
inline_generated = 1;
}
}
if (!inline_generated)
break;
}
file->line_num = ln;
}
ST_FUNC void free_inline_functions(TCCState *s)
{
int i;
/* free tokens of unused inline functions */
for (i = 0; i < s->nb_inline_fns; ++i) {
struct InlineFunc *fn = s->inline_fns[i];
if (fn->sym)
tok_str_free(fn->func_str);
}
dynarray_reset(&s->inline_fns, &s->nb_inline_fns);
}
/* 'l' is VT_LOCAL or VT_CONST to define default storage type */
static int decl0(int l, int is_for_loop_init)
{
int v, has_init, r;
CType type, btype;
Sym *sym;
AttributeDef ad;
while (1) {
if (!parse_btype(&btype, &ad)) {
if (is_for_loop_init)
return 0;
/* skip redundant ';' */
/* XXX: find more elegant solution */
if (tok == ';') {
next();
continue;
}
if (l == VT_CONST &&
(tok == TOK_ASM1 || tok == TOK_ASM2 || tok == TOK_ASM3)) {
/* global asm block */
asm_global_instr();
continue;
}
/* special test for old K&R protos without explicit int
type. Only accepted when defining global data */
if (l == VT_LOCAL || tok < TOK_UIDENT)
break;
btype.t = VT_INT;
}
if (((btype.t & VT_BTYPE) == VT_ENUM ||
(btype.t & VT_BTYPE) == VT_STRUCT) &&
tok == ';') {
if ((btype.t & VT_BTYPE) == VT_STRUCT) {
int v = btype.ref->v;
if (!(v & SYM_FIELD) && (v & ~SYM_STRUCT) >= SYM_FIRST_ANOM)
tcc_warning("unnamed struct/union that defines no instances");
}
next();
continue;
}
while (1) { /* iterate thru each declaration */
type = btype;
/* If the base type itself was an array type of unspecified
size (like in 'typedef int arr[]; arr x = {1};') then
we will overwrite the unknown size by the real one for
this decl. We need to unshare the ref symbol holding
that size. */
if ((type.t & VT_ARRAY) && type.ref->c < 0) {
type.ref = sym_push(SYM_FIELD, &type.ref->type, 0, type.ref->c);
}
type_decl(&type, &ad, &v, TYPE_DIRECT);
#if 0
{
char buf[500];
type_to_str(buf, sizeof(buf), t, get_tok_str(v, NULL));
printf("type = '%s'\n", buf);
}
#endif
if ((type.t & VT_BTYPE) == VT_FUNC) {
if ((type.t & VT_STATIC) && (l == VT_LOCAL)) {
tcc_error("function without file scope cannot be static");
}
/* if old style function prototype, we accept a
declaration list */
sym = type.ref;
if (sym->c == FUNC_OLD)
func_decl_list(sym);
}
if (gnu_ext && (tok == TOK_ASM1 || tok == TOK_ASM2 || tok == TOK_ASM3)) {
ad.asm_label = asm_label_instr();
/* parse one last attribute list, after asm label */
parse_attribute(&ad);
if (tok == '{')
expect(";");
}
if (ad.a.weak)
type.t |= VT_WEAK;
#ifdef TCC_TARGET_PE
if (ad.a.func_import)
type.t |= VT_IMPORT;
if (ad.a.func_export)
type.t |= VT_EXPORT;
#endif
type.t |= ad.a.visibility << VT_VIS_SHIFT;
if (tok == '{') {
if (l == VT_LOCAL)
tcc_error("cannot use local functions");
if ((type.t & VT_BTYPE) != VT_FUNC)
expect("function definition");
/* reject abstract declarators in function definition */
sym = type.ref;
while ((sym = sym->next) != NULL)
if (!(sym->v & ~SYM_FIELD))
expect("identifier");
/* XXX: cannot do better now: convert extern line to static inline */
if ((type.t & (VT_EXTERN | VT_INLINE)) == (VT_EXTERN | VT_INLINE))
type.t = (type.t & ~VT_EXTERN) | VT_STATIC;
sym = sym_find(v);
if (sym) {
Sym *ref;
if ((sym->type.t & VT_BTYPE) != VT_FUNC)
goto func_error1;
ref = sym->type.ref;
/* use func_call from prototype if not defined */
if (ref->a.func_call != FUNC_CDECL
&& type.ref->a.func_call == FUNC_CDECL)
type.ref->a.func_call = ref->a.func_call;
/* use export from prototype */
if (ref->a.func_export)
type.ref->a.func_export = 1;
/* use static from prototype */
if (sym->type.t & VT_STATIC)
type.t = (type.t & ~VT_EXTERN) | VT_STATIC;
/* If the definition has no visibility use the
one from prototype. */
if (! (type.t & VT_VIS_MASK))
type.t |= sym->type.t & VT_VIS_MASK;
if (!is_compatible_types(&sym->type, &type)) {
func_error1:
tcc_error("incompatible types for redefinition of '%s'",
get_tok_str(v, NULL));
}
if (ref->a.func_body)
tcc_error("redefinition of '%s'", get_tok_str(v, NULL));
/* if symbol is already defined, then put complete type */
sym->type = type;
} else {
/* put function symbol */
sym = global_identifier_push(v, type.t, 0);
sym->type.ref = type.ref;
}
sym->type.ref->a.func_body = 1;
sym->r = VT_SYM | VT_CONST;
/* static inline functions are just recorded as a kind
of macro. Their code will be emitted at the end of
the compilation unit only if they are used */
if ((type.t & (VT_INLINE | VT_STATIC)) ==
(VT_INLINE | VT_STATIC)) {
int block_level;
struct InlineFunc *fn;
const char *filename;
filename = file ? file->filename : "";
fn = tcc_malloc(sizeof *fn + strlen(filename));
strcpy(fn->filename, filename);
fn->sym = sym;
fn->func_str = tok_str_alloc();
block_level = 0;
for(;;) {
int t;
if (tok == TOK_EOF)
tcc_error("unexpected end of file");
tok_str_add_tok(fn->func_str);
t = tok;
next();
if (t == '{') {
block_level++;
} else if (t == '}') {
block_level--;
if (block_level == 0)
break;
}
}
tok_str_add(fn->func_str, -1);
tok_str_add(fn->func_str, 0);
dynarray_add(&tcc_state->inline_fns, &tcc_state->nb_inline_fns, fn);
} else {
/* compute text section */
cur_text_section = ad.section;
if (!cur_text_section)
cur_text_section = text_section;
gen_function(sym);
}
break;
} else {
if (btype.t & VT_TYPEDEF) {
/* save typedefed type */
/* XXX: test storage specifiers ? */
sym = sym_find(v);
if (sym && sym->scope == local_scope) {
if (!is_compatible_types(&sym->type, &type)
|| !(sym->type.t & VT_TYPEDEF))
tcc_error("incompatible redefinition of '%s'",
get_tok_str(v, NULL));
sym->type = type;
} else {
sym = sym_push(v, &type, 0, 0);
}
sym->a = ad.a;
sym->type.t |= VT_TYPEDEF;
} else {
r = 0;
if ((type.t & VT_BTYPE) == VT_FUNC) {
/* external function definition */
/* specific case for func_call attribute */
type.ref->a = ad.a;
} else if (!(type.t & VT_ARRAY)) {
/* not lvalue if array */
r |= lvalue_type(type.t);
}
has_init = (tok == '=');
if (has_init && (type.t & VT_VLA))
tcc_error("variable length array cannot be initialized");
if ((btype.t & VT_EXTERN) || ((type.t & VT_BTYPE) == VT_FUNC) ||
((type.t & VT_ARRAY) && (type.t & VT_STATIC) &&
!has_init && l == VT_CONST && type.ref->c < 0)) {
/* external variable or function */
/* NOTE: as GCC, uninitialized global static
arrays of null size are considered as
extern */
sym = external_sym(v, &type, r);
sym->asm_label = ad.asm_label;
if (ad.alias_target) {
Section tsec;
ElfW(Sym) *esym;
Sym *alias_target;
alias_target = sym_find(ad.alias_target);
if (!alias_target || !alias_target->c)
tcc_error("unsupported forward __alias__ attribute");
esym = &((ElfW(Sym) *)symtab_section->data)[alias_target->c];
tsec.sh_num = esym->st_shndx;
put_extern_sym2(sym, &tsec, esym->st_value, esym->st_size, 0);
}
} else {
type.t |= (btype.t & VT_STATIC); /* Retain "static". */
if (type.t & VT_STATIC)
r |= VT_CONST;
else
r |= l;
if (has_init)
next();
decl_initializer_alloc(&type, &ad, r, has_init, v, l);
}
}
if (tok != ',') {
if (is_for_loop_init)
return 1;
skip(';');
break;
}
next();
}
ad.a.aligned = 0;
}
}
return 0;
}
ST_FUNC void decl(int l)
{
decl0(l, 0);
}
/* ------------------------------------------------------------------------- */