tinycc/arm-asm.c

919 lines
27 KiB
C

/*
* ARM specific functions for TCC assembler
*
* Copyright (c) 2001, 2002 Fabrice Bellard
* Copyright (c) 2020 Danny Milosavljevic
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifdef TARGET_DEFS_ONLY
#define CONFIG_TCC_ASM
#define NB_ASM_REGS 16
ST_FUNC void g(int c);
ST_FUNC void gen_le16(int c);
ST_FUNC void gen_le32(int c);
/*************************************************************/
#else
/*************************************************************/
#define USING_GLOBALS
#include "tcc.h"
enum {
OPT_REG32,
OPT_REGSET32,
OPT_IM8,
OPT_IM8N,
OPT_IM32,
};
#define OP_REG32 (1 << OPT_REG32)
#define OP_REG (OP_REG32)
#define OP_IM32 (1 << OPT_IM32)
#define OP_IM8 (1 << OPT_IM8)
#define OP_IM8N (1 << OPT_IM8N)
#define OP_REGSET32 (1 << OPT_REGSET32)
typedef struct Operand {
uint32_t type;
union {
uint8_t reg;
uint16_t regset;
ExprValue e;
};
} Operand;
/* Parse a text containing operand and store the result in OP */
static void parse_operand(TCCState *s1, Operand *op)
{
ExprValue e;
int8_t reg;
uint16_t regset = 0;
op->type = 0;
if (tok == '{') { // regset literal
next(); // skip '{'
while (tok != '}' && tok != TOK_EOF) {
reg = asm_parse_regvar(tok);
if (reg == -1) {
expect("register");
return;
} else
next(); // skip register name
regset |= 1 << reg;
if (tok != ',')
break;
next(); // skip ','
}
if (tok != '}')
expect("'}'");
next(); // skip '}'
if (regset == 0) {
// ARM instructions don't support empty regset.
tcc_error("empty register list is not supported");
} else {
op->type = OP_REGSET32;
op->regset = regset;
}
} else if (tok == '#' || tok == '$') {
/* constant value */
next(); // skip '#' or '$'
asm_expr(s1, &e);
op->type = OP_IM32;
op->e = e;
if (!op->e.sym) {
if ((int) op->e.v < 0 && (int) op->e.v >= -255)
op->type = OP_IM8N;
else if (op->e.v == (uint8_t)op->e.v)
op->type = OP_IM8;
} else
expect("constant");
} else if ((reg = asm_parse_regvar(tok)) != -1) {
next(); // skip register name
op->type = OP_REG32;
op->reg = (uint8_t) reg;
} else
expect("operand");
}
/* XXX: make it faster ? */
ST_FUNC void g(int c)
{
int ind1;
if (nocode_wanted)
return;
ind1 = ind + 1;
if (ind1 > cur_text_section->data_allocated)
section_realloc(cur_text_section, ind1);
cur_text_section->data[ind] = c;
ind = ind1;
}
ST_FUNC void gen_le16 (int i)
{
g(i);
g(i>>8);
}
ST_FUNC void gen_le32 (int i)
{
gen_le16(i);
gen_le16(i>>16);
}
ST_FUNC void gen_expr32(ExprValue *pe)
{
gen_le32(pe->v);
}
static uint32_t condition_code_of_token(int token) {
if (token < TOK_ASM_nopeq) {
expect("instruction");
return 0;
} else
return (token - TOK_ASM_nopeq) & 15;
}
static void asm_emit_opcode(int token, uint32_t opcode) {
gen_le32((condition_code_of_token(token) << 28) | opcode);
}
static void asm_nullary_opcode(int token)
{
switch (ARM_INSTRUCTION_GROUP(token)) {
case TOK_ASM_nopeq:
asm_emit_opcode(token, 0xd << 21); // mov r0, r0
break;
case TOK_ASM_wfeeq:
asm_emit_opcode(token, 0x320f002);
case TOK_ASM_wfieq:
asm_emit_opcode(token, 0x320f003);
break;
default:
expect("nullary instruction");
}
}
static void asm_unary_opcode(TCCState *s1, int token)
{
Operand op;
parse_operand(s1, &op);
switch (ARM_INSTRUCTION_GROUP(token)) {
case TOK_ASM_swieq:
if (op.type != OP_IM8)
expect("immediate 8-bit unsigned integer");
else {
/* Note: Dummy operand (ignored by processor): ARM ref documented 0...255, ARM instruction set documented 24 bit */
asm_emit_opcode(token, (0xf << 24) | op.e.v);
}
break;
default:
expect("unary instruction");
}
}
static void asm_binary_opcode(TCCState *s1, int token)
{
Operand ops[2];
parse_operand(s1, &ops[0]);
if (tok == ',')
next();
else
expect("','");
parse_operand(s1, &ops[1]);
if (ops[0].type != OP_REG32) {
expect("(destination operand) register");
return;
}
if (ops[1].type != OP_REG32)
expect("(source operand) register");
else switch (ARM_INSTRUCTION_GROUP(token)) {
case TOK_ASM_clzeq:
asm_emit_opcode(token, 0x16f0f10 | (ops[0].reg << 12) | ops[1].reg);
break;
case TOK_ASM_sxtbeq:
/* TODO: optional ROR (8|16|24) */
asm_emit_opcode(token, 0x6af0070 | (ops[0].reg << 12) | ops[1].reg);
break;
case TOK_ASM_sxtheq:
/* TODO: optional ROR (8|16|24) */
asm_emit_opcode(token, 0x6bf0070 | (ops[0].reg << 12) | ops[1].reg);
break;
case TOK_ASM_uxtbeq:
/* TODO: optional ROR (8|16|24) */
asm_emit_opcode(token, 0x6ef0070 | (ops[0].reg << 12) | ops[1].reg);
break;
case TOK_ASM_uxtheq:
/* TODO: optional ROR (8|16|24) */
asm_emit_opcode(token, 0x6ff0070 | (ops[0].reg << 12) | ops[1].reg);
break;
default:
expect("binary instruction");
}
}
/* data processing and single data transfer instructions only */
#define ENCODE_RN(register_index) ((register_index) << 16)
#define ENCODE_RD(register_index) ((register_index) << 12)
#define ENCODE_SET_CONDITION_CODES (1 << 20)
/* Note: For data processing instructions, "1" means immediate.
Note: For single data transfer instructions, "0" means immediate. */
#define ENCODE_IMMEDIATE_FLAG (1 << 25)
static void asm_block_data_transfer_opcode(TCCState *s1, int token)
{
uint32_t opcode;
int op0_exclam;
Operand ops[2];
int nb_ops = 1;
parse_operand(s1, &ops[0]);
if (tok == '!') {
op0_exclam = 1;
next(); // skip '!'
}
if (tok == ',') {
next(); // skip comma
parse_operand(s1, &ops[1]);
++nb_ops;
}
if (nb_ops < 1) {
expect("at least one operand");
return;
} else if (ops[nb_ops - 1].type != OP_REGSET32) {
expect("(last operand) register list");
return;
}
// block data transfer: 1 0 0 P U S W L << 20 (general case):
// operands:
// Rn: bits 19...16 base register
// Register List: bits 15...0
switch (ARM_INSTRUCTION_GROUP(token)) {
case TOK_ASM_pusheq: // TODO: Optimize 1-register case to: str ?, [sp, #-4]!
// Instruction: 1 I=0 P=1 U=0 S=0 W=1 L=0 << 20, op 1101
// operands:
// Rn: base register
// Register List: bits 15...0
if (nb_ops != 1)
expect("exactly one operand");
else
asm_emit_opcode(token, (0x92d << 16) | ops[0].regset); // TODO: base register ?
break;
case TOK_ASM_popeq: // TODO: Optimize 1-register case to: ldr ?, [sp], #4
// Instruction: 1 I=0 P=0 U=1 S=0 W=0 L=1 << 20, op 1101
// operands:
// Rn: base register
// Register List: bits 15...0
if (nb_ops != 1)
expect("exactly one operand");
else
asm_emit_opcode(token, (0x8bd << 16) | ops[0].regset); // TODO: base register ?
break;
case TOK_ASM_stmdaeq:
case TOK_ASM_ldmdaeq:
case TOK_ASM_stmeq:
case TOK_ASM_ldmeq:
case TOK_ASM_stmiaeq:
case TOK_ASM_ldmiaeq:
case TOK_ASM_stmdbeq:
case TOK_ASM_ldmdbeq:
case TOK_ASM_stmibeq:
case TOK_ASM_ldmibeq:
switch (ARM_INSTRUCTION_GROUP(token)) {
case TOK_ASM_stmdaeq: // post-decrement store
opcode = 0x82 << 20;
break;
case TOK_ASM_ldmdaeq: // post-decrement load
opcode = 0x83 << 20;
break;
case TOK_ASM_stmeq: // post-increment store
case TOK_ASM_stmiaeq: // post-increment store
opcode = 0x8a << 20;
break;
case TOK_ASM_ldmeq: // post-increment load
case TOK_ASM_ldmiaeq: // post-increment load
opcode = 0x8b << 20;
break;
case TOK_ASM_stmdbeq: // pre-decrement store
opcode = 0x92 << 20;
break;
case TOK_ASM_ldmdbeq: // pre-decrement load
opcode = 0x93 << 20;
break;
case TOK_ASM_stmibeq: // pre-increment store
opcode = 0x9a << 20;
break;
case TOK_ASM_ldmibeq: // pre-increment load
opcode = 0x9b << 20;
break;
default:
tcc_error("internal error: This place should not be reached (fallback in asm_block_data_transfer_opcode)");
}
// operands:
// Rn: first operand
// Register List: lower bits
if (nb_ops != 2)
expect("exactly two operands");
else if (ops[0].type != OP_REG32)
expect("(first operand) register");
else if (!op0_exclam)
tcc_error("first operand of '%s' should have an exclamation mark", get_tok_str(token, NULL));
else
asm_emit_opcode(token, opcode | ENCODE_RN(ops[0].reg) | ops[1].regset);
break;
default:
expect("block data transfer instruction");
}
}
static void asm_data_processing_opcode(TCCState *s1, int token)
{
Operand ops[3];
int nb_ops;
/* 16 entries per instruction for the different condition codes */
uint32_t opcode_idx = (ARM_INSTRUCTION_GROUP(token) - TOK_ASM_andeq) >> 4;
for (nb_ops = 0; nb_ops < sizeof(ops)/sizeof(ops[0]); ++nb_ops) {
parse_operand(s1, &ops[nb_ops]);
if (tok != ',') {
++nb_ops;
break;
}
next(); // skip ','
}
if (nb_ops < 2)
expect("at least two operands");
else if (nb_ops == 2) {
memcpy(&ops[2], &ops[1], sizeof(ops[1])); // move ops[2]
memcpy(&ops[1], &ops[0], sizeof(ops[0])); // ops[1] was implicit
nb_ops = 3;
}
if (nb_ops != 3) {
expect("two or three operands");
return;
} else {
uint32_t opcode = 0;
uint32_t operands = 0;
// data processing (general case):
// operands:
// Rn: bits 19...16 (first operand)
// Rd: bits 15...12 (destination)
// Operand2: bits 11...0 (second operand); depending on I that's either a register or an immediate
// operator:
// bits 24...21: "OpCode"--see below
/* operations in the token list are ordered by opcode */
opcode = (opcode_idx >> 1) << 21; // drop "s"
if (ops[0].type != OP_REG32)
expect("(destination operand) register");
else if (opcode == 0xa << 21 || opcode == 0xb << 21 || opcode == 0x8 << 21 || opcode == 0x9 << 21 ) // cmp, cmn, tst, teq
operands |= ENCODE_SET_CONDITION_CODES; // force S set, otherwise it's a completely different instruction.
else
operands |= ENCODE_RD(ops[0].reg);
if (ops[1].type != OP_REG32)
expect("(first source operand) register");
else if (!(opcode == 0xd << 21 || opcode == 0xf << 21)) // not: mov, mvn (those have only one source operand)
operands |= ENCODE_RN(ops[1].reg);
switch (ops[2].type) {
case OP_REG32:
// TODO: Parse and encode shift.
operands |= ops[2].reg;
break;
case OP_IM8:
// TODO: Parse and encode rotation.
operands |= ENCODE_IMMEDIATE_FLAG;
operands |= ops[2].e.v;
break;
case OP_IM8N: // immediate negative value
// TODO: Parse and encode rotation.
operands |= ENCODE_IMMEDIATE_FLAG;
/* Instruction swapping:
0001 = EOR - Rd:= Op1 EOR Op2 -> difficult
0011 = RSB - Rd:= Op2 - Op1 -> difficult
0111 = RSC - Rd:= Op2 - Op1 + C -> difficult
1000 = TST - CC on: Op1 AND Op2 -> difficult
1001 = TEQ - CC on: Op1 EOR Op2 -> difficult
1100 = ORR - Rd:= Op1 OR Op2 -> difficult
*/
switch (opcode_idx >> 1) { // "OpCode" in ARM docs
#if 0
case 0x0: // AND - Rd:= Op1 AND Op2
opcode = 0xe << 21; // BIC
operands |= (ops[2].e.v ^ 0xFF) & 0xFF;
break;
case 0x2: // SUB - Rd:= Op1 - Op2
opcode = 0x4 << 21; // ADD
operands |= (-ops[2].e.v) & 0xFF;
break;
case 0x4: // ADD - Rd:= Op1 + Op2
opcode = 0x2 << 21; // SUB
operands |= (-ops[2].e.v) & 0xFF;
break;
case 0x5: // ADC - Rd:= Op1 + Op2 + C
opcode = 0x6 << 21; // SBC
operands |= (ops[2].e.v ^ 0xFF) & 0xFF;
break;
case 0x6: // SBC - Rd:= Op1 - Op2 + C
opcode = 0x5 << 21; // ADC
operands |= (ops[2].e.v ^ 0xFF) & 0xFF;
break;
#endif
case 0xa: // CMP - CC on: Op1 - Op2
opcode = 0xb << 21; // CMN
operands |= (-ops[2].e.v) & 0xFF;
break;
case 0xb: // CMN - CC on: Op1 + Op2
opcode = 0xa << 21; // CMP
operands |= (-ops[2].e.v) & 0xFF;
break;
// moveq r1, r3: 0x01a01003; mov Rd, Op2
case 0xd: // MOV - Rd:= Op2
opcode = 0xf << 21; // MVN
operands |= (ops[2].e.v ^ 0xFF) & 0xFF;
break;
#if 0
case 0xe: // BIC - Rd:= Op1 AND NOT Op2
opcode = 0x0 << 21; // AND
operands |= (ops[2].e.v ^ 0xFF) & 0xFF;
break;
#endif
case 0xf: // MVN - Rd:= NOT Op2
opcode = 0xd << 21; // MOV
operands |= (ops[2].e.v ^ 0xFF) & 0xFF;
break;
default:
tcc_error("cannot use '%s' with a negative immediate value", get_tok_str(token, NULL));
}
break;
default:
expect("(second source operand) register or immediate value");
}
/* S=0 and S=1 entries alternate one after another, in that order */
opcode |= (opcode_idx & 1) ? ENCODE_SET_CONDITION_CODES : 0;
asm_emit_opcode(token, opcode | operands);
}
}
static void asm_multiplication_opcode(TCCState *s1, int token)
{
Operand ops[4];
int nb_ops = 0;
uint32_t opcode = 0x90;
for (nb_ops = 0; nb_ops < sizeof(ops)/sizeof(ops[0]); ++nb_ops) {
parse_operand(s1, &ops[nb_ops]);
if (tok != ',') {
++nb_ops;
break;
}
next(); // skip ','
}
if (nb_ops < 2)
expect("at least two operands");
else if (nb_ops == 2) {
switch (ARM_INSTRUCTION_GROUP(token)) {
case TOK_ASM_mulseq:
case TOK_ASM_muleq:
memcpy(&ops[2], &ops[0], sizeof(ops[1])); // ARM is actually like this!
break;
default:
memcpy(&ops[2], &ops[1], sizeof(ops[1])); // move ops[2]
memcpy(&ops[1], &ops[0], sizeof(ops[0])); // ops[1] was implicit
}
nb_ops = 3;
}
// multiply (special case):
// operands:
// Rd: bits 19...16
// Rm: bits 3...0
// Rs: bits 11...8
// Rn: bits 15...12
if (ops[0].type == OP_REG32)
opcode |= ops[0].reg << 16;
else
expect("(destination operand) register");
if (ops[1].type == OP_REG32)
opcode |= ops[1].reg;
else
expect("(first source operand) register");
if (ops[2].type == OP_REG32)
opcode |= ops[2].reg << 8;
else
expect("(second source operand) register");
if (nb_ops > 3) {
if (ops[3].type == OP_REG32)
opcode |= ops[3].reg << 12;
else
expect("(third source operand) register");
}
switch (ARM_INSTRUCTION_GROUP(token)) {
case TOK_ASM_mulseq:
opcode |= 1 << 20; // Status
/* fallthrough */
case TOK_ASM_muleq:
if (nb_ops != 3)
expect("three operands");
else {
asm_emit_opcode(token, opcode);
}
break;
case TOK_ASM_mlaseq:
opcode |= 1 << 20; // Status
/* fallthrough */
case TOK_ASM_mlaeq:
if (nb_ops != 4)
expect("four operands");
else {
opcode |= 1 << 21; // Accumulate
asm_emit_opcode(token, opcode);
}
break;
default:
expect("known multiplication instruction");
}
}
static void asm_long_multiplication_opcode(TCCState *s1, int token)
{
Operand ops[4];
int nb_ops = 0;
uint32_t opcode = 0x90 | (1 << 23);
for (nb_ops = 0; nb_ops < sizeof(ops)/sizeof(ops[0]); ++nb_ops) {
parse_operand(s1, &ops[nb_ops]);
if (tok != ',') {
++nb_ops;
break;
}
next(); // skip ','
}
if (nb_ops != 4) {
expect("four operands");
return;
}
// long multiply (special case):
// operands:
// RdLo: bits 15...12
// RdHi: bits 19...16
// Rs: bits 11...8
// Rm: bits 3...0
if (ops[0].type == OP_REG32)
opcode |= ops[0].reg << 12;
else
expect("(destination lo accumulator) register");
if (ops[1].type == OP_REG32)
opcode |= ops[1].reg << 16;
else
expect("(destination hi accumulator) register");
if (ops[2].type == OP_REG32)
opcode |= ops[2].reg;
else
expect("(first source operand) register");
if (ops[3].type == OP_REG32)
opcode |= ops[3].reg << 8;
else
expect("(second source operand) register");
switch (ARM_INSTRUCTION_GROUP(token)) {
case TOK_ASM_smullseq:
opcode |= 1 << 20; // Status
/* fallthrough */
case TOK_ASM_smulleq:
opcode |= 1 << 22; // signed
asm_emit_opcode(token, opcode);
break;
case TOK_ASM_umullseq:
opcode |= 1 << 20; // Status
/* fallthrough */
case TOK_ASM_umulleq:
asm_emit_opcode(token, opcode);
break;
case TOK_ASM_smlalseq:
opcode |= 1 << 20; // Status
/* fallthrough */
case TOK_ASM_smlaleq:
opcode |= 1 << 22; // signed
opcode |= 1 << 21; // Accumulate
asm_emit_opcode(token, opcode);
break;
case TOK_ASM_umlalseq:
opcode |= 1 << 20; // Status
/* fallthrough */
case TOK_ASM_umlaleq:
opcode |= 1 << 21; // Accumulate
asm_emit_opcode(token, opcode);
break;
default:
expect("known long multiplication instruction");
}
}
static void asm_single_data_transfer_opcode(TCCState *s1, int token)
{
Operand ops[3];
int exclam = 0;
int closed_bracket = 0;
int op2_minus = 0;
uint32_t opcode = 1 << 26;
// Note: ldr r0, [r4, #4] ; simple offset: r0 = *(int*)(r4+4); r4 unchanged
// Note: ldr r0, [r4, #4]! ; pre-indexed: r0 = *(int*)(r4+4); r4 = r4+4
// Note: ldr r0, [r4], #4 ; post-indexed: r0 = *(int*)(r4+0); r4 = r4+4
parse_operand(s1, &ops[0]);
if (ops[0].type == OP_REG32)
opcode |= ENCODE_RD(ops[0].reg);
else {
expect("(destination operand) register");
return;
}
if (tok != ',')
expect("two arguments");
else
next(); // skip ','
if (tok != '[')
expect("'['");
else
next(); // skip '['
parse_operand(s1, &ops[1]);
if (ops[1].type == OP_REG32)
opcode |= ENCODE_RN(ops[1].reg);
else {
expect("(first source operand) register");
return;
}
if (tok == ']') {
next();
closed_bracket = 1;
// exclam = 1; // implicit in hardware; don't do it in software
}
if (tok != ',')
expect("','");
else
next(); // skip ','
if (tok == '-') {
op2_minus = 1;
next();
}
parse_operand(s1, &ops[2]);
if (!closed_bracket) {
if (tok != ']')
expect("']'");
else
next(); // skip ']'
opcode |= 1 << 24; // add offset before transfer
if (tok == '!') {
exclam = 1;
next(); // skip '!'
}
}
// single data transfer: 0 1 I P U B W L << 20 (general case):
// operands:
// Rd: destination operand [ok]
// Rn: first source operand [ok]
// Operand2: bits 11...0 [ok]
// I: immediate operand? [ok]
// P: Pre/post indexing is PRE: Add offset before transfer [ok]
// U: Up/down is up? (*adds* offset to base) [ok]
// B: Byte/word is byte? TODO
// W: Write address back into base? [ok]
// L: Load/store is load? [ok]
if (exclam)
opcode |= 1 << 21; // write offset back into register
if (ops[2].type == OP_IM32 || ops[2].type == OP_IM8 || ops[2].type == OP_IM8N) {
int v = ops[2].e.v;
if (op2_minus)
tcc_error("minus before '#' not supported for immediate values");
if (v >= 0) {
opcode |= 1 << 23; // up
if (v >= 0x1000)
tcc_error("offset out of range for '%s'", get_tok_str(token, NULL));
else
opcode |= v;
} else { // down
if (v <= -0x1000)
tcc_error("offset out of range for '%s'", get_tok_str(token, NULL));
else
opcode |= -v;
}
} else if (ops[2].type == OP_REG32) {
if (!op2_minus)
opcode |= 1 << 23; // up
opcode |= ENCODE_IMMEDIATE_FLAG; /* if set, it means it's NOT immediate */
opcode |= ops[2].reg;
} else
expect("register");
switch (ARM_INSTRUCTION_GROUP(token)) {
case TOK_ASM_strbeq:
opcode |= 1 << 22; // B
/* fallthrough */
case TOK_ASM_streq:
asm_emit_opcode(token, opcode);
break;
case TOK_ASM_ldrbeq:
opcode |= 1 << 22; // B
/* fallthrough */
case TOK_ASM_ldreq:
opcode |= 1 << 20; // L
asm_emit_opcode(token, opcode);
break;
default:
expect("data transfer instruction");
}
}
ST_FUNC void asm_opcode(TCCState *s1, int token)
{
while (token == TOK_LINEFEED) {
next();
token = tok;
}
if (token == TOK_EOF)
return;
if (token < TOK_ASM_nopeq) {
expect("instruction");
return;
}
switch (ARM_INSTRUCTION_GROUP(token)) {
case TOK_ASM_pusheq:
case TOK_ASM_popeq:
case TOK_ASM_stmdaeq:
case TOK_ASM_ldmdaeq:
case TOK_ASM_stmeq:
case TOK_ASM_ldmeq:
case TOK_ASM_stmiaeq:
case TOK_ASM_ldmiaeq:
case TOK_ASM_stmdbeq:
case TOK_ASM_ldmdbeq:
case TOK_ASM_stmibeq:
case TOK_ASM_ldmibeq:
return asm_block_data_transfer_opcode(s1, token);
case TOK_ASM_nopeq:
case TOK_ASM_wfeeq:
case TOK_ASM_wfieq:
return asm_nullary_opcode(token);
case TOK_ASM_swieq:
return asm_unary_opcode(s1, token);
case TOK_ASM_clzeq:
case TOK_ASM_sxtbeq:
case TOK_ASM_sxtheq:
case TOK_ASM_uxtbeq:
case TOK_ASM_uxtheq:
return asm_binary_opcode(s1, token);
case TOK_ASM_ldreq:
case TOK_ASM_ldrbeq:
case TOK_ASM_streq:
case TOK_ASM_strbeq:
return asm_single_data_transfer_opcode(s1, token);
case TOK_ASM_andeq:
case TOK_ASM_eoreq:
case TOK_ASM_subeq:
case TOK_ASM_rsbeq:
case TOK_ASM_addeq:
case TOK_ASM_adceq:
case TOK_ASM_sbceq:
case TOK_ASM_rsceq:
case TOK_ASM_tsteq:
case TOK_ASM_teqeq:
case TOK_ASM_cmpeq:
case TOK_ASM_cmneq:
case TOK_ASM_orreq:
case TOK_ASM_moveq:
case TOK_ASM_biceq:
case TOK_ASM_mvneq:
case TOK_ASM_andseq:
case TOK_ASM_eorseq:
case TOK_ASM_subseq:
case TOK_ASM_rsbseq:
case TOK_ASM_addseq:
case TOK_ASM_adcseq:
case TOK_ASM_sbcseq:
case TOK_ASM_rscseq:
// case TOK_ASM_tstseq:
// case TOK_ASM_teqseq:
// case TOK_ASM_cmpseq:
// case TOK_ASM_cmnseq:
case TOK_ASM_orrseq:
case TOK_ASM_movseq:
case TOK_ASM_bicseq:
case TOK_ASM_mvnseq:
return asm_data_processing_opcode(s1, token);
case TOK_ASM_muleq:
case TOK_ASM_mulseq:
case TOK_ASM_mlaeq:
case TOK_ASM_mlaseq:
return asm_multiplication_opcode(s1, token);
case TOK_ASM_smulleq:
case TOK_ASM_smullseq:
case TOK_ASM_umulleq:
case TOK_ASM_umullseq:
case TOK_ASM_smlaleq:
case TOK_ASM_smlalseq:
case TOK_ASM_umlaleq:
case TOK_ASM_umlalseq:
return asm_long_multiplication_opcode(s1, token);
default:
expect("known instruction");
}
}
ST_FUNC void subst_asm_operand(CString *add_str, SValue *sv, int modifier)
{
tcc_error("internal error: subst_asm_operand not implemented");
}
/* generate prolog and epilog code for asm statement */
ST_FUNC void asm_gen_code(ASMOperand *operands, int nb_operands,
int nb_outputs, int is_output,
uint8_t *clobber_regs,
int out_reg)
{
}
ST_FUNC void asm_compute_constraints(ASMOperand *operands,
int nb_operands, int nb_outputs,
const uint8_t *clobber_regs,
int *pout_reg)
{
}
ST_FUNC void asm_clobber(uint8_t *clobber_regs, const char *str)
{
int reg;
TokenSym *ts;
if (!strcmp(str, "memory") ||
!strcmp(str, "cc") ||
!strcmp(str, "flags"))
return;
ts = tok_alloc(str, strlen(str));
reg = asm_parse_regvar(ts->tok);
if (reg == -1) {
tcc_error("invalid clobber register '%s'", str);
}
clobber_regs[reg] = 1;
}
/* If T refers to a register then return the register number and type.
Otherwise return -1. */
ST_FUNC int asm_parse_regvar (int t)
{
if (t >= TOK_ASM_r0 && t <= TOK_ASM_pc) { /* register name */
switch (t) {
case TOK_ASM_fp:
return TOK_ASM_r11 - TOK_ASM_r0;
case TOK_ASM_ip:
return TOK_ASM_r12 - TOK_ASM_r0;
case TOK_ASM_sp:
return TOK_ASM_r13 - TOK_ASM_r0;
case TOK_ASM_lr:
return TOK_ASM_r14 - TOK_ASM_r0;
case TOK_ASM_pc:
return TOK_ASM_r15 - TOK_ASM_r0;
default:
return t - TOK_ASM_r0;
}
} else
return -1;
}
/*************************************************************/
#endif /* ndef TARGET_DEFS_ONLY */